Modeling Solar Potential in Semarang, Indonesia Using Artificial Neural Networks


Djoko Adi Widodo, FT P Teknik Elektro (2021) Modeling Solar Potential in Semarang, Indonesia Using Artificial Neural Networks. Journal of Applied Engineering Science, 19 (3). ISSN 1451-4117

[thumbnail of 2. Modeling Solar Potential in Semarang, Indonesia.pdf] PDF - Published Version
Download (2MB)
[thumbnail of 2 Turnitin Modeling Solar Potential in Semarang.pdf] PDF - Published Version
Download (2MB)
[thumbnail of Korespondensi.pdf] PDF - Published Version
Download (1MB)

Abstract

Artificial neural network shows a good performance in predicting renewable energy. Many versions of Artificial Neural Network (ANN) models have been implemented to predict solar potential. This study aims to determine the monthly solar radiation in Semarang, Indonesia using ANN, and to visualize monthly solar irradiance as a map of the solar system of Semarang. This research applied the perceptron multi-layer ANN model, with 7 variables as input data of network learning, which were maximum temperature, relative humidity, wind speed, rainfall, longitude, latitude, and elevation. The input data set was obtained from a NASA normalized geo-satellite database website with a 5-year av�erage daily score. Network training used backpropagation with one of the input layers, two of hidden layers, and one of the output layer. The performance of the model during the analysis of mean absolute percentage error was highly accurate (6.6%) when 12 and 10 neurons were respectively installed in the first and second hidden layers. The result was presented in a monthly map of solar potential within the geographical information system (GIS) environment. The result showed that ANN was able to be one of the alternatives to estimate solar irradiance data. The sun irradi�ance map can be used by the government of Semarang City to provide information about the solar energy profile for the implementation of the solar energy system.

Item Type: Article
Uncontrolled Keywords: artificial neural network, solar irradiance, solar energy potential, back propagation
Subjects: T Technology > TK Electrical and Electronic Engineering
Fakultas: Fakultas Teknik > Pendidikan Teknik Elektro, S1
Depositing User: mahargjo hapsoro adi
Date Deposited: 25 May 2023 06:39
Last Modified: 25 May 2023 06:54
URI: http://lib.unnes.ac.id/id/eprint/58770

Actions (login required)

View Item View Item