(ABSTRAK) ANALISIS METODE PRINCIPAL COMPONENT ANALYSIS (KOMPONEN UTAMA) DAN REGRESI RIDGE DALAM MENGATASI DAMPAK MULTIKOLINEARITAS DALAM ANALISIS REGRESI LINEAR BERGANDA


Ana Ifadah , 4150406530 (2011) (ABSTRAK) ANALISIS METODE PRINCIPAL COMPONENT ANALYSIS (KOMPONEN UTAMA) DAN REGRESI RIDGE DALAM MENGATASI DAMPAK MULTIKOLINEARITAS DALAM ANALISIS REGRESI LINEAR BERGANDA. Under Graduates thesis, Universitas Negeri Semarang.

[thumbnail of (ABSTRAK) ANALISIS METODE PRINCIPAL COMPONENT ANALYSIS (KOMPONEN UTAMA) DAN REGRESI RIDGE DALAM MENGATASI DAMPAK MULTIKOLINEARITAS DALAM ANALISIS REGRESI LINEAR BERGANDA]
Preview
PDF ((ABSTRAK) ANALISIS METODE PRINCIPAL COMPONENT ANALYSIS (KOMPONEN UTAMA) DAN REGRESI RIDGE DALAM MENGATASI DAMPAK MULTIKOLINEARITAS DALAM ANALISIS REGRESI LINEAR BERGANDA) - Published Version
Download (74kB) | Preview

Abstract

Principal Component Analysis dan Regresi Ridge adalah metode untuk mengatasi multikolinearitas yang terjadi pada analisis regresi ganda. Permasalahan dalam skripsi ini adalah: (1) Bagaimana prosedur penanggulangan masalah multikolinearitas dengan Metode Principal Component Analysis (Komponen Utama)? (2) Bagaimana prosedur penanggulangan masalah multikolinearitas dengan Metode Regresi Ridge? (3) Berdasarkan sampel yang diuji, metode manakah antara Metode Principal Component Analysis dan Metode Regresi Ridge yang lebih efektif? Tujuan dari penelitian ini adalah untuk mengetahui prosedur penanggulangan masalah multikolinearitas dengan Metode Principal Component Analysis (Komponen Utama), untuk mengetahui prosedur penanggulangan masalah multikolinearitas dengan Metode Regresi Ridge dan untuk mengetahui metode yang efektif antara metode Principal Component Analysis dan Metode Regresi Ridge dalam menanggulangi masalah multikolinearitas. Metode penelitian dari skripsi ini adalah penemuan masalah, kajian pustaka, analisis dengan program microsoft excel dan program SPSS simulasi dengan lima data sampel dan pemecahan masalah, dan penarikan kesimpulan. Berdasarkan hasil penelitian dapat disimpulkan bahwa untuk mengatasi multikolinearitas dengan metode PCA bertujuan untuk menyederhanakan variabel yang diamati dengan cara mereduksi dimensinya. Hal ini dilakukan dengan cara menghilangkan korelasi diantara variabel bebas melalui transformasi variabel bebas asal ke variabel baru yang tidak berkorelasi sama sekali. Setelah beberapa komponen hasil PCA yang bebas multikolinearitas diperoleh, maka komponen tersebut menjadi variabel bebas baru yang akan diregresikan pengaruhnya terhadap variabel tak bebas (Y). Sedangkan Metode regresi ridge pada hakikatnya mengusahakan sifat-sifat jumlah kuadrat MSE menjadi lebih kecil dengan cara menambahkan suatu konstanta positif yang kecil pada diagonal matriks persamaan normal. Hal ini akan menyebabkan taksiran regresi ridge menjadi stabil walaupun menjadi bias. Saran bagi pembaca untuk mengatasi multikolinearitas lebih baik menggunakan metode Regresi Ridge karena lebih efektif dibandingkan dengan metode PCA, karena setelah dibandingkan dilihat dari nilai Means Square Error-nya lebih kecil.

Item Type: Thesis (Under Graduates)
Uncontrolled Keywords: Multikolinearitas, Principal Component Analysis, Regresi Ridge.
Subjects: H Social Sciences > HA Statistics
Q Science > QA Mathematics
Fakultas: Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika, S1
Depositing User: Users 98 not found.
Date Deposited: 26 Sep 2011 08:39
Last Modified: 26 Sep 2011 08:39
URI: http://lib.unnes.ac.id/id/eprint/4655

Actions (login required)

View Item View Item