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Highlights 

• The TCA-modified Indonesian natural zeolite was a promising catalyst for the bio-oil 

esterification. 

• A decrease in the total acid number of the esterified bio-oil was significant. 

• The esterified bio-oil was stable while keeping the coke formation low. 

• The esterification of the bio-oil using TCA/H-zeolite catalyst took place in a fast rate. 
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Abstract  

The bio-oil produced from the pyrolysis of biomass is highly corrosive due to the high content of 

organic acids. These organic acids could be removed through an appropriate upgrading process, i.e., 

esterification using alcohols to form less polar esters. In this study, the bio-oil used as the feedstock in the 

esterification was produced from the pyrolysis of Sengon wood with a particle size of 297 µm at 600 °C. 

The esterification was performed at 70 oC in the presence of a TCA-modified Indonesian zeolite catalyst 

with various weight ratios of bio-oil-to-methanol and reaction times under a constant stirring rate of 500 

rpm. The esterification progress was indicated by the decrease in the total acid number of the bio-oil after 

esterification. No significant coke formation (< 0.05wt%) was observed indicating that the suppression of 

repolymerisation could be achieved. This study showed that the esterification underwent in a fast rate, 

indicated by the decrease in the total acid number of the bio-oil by 47.85% only over a 15-min esterification. 
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Compared to the uncatalysed esterification, the TCA/zeolite-catalysed esterification showed a higher 

decrease in the total acid number of the bio-oil up to 65.83%, due to the conversion of the carboxylic acids 

to esters. 

Keywords: Esterification, Sengon wood bio-oil, TCA-modified Indonesian zeolite, total acid number. 

 

 

Introduction 

The fossil fuel depletion has promoted the exploration of new renewable energy resources. Biomass 

has been considered as a promising renewable energy resource due to its high availability, its 

environmentally friendly properties and its zero competition with food sector [1]. A liquid fuel could be 

produced as the main product from the fast pyrolysis of biomass [2] that is well known as bio-oil or 

pyrolysis oil. Sengon wood, as an abundantly available feedstock in Indonesia was used in this study for 

bio-oil production. Sengon wood contains lignin, cellulose, and hemicellulose of 26.1%, 45.4%, and 21.0% 

and respectively [3], allowing a sustainable starting material for liquid fuel production. 

The bio-oil produced from the pyrolysis of biomass could be used as a fuel for boilers, stationary as 

well as sterling engines [4]. However, the bio-oil cannot be directly used as a fuel for transportation due to 

several unfavourable properties such as high water content leading to low calorific value and high oxygen 

content resulting in highly instable properties [5]. In addition, the bio-oil contains high amount of organic 

acids making it highly corrosive and causing a big challenge during its use as a fuel or its compatibility 

during further processing in the biorefinery [6]. A bio-oil upgrading is required for the bio-oil to meet the 

requirements as liquid transportation fuels [7]. 

Esterification has been reported to show a great potential as bio-oil upgrading technique to reduce the 

acids content of the bio-oil [8]. It converts the organic acids in the bio-oil to e.g., esters in the presence of 

alcohols and acid catalysts [9]. The use of solid acid catalysts during the esterification of bio-oil has been 

considered more beneficial in comparison with that of homogeneous catalysts due to the easy separation 

resulting in a more efficient and cost-effective process [10]. Several solid acid catalysts such as ion 

exchange resins [11], modified zirconia [12, 13], Amberlysts [14-16], solid acid catalyst from rice husk ash 

[17], and heteropoly acids [18] have been used as a catalyst in the esterification of the “real” bio-oil as well 

as model compounds mimicking bio-oil. In addition, zeolite-based catalysts have been reported to show a 

great potential as a catalyst for esterification of bio-oil [19-23].  

A special attention has been paid to Indonesian natural zeolite primarily in related to its application 

as a catalyst for bio-oil upgrading. It has a good porosity and modifiable Brønsted acid sites [24] at its 

surface to anticipate the complicated compositions and behaviour of the bio-oil during the esterification. 

The modification of Brønsted acid sites at the Indonesian zeolite surface to improve the Brønsted acidity 

could enhance the catalytic activity of Indonesian zeolite during the esterification of the bio-oil. 

The Brønsted acidity of the Indonesian zeolite could be improved by strong acid modification, e.g., 

trichloroacetic acid (TCA) resulting in the zeolite with a better Brønsted acidity [25]. However, the 

application of TCA-modified Indonesian natural zeolite as a catalyst for esterification of bio-oil produced 

from the fast pyrolysis of Sengon wood was rare. More studies to investigate the activity of the TCA-

modified Indonesian natural zeolite are necessary to evaluate its potential as a catalyst for the bio-oil 

esterification. This study focused on the esterification of the bio-oil produced from the fast pyrolysis of 

Sengon wood sawdust with various weight ratios of bio-oil-to-methanol and reaction times to investigate 

the esterification behaviour of organic acids in the bio-oil primarily acetic acid in the presence of methanol 

and TCA-modified Indonesian natural zeolite as a solid acid catalyst. 

 

Materials and methods 

Preparation and characterisation of a TCA-modified Indonesian natural zeolite catalyst 

The Indonesian natural zeolite from Wonosari, Yogyakarta, Indonesia was used as a starting material 

of the zeolite catalyst. It was purchased from CV. SSGT Zeolite, Indonesia. The natural zeolite was 

prepared as previously reported [23]. Briefly, the natural zeolite with a particle size range of 100-120 μm 

was activated using sequent chemical and physical activation method. Prior to activation process, the 

natural zeolite was washed in distilled water and dried at 110 oC for 3 h to allow the physical contaminant 

removal. “Pre-treated zeolite” corresponds the natural zeolite from this pre-treatment step. 

The natural zeolite was chemically treated using 1% HF, 6 N HCl and 1 N NH4Cl solutions (prepared 

from 50% HF, 37% HCl, and solid NH4Cl, obtained from E. Merck, respectively) in a sequence. This 
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chemical activation was followed with a physical activation, i.e., calcination of the natural zeolite sample 

at 500 oC under nitrogen atmosphere to produce “H-zeolite” catalyst.  

The modification of the “H-zeolite” catalyst with chloroacetic acid was carried out as reported by 

Ávila et al. [5] with some adjustment. A 5 g of trichloroacetic acid (TCA) was dissolved in 9 mL of 

demineralised water in an Erlenmeyer flask. A 10 g of “H-zeolite” was added in the TCA solution. The 

mixture was then heated at 80 °C under a continuous stirring with a low stirring rate of 100 rpm until no 

water left. The solid obtained was dried in an oven at 110 °C for 2 h resulting in the “TCA/H-zeolite” 

catalyst. 

The formation of the “TCA/H-zeolite” catalyst was confirmed based on the appearance of 

characteristics vibration peaks at wavenumbers of 830 and 680 cm-1 (the stretching vibration of C-Cl 

bonds) [25] in the IR spectrum. The IR spectrum of the “TCA/H-zeolite” catalyst was obtained using a 

Perkin-Elmer Frontier Spotlight 200 type-Fourier transform infrared spectrophotometer. In addition, the 

possible change in the crystalline structure of Indonesian natural zeolite was evaluated using a PANalytical 

Xpert’3 Powder X-ray diffractometer. 

The surface properties of the “TCA/H-zeolite” catalyst were characterised using a Quantachrome 

Nova 1200e surface area analyser. The specific surface area, total pore volume and average pore radius 

were determined using a BET-BJH isotherm adsorption. Moreover, the acidity of the “TCA/H-zeolite” 

catalyst was determined using an ammonia adsorption. The amount of ammonia adsorbed at the catalyst 

surface was assigned as the total acidity of the catalyst in mmol ammonia per gram catalyst. This 

quantitative measurement of the catalyst acidity was combined with the analysis of the chemical 

functionalities of the catalyst to confirm the presence of the new bonds of ammonia with the Lewis and 

Brønsted acid sites at the catalyst surface at wavenumbers of 1640, 1550, and 1450 cm-1.  

 

Catalytic esterification of Sengon wood bio-oil 

The esterification of the bio-oil with methanol in the presence of “TCA/H-zeolite” catalyst was carried 

out in a batch reactor system equipped with a temperature monitor and magnetic stirrer. The esterification 

was conducted at 70 oC, with a catalyst loading of 10 wt%, a stirring rate of 500 rpm, and various weight 

ratios of bio-oil-to-methanol of 1:1, 2:1, 1:2 and 1:3. The Sengon wood bio-oil used in the esterification 

process was produced from the pyrolysis of Sengon wood sawdust with a particle size of 297 μm at 600 °C 

using a fixed-bed pyrolyser as previously reported [23]. The esterification with a weight ratio of bio-oil-to-

methanol which gave the highest decrease in the total acid number of the bio-oil after esterification 

underwent that with various esterification times of 15, 30, 45 and 60 min. 

After each experiment, the mixture of liquid esterification products and possible remaining reactants 

was recovered and designated as the esterified bio-oil. The coke formation was determined based on the 

weight difference of solid catalyst before and after the esterification. The yield of coke was calculated using 

Equation (1) to close the mass balance. 

𝐶𝑜𝑘𝑒 𝑦𝑖𝑒𝑙𝑑 =  
𝑊′𝑐𝑎𝑡−𝑊0

𝑐𝑎𝑡

𝑊𝑏𝑖𝑜−𝑜𝑖𝑙 𝑓𝑒𝑑
𝑥100%   (1) 

Characterisation of the bio-oil after esterification 

The esterified bio-oil after each esterification experiment was characterised, including the density, 

viscosity and total acid number. The density and viscosity of the esterified bio-oil were determined using a 

gravimetric method by means of a pycnometer and an Ostwald viscometer, respectively.  

The total acid number (TAN) of the esterified bio-oil was measured using an SNI 01-3555-1998 

procedure as follows. The bio-oil sample was dissolved in acetone to 96 wt% clear solution of bio-oil. A 

2.5 g of the bio-oil solution was heated to boil and added with 2-3 drops of phenolphthalein solution. The 

titration of the bio-oil solution was conducted using 0.1 N KOH solution until a light red colour appeared. 

The total acid number of the esterified bio-oil was calculated using Equation (2). 

 

𝑇𝐴𝑁 =
𝑀𝑊𝐾𝑂𝐻 × 𝑁𝐾𝑂𝐻×𝑉𝐾𝑂𝐻

𝑊𝑠𝑎𝑚𝑝𝑙𝑒
× 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛   (2) 

 

Results and discussion 

The characteristics of TCA/H-zeolite catalyst 

The important properties of the TCA/H-zeolite catalyst prepared in this study was investigated, 

including the chemical functionalities, the possible change in the crystalline structure, the surface porosity, 
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and the total acidity. The chemical functionalities of the TCA/H-zeolite catalyst were represented by the 

spectra in Figure 1. The general featured functionalities of the zeolite with aluminosilicate framework were 

shown by the appearance of a vibration peak –OH groups at 3200-3600 cm-1. In addition, bending vibrations 

of Al-OH/Si-OH were observed at 1650-1400 cm-1, while stretching vibrations of Si-O/Al-O were observed 

at wavenumbers of 1250-950 cm-1 and 820-650 cm-1.  

The success of the zeolite modification with TCA was confirmed by the appearance of stretching 

vibrations of C-Cl bonds at wavenumbers of 840 and 690 cm-1 [25] at the IR spectrum of the TCA/H-zeolite 

catalyst (Figure 1c). These vibrations indicated the chemical interaction between TCA and the ‒OH groups 

of the zeolite. 

The change in the crystalline structure of the zeolite over subsequent chemical and physical treatment 

as well as TCA modification was evaluated through the XRD patterns of the pre-treated zeolite, H-zeolite 

and the TCA/H-zeolite catalysts, as shown in Figure 2. The similar XRD patterns and peak intensity in 

Figure 2 indicated that the zeolite did not undergo a significant change in the crystalline structure over the 

subsequent treatments. Moreover, the intensity of the three highest peaks denoted that the mordenite 

mineral structure was predominant in the zeolite catalysts.  

 

 
Figure 1. IR spectra of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite. 

 

 

 
Figure 2. The diffraction patterns of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite. 

 

The measurement of the total (Lewis and Brønsted) acidity of the TCA/H-zeolite catalyst was 

performed to support the data of IR spectra indicating the success of the zeolite modification with TCA. 

The significant increase of the total acidity of the TCA/H-zeolite catalyst would further evidence of the 

success modification in this study. In addition, the enhanced total acidity of the TCA/H-zeolite catalyst 
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would promote a better esterification process as this acid active sites would play important roles in 

catalysing the esterification of bio-oil with methanol [12]. 

The total acidity of the TCA/H-zeolite catalyst was conducted through ammonia adsorption in 

combination with a gravimetric method. The amount of ammonia adsorbed at the catalyst surface would 

provide the data the number of acid active sites interacting with the adsorbed ammonia [26, 27]. 

The total acidity of the TCA/H-zeolite catalyst in comparison with the pre-treated and H-zeolite is 

presented in Table 1. A significant increase in the total acidity of the TCA/H-zeolite catalyst was observed, 

1.7 folds from that of H-zeolite. It was most likely due to the modification of the zeolite with TCA resulting 

in the chemical interaction of carbonyl oxygen or hydroxyl oxygen of TCA with the Brønsted acid sites of 

H-zeolite [28]. 

 

Table 1. The total acidity of the TCA/H-zeolite measured through ammonia adsorption. 

Type of catalyst Total acidity (mmol NH3/g) 

Pre-treated zeolite 0.94 

H-zeolit 1.20 

TCA/H-zeolit 3.28 

 

Furthermore, the interaction between ammonia Lewis’s base and the Brønsted and Lewis sites of the 

catalyst was evaluated through the IR spectra of the TCA/H-zeolite catalyst in Figure 3. The interaction of 

ammonia with the Lewis and Brønsted active sites was designated by the vibrations at wavenumbers of 

1450 cm-1 and 1550-1640 cm-1, respectively [29]. 

 

 
Figure 3. IR spectra of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite after NH3 adsorption. 

 

The surface porosity of a catalyst is an important property of the catalyst in supporting the catalytic 

performance. It was due to the presence of active sites at the catalyst surface including the catalyst pores 

[30]. The surface porosity of the TCA/H-zeolite catalyst determined in this study included specific surface 

area, total pore volume and average pore radius of the catalyst as presented in Table 2.  

 

Table 2. The surface porosity of the TCA/H-zeolite determined by BET and BJH adsorption isotherms. 

Type of catalyst Surface area (m2/g) Total Pore Volume (cm3/g) Average Pore Radius (Å) 

Pre-treated zeolite 12.82 0.077 119.96 

H-zeolit 22.26 0.065 588.35 

TCA/H-zeolit 28.41 0.075 526.31 

 

The surface porosity data in Table 2 showed that chemical and physical treatment towards the pre-

treated zeolite caused a significant increase (73.63%) in the surface area of the H-zeolite catalyst. It was 

might due to the impurity removal and the formation of new pores during the treatment [31]. A further 

increase (27.63%) in the specific surface area was also observed in the TCA/H-zeolite catalyst, probably 

due to the surface modification using a strong acid TCA at the solid H-zeolite surface [32, 33]. 
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A significant increase of the average pore radius of the H-zeolite catalyst in comparison with the pre-

treated zeolite catalyst (3.9 folds) was also observed. The acid treatment followed with calcination at high 

temperature of 500 oC probably could cause impurity removal resulting in an increase in the pore size of 

the zeolite [32]. Moreover, the growth of the pore structure might take place due to the chemical treatment 

during the preparation of the H-zeolite catalyst [34]. However, a slight decrease (~10%) of the average pore 

radius was observed after the zeolite modification with TCA. The TCA introduction with a quite high 

concentration (ca. 35%) at the H-zeolite surface followed with a low drying temperature (80 oC) might 

promote the pore occupation by the TCA molecules, resulting in the decrease of the average pore size of 

the zeolite [35]. 

Unlike the considerable changes in the specific surface area and average pore radius, the total pore 

volume of the zeolite catalysts was almost unchanged; only ~15% of change was observed. The 

insignificant change in the total pore volume accompanied with the increase in the average pore radius 

might be probably attributed to the reduction of the pore depth at the zeolite surface. This would allow the 

easier interaction between the surface-active sites and the reactants during the esterification of the bio-oil. 

 

Production and Characterisation of the Bio-oil from the Pyrolysis of Sengon Wood Sawdust 

The bio-oil used as the feedstock during the esterification in this study was produced from the fast 

pyrolysis of Sengon wood sawdust with a particle size of 297 μm at 600 oC using a fixed-bed pyrolyser. 

The yield of the bio-oil was considerably high of 45.66 wt%, as presented in Table 3. Such high temperature 

would help the lignocellulose macromolecules to undergo good decomposition during the pyrolysis [36]. 

Lignocellulose composes of lignin, cellulose and hemicellulose with specific decomposition temperatures. 

Lignin would decompose at 300-550 °C, while hemicellulose and cellulose would decompose at 250-350 

°C and 325-400 °C, respectively [37]. The rate of decomposition of lignocellulose macromolecules would 

increase with increasing the pyrolysis temperature, resulting in more condensable light fractions [38], thus 

high bio-oil yield. However, extremely high temperature would promote the production of the non-

condensable fractions resulting in higher yield of gaseous pyrolysis product [39]. 

 

Table 3. The yield of pyrolysis products produced from the pyrolysis of Sengon wood sawdust with a 

particle size of 297 μm at 600 oC using a fixed-bed pyrolyser. 

Type of product Yield (wt.%) 

Bio-oil 45.66 

Biochar 29.97 

Gaseous product* 24.37 
*by difference 

 

The physical and chemical properties of the Sengon wood bio-oil produced through fast pyrolysis 

technique were measured, including the density, viscosity, and total acid number as shown in Table 4. The 

density of the bio-oil was not directly related to the quality of the bio-oil. However, this property could 

provide an indication whether heavy or light molecules were predominant in the bio-oil [40]. The low 

density of the bio-oil produced in this study (1.07 g/mL) indicated that light molecules with relatively low 

molecular weight were predominant due to severe decomposition process at 600 °C during the pyrolysis 

resulting in more condensable light fractions.  

 

Table 4. The characteristics of the bio-oil produced from the pyrolysis of Sengon wood sawdust with a 

particle size of 297 μm at 600 oC using a fixed-bed pyrolyser. 

Property (unit) Value (wt.%) 

Density (g/mL) 1.07 

Viscosity (cP) 2.40 

TAN (mg KOH/g) 0.73 

 

Another parameter evaluated in this study for the bio-oil quality is viscosity. This parameter is 

affected by the liquid temperature, the strength of intermolecular forces, and the molecular weight and the 

amount of the soluble components in the liquid bio-oil [41]. The pyrolysis temperature of 600 °C has 

resulted in the bio-oil with light components (short carbon chains, low molecular weight) in the 

considerable amount, resulting in the bio-oil with a low viscosity of 2.40 cP (see Table 4) [42]. 

The total acid number of the Sengon wood bio-oil was determined by using an aliquot method, as 

presented in Table 4. This parameter provided an estimation of the content of organic acids in the bio-oil 
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[43]. The high content of organic acids in bio-oil or liquid fuels would lead to corrosion to engines and/or 

the equipment used in the further processes such as biorefinery [7]. The high total acid number (0.73 mg/g) 

of the Sengon wood bio-oil used as the feedstock in the esterification process suggested the high organic 

acid content in the bio-oil. It was likely due to the presence of organic acids such as carboxylic acids as a 

result of the decomposition of the lignocellulose macromolecules at higher pyrolysis temperature [44]. The 

acid removal from the bio-oil is extremely important to minimise the corrosiveness of the bio-oil prior to 

its use as a fuel or its further processes in the biorefinery through an appropriate upgrading technique. A 

bio-oil upgrading through an esterification technique using TCA/H-zeolite was investigated with different 

weight ratios of bio-oil-to-methanol over various reaction times. 

 

Bio-oil upgrading through TCA/H-zeolite-catalysed esterification over different weight ratios 

of bio-oil-to-methanol 

The esterification of the Sengon wood bio-oil in the presence of the TCA/H-zeolite catalyst was 

carried out with various weight ratios of bio-oil-to-methanol of 2:1, 1:1, 1:2 and 1:3. The liquid and the 

possible formed coke after each esterification experiment were recovered to close the mass balance, as 

presented in Table 5. The mass balance closure was higher than 90 wt% indicating a proper experimental 

execution [45]. The coke yield in all experiments was very low of < 1 wt%. This indicated that the possible 

repolymerisation between the reactive components in the bio-oil leading to the formation of coke could be 

prevented during the bio-oil esterification [46] in the presence of the TCA/H-zeolite catalyst.  

 

Table 5. The mass balance closure during the esterification of the Sengon wood bio-oil in the presence of 

TCA/H-zeolite catalyst at 70 °C with various weight ratios of bio-oil-to-methanol, a catalyst loading of 10 

wt%, 60-min reaction time, and stirring rate of 500 rpm. 

Weight ratio of BO-to-

methanol 

Recovered liquid 

(wt%) 

Coke yield 

(wt%) 

Total recovery 

(%) 

2:1 94.11 0.0407 94.15 

1:1 91.90 0.0404 91.94 

1:2 91.88 0.0394 91.92 

1:3 97.79 0.0334 97.82 

 

The density, viscosity and total acid number of the liquid obtained after the TCA/H-zeolite-catalysed 

esterification with various weight ratios of bio-oil-to-methanol were measured as presented in Table 6. The 

density of the esterified oil insignificantly changed with relatively abundant addition of methanol compared 

to the original mixture of the bio-oil and methanol before reaction in the case of the experiments with a 

weight ratio of bio-oil-to-methanol of 1:2 and 1:3. The relatively unchanged density indicated the relatively 

similar molecular weight of components in the bio-oil after esterification. The esterification would allow 

the change in the bio-oil microstructure through the formation of esters or acetals [47]. The similar trend 

was observed for the viscosity of the esterified oil; the more the methanol added during the esterification, 

the lower the change in the viscosity of the bio-oil. The presence of methanol could enhance the bio-oil 

stability [48] and further decrease the rate of aging during storage [49]. 

 

Table 6. The density, viscosity and total acid number of the bio-oil after esterification in the presence of 

TCA/H-zeolite catalyst at 70 °C with various weight ratios of bio-oil-to-methanol, catalyst loading of 10 

wt%, 60-min reaction time, and stirring rate of 500 rpm. 

Bio-oil property 

Weight ratio of bio-oil-to-methanol 

2:1 1:1 1:2 1:3 

Initial Final Initial Final Initial Final Initial Final 

Density (g/mL) 1.0227 1.0252 0.9861 0.9866 0.9415 0.9417 0.9153 0.9186 

Viscosity (cP) 2.1094 2.2316 1.9417 2.0283 1.7896 1.8521 1.5643 1.6034 

TAN (mg/g) 0.6921 0.3498 0.5852 0.2939 0.5316 0.2031 0.4132 0.1813 

 

Unlike the insignificant changes in the bio-oil density and viscosity, a considerable change in the total 

acid number of the esterified oil was observed after the esterification in the presence of the TCA/H-zeolite 

catalyst, as presented in Table 6. The decrease in the total acid number of the bio-oil after esterification was 

49.46%, 49.78%, 61.79% and 56.12% for the TCA/H-zeolite-catalysed esterification with a bio-oil-to-

methanol weight ratio of 2:1, 1:1, 1:2 and 1:3 respectively. The addition of extra methanol in the 

esterification with a 1:2 weight ratio could promote the decrease in the total acid number of the bio-oil by 
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ca 25% in comparison with that with a 2:1 and 1:1 weight ratio. The decrease in the total acid number of 

the bio-oil after esterification could be an indication of the formation of esters as a result of the reaction 

between carboxylic acids in the bio-oil feedstock and methanol in the presence of the TCA/H-zeolite 

catalyst [50]. In addition, aldehydes in the bio-oil feedstock could also react with methanol in the presence 

of acid catalysts, such as TCA/H-zeolite catalyst, to form acetals [51]. The extra addition of methanol in 

the esterification system (in the case of that with a 1:2 and 1:3 weight ratio) could promote the equilibrium 

shift to the products, resulting in the increase in the production of products, i.e., esters or acetals [52]. 

A further increase in the methanol addition in the esterification with a 1:3 weight ratio did not cause 

a higher decrease in the total acid number of the bio-oil after esterification in the presence of the TCA/H-

zeolite catalyst. It might indicate that the equilibrium was not disturbed by the extra addition of methanol 

in the 1:3 esterification experiment. The weight ratio of bio-oil-to-methanol of 1:2 was then chosen as the 

condition in the further experiments with various reaction times. 

 

Bio-oil Upgrading through TCA/H-zeolite-catalysed Esterification over Different Reaction 

Times 

The esterification of the Sengon wood bio-oil in the presence of the TCA/H-zeolite catalyst over 

different reaction times was carried out with a total recovery of > 90%, as listed in Table 7, indicating a 

proper experimental execution. The recovered liquid contained the esterification products and possible 

remaining reactants. Tabel 7 shows that the coke yield coke was very low (< 1 wt%), indicating that the 

coke formation during the bio-oil esterification in the presence of the TCA/H-zeolite could be avoided [52]. 

 

Table 7. The mass balance closure during the esterification of the Sengon wood bio-oil in the presence of 

TCA/H-zeolite catalyst at 70 °C with a catalyst loading of 10 wt%, a weight ratio of bio-oil-to-methanol 

of 1:2, stirring rate of 500 rpm, for 15-60 min reaction times. 

Reaction time (min) Recovered liquid (wt%) Coke yield (wt%) Total (%) 

15 92.95 0.0354 92.98 

30 95.34 0.0370 95.38 

45 92.92 0.0375 92.96 

60 91.88 0.0394 91.92 

 

Over prolonged reaction times, the density of the bio-oil after esterification underwent a negligible 

change, only by < 1%, possibly due to the enhanced stability of the bio-oil during the esterification as is 

shown in Table 8. The susceptibility of the reactive components of the bio-oil towards re-polymerisation 

has lowered resulting in the bio-oil with similar compositions of molecular weight [53]. 

 

Table 8. The density, viscosity and total acid number of the bio-oil after esterification in the presence of 

TCA/H-zeolite catalyst at 70 °C with a catalyst loading of 10 wt%, a weight ratio of bio-oil-to-methanol 

of 1:2, stirring rate of 500 rpm, for 15-60 min reaction times. 

Bio-oil property 

Esterification time (min) 

15 30 45 60 

Initial Final Initial Final Initial Final Initial Final 

Density (g/mL) 0.9394 0.9399 0.9393 0.9401 0.9393 0.9406 0.9415 0.9417 

Viscosity (cP) 1.7748 1.7908 1.7789 1.8040 1.7704 1.8308 1.7896 1.8521 

TAN (mg/g) 0.5074 0.2646 0.5161 0.2588 0.5196 0.2241 0.5316 0.2032 

 

The similar trend was observed for the viscosity of the bio-oil after esterification in the presence of 

the TCA/H-zeolite over various reaction times. Insignificant changes in the bio-oil viscosity by 3-5% were 

observed, indicating the prevention of the formation of heavy molecules during the catalysed esterification, 

possibly by the formation of esters and acetals [47]. 

Alike the change in the total acid number of the bio-oil after esterification with various weight ratios 

of bio-oil-to-methanol, the total acid number of that after the esterification over various reaction times 

decreased considerably. Over a 15-min reaction time, the total acid number of the bio-oil after the catalysed 

esterification decreased by 47.85%. A prolonged esterification of 30 min only caused a further decrease in 

the total acid number of the bio-oil by 4% (with a 49.85% decrease). A further prolonged reaction times of 

45 and 60 min caused a bit higher decrease in the total acid number of bio-oil by 13% and 8%, respectively 

(with 56.78% and 61.78% decrease, respectively). These data suggested that carboxylic acids in the bio-oil 

feedstock were converted to esters in a quite fast rate at the beginning of the esterification of the bio-oil in 
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the presence of TCA/H-zeolite catalyst [50]. The rate of esterification became slower by longer reaction 

times (30-60 min). Probably, the components of the bio-oil feedstock competed to attach to the active sites 

of the catalysts over time resulting in the high surface coverage [54]. However, not all of these reactants 

adsorbed at the catalyst surface could be accommodate to react with methanol as the co-adsorbed alcohol-

acids intermediates at the catalyst surface were required to allow the reactions to take place [9]. 

 

Comparing the Activity of Zeolite Catalysts during the Esterification of Sengon Wood Bio-oil 

The activity of the TCA/H-zeolite catalyst during the esterification of the Sengon wood sawdust was 

confirmed by comparing to that of the pre-treated zeolite and H-zeolite catalysts. The study was performed 

using the following condition: a temperature of 70 °C, a weight ratio of bio-oil-to-methanol of 1:2 and a 

reaction time of 60 min. A blank experiment in the absence of any catalyst was also carried out to support 

the justification on the performance of the TCA/H-zeolite catalyst. The liquid after esterification as well as 

the possible formed coke was recovered and weighed to close the mass balance as presented in Table 9. 

 

Table 9. The mass balance closure during the esterification of the Sengon wood bio-oil in the presence of 

TCA/H-zeolite catalyst at 70 °C with a catalyst loading of 10 wt%, a weight ratio of bio-oil-to-methanol 

of 1:2, stirring rate of 500 rpm for a 60-min reaction time. 

Type of catalyst Recovered liquid (wt%) Coke Yield (wt%) Total (%) 

NA 94.42 0.016 94.44 

Pre-treated zeolite  93.18 0.043 93.23 

H-zeolite  94.90 0.041 94.94 

TCA/H-zeolite  91.88 0.039 91.92 

 

The data in Table 9 suggested that negligible coke formation (< 1%) was observed. The presence of 

methanol during the heating up bio-oil was significant in preventing the re-polymerisation of reactive 

components in the bio-oil feedstock. The good mass balance closure in Table 9 indicated that the 

experiments were carried out properly. The properties of the bio-oil after the esterification of the bio-oil in 

the presence of various zeolite catalysts were investigated as listed in Table 10. 

The density of the bio-oil after the esterification in Table 10 showed an insignificant change even in 

the absence of a catalyst. It suggested that the addition of methanol gave a significant effect in stabilising 

the reactive component of the bio-oil [53]. In contrast, the viscosity of the bio-oil after esterification in the 

presence and absence of a catalyst has increased in a different level ranging from 3.94% to 39.97%. The 

lowest increase in the viscosity of the bio-oil after esterification was observed for that in the presence of 

the TCA/H-zeolite catalyst (3.94%), while the highest increase was observed for that in the presence of the 

pre-treated zeolite catalyst (39.97%). The blank experiment in the absence of a catalyst did not show a 

significant increase in the viscosity of the bio-oil after esterification possibly due to the limited interaction 

of the reactive components in the bio-oil feedstock with methanol [55]. On the other hand, the presence of 

the zeolite catalysts might promote the interaction between reactive components themselves or with 

methanol [22]. The pre-treated zeolite might facilitate the interactions between reactive components to 

polymerise and form bigger molecules with higher molecular weight. As a result, the viscosity of the bio-

oil increased significantly after esterification in the presence of the pre-treated zeolite catalyst. 

 

Table 10. The density, viscosity and total acid number of the bio-oil after esterification in the presence of 

TCA/H-zeolite catalyst at 70 °C with a catalyst loading of 10 wt%, a weight ratio of bio-oil-to-methanol 

of 1:2, stirring rate of 500 rpm for a 60-min reaction time. 

Bio-oil property 
Reaction time 

(min) 

Type of catalyst 

NA Pre-treated zeolite H-zeolite TCA/H-zeolite 

Density(g/mL) 0 0.9176 0.9101 0.9140 0.9415 

60 0.9179 0.9347 0.9392 0.9417 

Viscosity (cP) 0 1.7336 1.7257 1.7373 1.7896 

60 1.8367 2.3055 2.1174 1.8521 

TAN (mg/g) 0 0.7006 0.6515 0.5731 0.5316 

 60 0.5947 0.4240 0.2843 0.2032 

 

The bio-oil esterification in the presence of zeolite catalysts (pre-treated, H-zeolite and TCA/H-zeolite 

catalysts) showed a significant decrease in the total acid number of the bio-oil after esterification by 
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34.92%, 50.39% and 61.78%, respectively. It was clear that the modification of Indonesian zeolite using 

TCA could enhance its activity in catalysing the esterification of the Sengon wood bio-oil. It was possibly 

due to the increase in the acid active sites at the catalyst surface as the result of the TCA modification over 

the zeolite catalyst [56]. 

 

Conclusions 

This study investigated the activity of the TCA/H-zeolite catalyst during the bio-oil esterification in 

the presence of methanol over various weight ratios of bio-oil-to-methanol and reaction times. The presence 

of TCA/H-zeolite catalyst during the esterification of the bio-oil could suppress the formation of coke. In 

the presence of TCA/H-zeolite, the weight ratios of bio-oil-to-methanol significantly affected the decrease 

in the total acid number of the bio-oil after the esterification. Moreover, the esterification of Sengon wood 

bio-oil in the presence of the TCA/H-zeolite catalyst took place in a fast rate, indicated by the decrease in 

the total acid number of the bio-oil by 47.85% over a 15-min esterification. Compared to the uncatalysed 

esterification, the presence of the TCA/H-zeolite catalyst could further enhance the decrease in the total 

acid number up to 65.83%. 
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esterification. 
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Abstract  

The bio-oil produced from the pyrolysis of biomass is highly corrosive due to the high content of 
organic acids. These organic acids could be removed through an appropriate upgrading process, i.e., 
esterification using alcohols to form less polar esters. In this study, the bio-oil used as the feedstock in the 
esterification was produced from the pyrolysis of Sengon wood with a particle size of 297 µm at 600 °C. 
The esterification was performed at 70 oC in the presence of a trichloro acetic acid (TCA)-modified 
Indonesian H-zeolite catalyst with various weight ratios of bio-oil-to-methanol and reaction times under a 
constant stirring rate of 500 rpm. The esterification progress was indicated by the decrease in the total acid 
number of the bio-oil after esterification. No significant coke formation (< 0.05wt%) was observed 
indicating that the suppression of repolymerisation could be achieved. This study showed that the 
esterification underwent in a fast rate, indicated by the decrease in the total acid number of the bio-oil by 
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47.85% only over a 15-min esterification. Compared to the uncatalysed esterification, the TCA/zeolite-
catalysed esterification showed a higher decrease in the total acid number of the bio-oil up to 65.83%, due 
to the conversion of the carboxylic acids to esters. 

Keywords: Esterification, Sengon wood bio-oil, TCA-modified Indonesian zeolite, total acid number. 
 
 
Introduction 

The fossil fuel depletion has promoted the exploration of new renewable energy resources. Biomass 
has been considered as a promising renewable energy resource due to its high availability, its 
environmentally friendly properties and its zero competition with food sector [1]. A liquid fuel could be 
produced as the main product from the fast pyrolysis of biomass [2] that is well known as bio-oil or 
pyrolysis oil. Sengon wood, as an abundantly available feedstock in Indonesia was used in this study for 
bio-oil production. Sengon wood contains lignin, cellulose, and hemicellulose of 26.1%, 45.4%, and 21.0% 
and respectively [3]. The high content of cellulose in Sengon wood would result in the high yield of bio-oil 
[4], allowing a sustainable starting material for liquid fuel production. 

The bio-oil produced from the pyrolysis of biomass could be used as a fuel for boilers, stationary as 
well as sterling engines [5]. However, the bio-oil cannot be directly used as a fuel for transportation due to 
several unfavourable properties such as high water content leading to low calorific value and high oxygen 
content resulting in highly instable properties [6]. In addition, the bio-oil contains high amount of organic 
acids making it highly corrosive and causing a big challenge during its use as a fuel or its compatibility 
during further processing in the biorefinery [7]. A bio-oil upgrading is required for the bio-oil to meet the 
requirements as liquid transportation fuels [8]. 

Esterification has been reported to show a great potential as bio-oil upgrading technique to reduce the 
acids content of the bio-oil [9]. It converts the organic acids in the bio-oil to e.g., esters in the presence of 
alcohols and acid catalysts [10]. The use of solid acid catalysts during the esterification of bio-oil has been 
considered more beneficial in comparison with that of homogeneous catalysts due to the easy separation 
resulting in a more efficient and cost-effective process [11]. Several solid acid catalysts such as ion 
exchange resins [12], modified zirconia [13, 14], Amberlysts [15-17], acid modified rice husk ash [18], and 
heteropoly acids [19] have been used as a catalyst in the esterification of the “real” bio-oil as well as model 
compounds mimicking bio-oil. In addition, zeolite-based catalysts have been reported to show a great 
potential as a catalyst for esterification of bio-oil [20-24].  

A special attention has been paid to Indonesian natural zeolite primarily in related to its application 
as a catalyst for bio-oil upgrading. It has a good porosity and modifiable Brønsted acid sites [25] at its 
surface to anticipate the complicated compositions and behaviour of the bio-oil during the esterification. 
The modification of Brønsted acid sites at the Indonesian zeolite surface to improve the Brønsted acidity 
could enhance the catalytic activity of Indonesian zeolite during the esterification of the bio-oil. 

The Brønsted acidity of the Indonesian zeolite could be improved by strong acid modification, e.g., 
trichloroacetic acid (TCA) resulting in the zeolite with a better Brønsted acidity [26]. However, the 
application of TCA-modified Indonesian natural zeolite as a catalyst for esterification of bio-oil produced 
from the fast pyrolysis of Sengon wood was rare. More studies to investigate the activity of the TCA-
modified Indonesian natural zeolite are necessary to evaluate its potential as a catalyst for the bio-oil 
esterification. This study focused on the esterification of the bio-oil produced from the fast pyrolysis of 
Sengon wood sawdust with various weight ratios of bio-oil-to-methanol and reaction times to investigate 
the esterification behaviour of organic acids in the bio-oil primarily acetic acid in the presence of methanol 
and TCA-modified Indonesian natural zeolite as a solid acid catalyst. 
 
Materials and methods 

Preparation and characterisation of a TCA-modified Indonesian natural zeolite catalyst 

The Indonesian natural zeolite from Wonosari, Yogyakarta, Indonesia was used as a starting material 
of the zeolite catalyst. It was purchased from CV. SSGT Zeolite, Indonesia. The natural zeolite was 
prepared as previously reported [24]. Briefly, the natural zeolite with a particle size range of 100-120 μm 
was activated using sequent chemical and physical activation method. Prior to activation process, the 
natural zeolite was washed in distilled water and dried at 110 oC for 3 h to allow the physical contaminant 
removal. “Pre-treated zeolite” corresponds the natural zeolite from this pre-treatment step. 

The natural zeolite was chemically treated using 1% HF, 6 N HCl and 1 N NH4Cl solutions (prepared 
from 50% HF, 37% HCl, and solid NH4Cl, obtained from E. Merck, respectively) in a sequence. This 
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chemical activation was followed with a physical activation, i.e., calcination of the natural zeolite sample 
at 500 oC under nitrogen atmosphere to produce “H-zeolite” catalyst [24].  

The modification of the “H-zeolite” catalyst with chloroacetic acid was carried out as reported by 
Ávila et al. [6] with some adjustment. A 5 g of TCA was dissolved in 9 mL of demineralised water in an 
Erlenmeyer flask. A 10 g of “H-zeolite” was added in the TCA solution. The mixture was then heated at 
80 °C under a continuous stirring with a low stirring rate of 100 rpm until no water left. The solid obtained 
was dried in an oven at 110 °C for 2 h resulting in the “TCA/H-zeolite” catalyst. 

The formation of the “TCA/H-zeolite” catalyst was confirmed based on the appearance of 
characteristics vibration peaks at wavenumbers of 830 and 680 cm-1 (the stretching vibration of C-Cl bonds) 
[26] in the IR spectrum. The IR spectrum of the “TCA/H-zeolite” catalyst was obtained using a Perkin-
Elmer Frontier Spotlight 200 type-Fourier transform infrared spectrophotometer. In addition, the possible 
change in the crystalline structure of Indonesian natural zeolite was evaluated using a PANalytical Xpert’3 
Powder X-ray diffractometer. 

The surface properties of the “TCA/H-zeolite” catalyst were characterised using a Quantachrome 
Nova 1200e surface area analyser. The specific surface area, total pore volume and average pore radius 
were determined using a BET-BJH isotherm adsorption. Moreover, the acidity of the “TCA/H-zeolite” 
catalyst was determined using an ammonia adsorption. The amount of ammonia adsorbed at the catalyst 
surface was assigned as the total acidity of the catalyst in mmol ammonia per gram catalyst. This 
quantitative measurement of the catalyst acidity was combined with the analysis of the chemical 
functionalities of the catalyst to confirm the presence of the new bonds of ammonia with the Lewis and 
Brønsted acid sites at the catalyst surface at wavenumbers of 1640, 1550, and 1450 cm-1.  
 

Catalytic esterification of Sengon wood bio-oil 

The esterification of the bio-oil with methanol in the presence of “TCA/H-zeolite” catalyst was carried 
out in a batch reactor system equipped with a temperature monitor and magnetic stirrer. The esterification 
was conducted at 70 oC, with a catalyst loading of 10 wt%, a stirring rate of 500 rpm, and various weight 
ratios of bio-oil-to-methanol of 1:1, 2:1, 1:2 and 1:3. The Sengon wood bio-oil used in the esterification 
process was produced from the pyrolysis of Sengon wood sawdust with a particle size of 297 μm at 600 °C 
using a fixed-bed pyrolyser as previously reported [24]. The esterification with a weight ratio of bio-oil-to-
methanol which gave the highest decrease in the total acid number of the bio-oil after esterification 
underwent that with various esterification times of 15, 30, 45 and 60 min. 

After each experiment, the mixture of liquid esterification products and possible remaining reactants 
was recovered and designated as the esterified bio-oil. The coke formation was determined based on the 
weight difference of solid catalyst before and after the esterification. The yield of coke was calculated using 
equation (1) to close the mass balance. W′cat and W0

cat are designated as the weight of the “TCA/H-zeolite” 
catalyst after and before the esterification of the bio-oil, respectively, while Wbio-oil fed is the weight of the 
bio-oil fed in each esterification experiment. 

 

𝐶𝑜𝑘𝑒 𝑦𝑖𝑒𝑙𝑑 =  
ௐᇱ೎ೌ೟ିௐబ

೎ೌ೟

ௐ್೔೚ష೚೔೗ ೑೐೏
𝑥100%    (1) 

Characterisation of the bio-oil after esterification 

The esterified bio-oil after each esterification experiment was characterised, including the density, 
viscosity and total acid number. The density and viscosity of the esterified bio-oil were determined using a 
gravimetric method by means of a pycnometer and an Ostwald viscometer, respectively.  

The total acid number (TAN) of the esterified bio-oil was measured using an SNI 01-3555-1998 
procedure as follows. The bio-oil sample was dissolved in acetone to 96 wt% clear solution of bio-oil. A 
2.5 g of the bio-oil solution was heated to boil and added with 2-3 drops of phenolphthalein solution. The 
titration of the bio-oil solution was conducted using 0.1 N KOH solution until a light red colour appeared. 
The total acid number of the esterified bio-oil was calculated using Equation (2). MWKOH, NKOH, and VKOH 
are designated as the molecular weight, normal concentration and volume of KOH solution, respectively. 
Meanwhile, Wsample and dilution are designated as the weight of the sample and the magnitude of dilution 
employed during the measurement of TAN. 

 

𝑇𝐴𝑁 =
ெௐ಼ೀಹ  × ே಼ೀಹ×௏಼ೀಹ

ௐೞೌ೘೛೗೐
× 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛   (2) 
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Results and discussion 

The characteristics of TCA/H-zeolite catalyst 

The important properties of the TCA/H-zeolite catalyst prepared in this study was investigated, 
including the chemical functionalities, the possible change in the crystalline structure, the surface porosity, 
and the total acidity. The chemical functionalities of the TCA/H-zeolite catalyst were represented by the 
spectra in Figure 1. The general featured functionalities of the zeolite with aluminosilicate framework were 
shown by the appearance of a vibration peak –OH groups at 3200-3600 cm-1. In addition, bending vibrations 
of Al-OH/Si-OH were observed at 1650-1400 cm-1, while stretching vibrations of Si-O/Al-O were observed 
at wavenumbers of 1250-950 cm-1 and 820-650 cm-1.  

The success of the zeolite modification with TCA was confirmed by the appearance of stretching 
vibrations of C-Cl bonds at wavenumbers of 840 and 690 cm-1 [26] at the IR spectrum of the TCA/H-zeolite 
catalyst (Figure 1c). These vibrations indicated the chemical interaction between TCA and the ‒OH groups 
of the zeolite. 

The change in the crystalline structure of the zeolite over subsequent chemical and physical treatment 
as well as TCA modification was evaluated through the XRD patterns of the pre-treated zeolite, H-zeolite 
and the TCA/H-zeolite catalysts, as shown in Figure 2. The similar XRD patterns and peak intensity in 
Figure 2 indicated that the zeolite did not undergo a significant change in the crystalline structure over the 
subsequent treatments. Moreover, the intensity of the three highest peaks denoted that the mordenite 
mineral structure was predominant in the zeolite catalysts.  
 

 
Figure 1. IR spectra of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite. 

 
 

 
Figure 2. The diffraction patterns of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite. 
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The measurement of the total (Lewis and Brønsted) acidity of the TCA/H-zeolite catalyst was 
performed to support the data of IR spectra indicating the success of the zeolite modification with TCA. 
The significant increase of the total acidity of the TCA/H-zeolite catalyst would further evidence of the 
success modification in this study. In addition, the enhanced total acidity of the TCA/H-zeolite catalyst 
would promote a better esterification process as this acid active sites would play important roles in 
catalysing the esterification of bio-oil with methanol [13]. 

The total acidity of the TCA/H-zeolite catalyst was conducted through ammonia adsorption in 
combination with a gravimetric method. The amount of ammonia adsorbed at the catalyst surface would 
provide the data the number of acid active sites interacting with the adsorbed ammonia [27, 28]. 

The total acidity of the TCA/H-zeolite catalyst in comparison with the pre-treated and H-zeolite is 
presented in Table 1. A significant increase in the total acidity of the TCA/H-zeolite catalyst was observed, 
1.7 folds from that of H-zeolite. It was most likely due to the modification of the zeolite with TCA resulting 
in the chemical interaction of carbonyl oxygen or hydroxyl oxygen of TCA with the Brønsted acid sites of 
H-zeolite [29]. 
 

Table 1. The total acidity and the surface porosity of the zeolite catalysts. 

Type of catalyst 
Total acidity 

(mmol NH3/g) 
Surface area 

(m2/g) 
Total Pore Volume 

(cm3/g) 
Average Pore Radius 

(Å) 
Pre-treated 
zeolite 

0.94 12.82 0.077 119.96 

H-zeolite 1.20 22.26 0.065 588.35 
TCA/H-zeolite 3.28 28.41 0.075 526.31 

 
Furthermore, the interaction between ammonia Lewis’s base and the Brønsted and Lewis sites of the 

catalyst was evaluated through the IR spectra of the TCA/H-zeolite catalyst in Figure 3. The interaction of 
ammonia with the Lewis and Brønsted active sites was designated by the vibrations at wavenumbers of 
1450 cm-1 and 1550-1640 cm-1, respectively [30]. 
 

 
Figure 3. IR spectra of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite after NH3 adsorption. 

 
The surface porosity of a catalyst is an important property of the catalyst in supporting the catalytic 

performance. It was due to the presence of active sites at the catalyst surface including the catalyst pores 
[31]. The surface porosity of the TCA/H-zeolite catalyst determined in this study included specific surface 
area, total pore volume and average pore radius of the catalyst as presented in Table 1.  

The surface porosity data in Table 1 showed that chemical and physical treatment towards the pre-
treated zeolite caused a significant increase (73.63%) in the surface area of the H-zeolite catalyst. It was 
might due to the impurity removal and the formation of new pores during the treatment [32]. A further 
increase (27.63%) in the specific surface area was also observed in the TCA/H-zeolite catalyst, probably 
due to the surface modification using a strong acid TCA at the solid H-zeolite surface [33, 34]. 
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A significant increase of the average pore radius of the H-zeolite catalyst in comparison with the pre-
treated zeolite catalyst (3.9 folds) was also observed. The acid treatment followed with calcination at high 
temperature of 500 oC probably could cause impurity removal resulting in an increase in the pore size of 
the zeolite [33]. Moreover, the growth of the pore structure might take place due to the chemical treatment 
during the preparation of the H-zeolite catalyst [35]. However, a slight decrease (~10%) of the average pore 
radius was observed after the zeolite modification with TCA. The TCA introduction with a quite high 
concentration (ca. 35%) at the H-zeolite surface followed with a low drying temperature (80 oC) might 
promote the pore occupation by the TCA molecules, resulting in the decrease of the average pore size of 
the zeolite [36]. 

Unlike the considerable changes in the specific surface area and average pore radius, the total pore 
volume of the zeolite catalysts was almost unchanged; only ~15% of change was observed. The 
insignificant change in the total pore volume accompanied with the increase in the average pore radius 
might be probably attributed to the reduction of the pore depth at the zeolite surface. This would allow the 
easier interaction between the surface-active sites and the reactants during the esterification of the bio-oil. 

 
Production and characterisation of the bio-oil from the pyrolysis of Sengon wood sawdust 

The bio-oil used as the feedstock during the esterification in this study was produced from the fast 
pyrolysis of Sengon wood sawdust with a particle size of 297 μm at 600 °C using a fixed-bed pyrolyser. 
The yield of the bio-oil was considerably high of 45.66 wt%, as presented in Table 2. Such high temperature 
would help the lignocellulose macromolecules to undergo good decomposition during the pyrolysis [37]. 
Lignocellulose composes of lignin, cellulose and hemicellulose with specific decomposition temperatures. 
Lignin would decompose at 300-550 °C, while hemicellulose and cellulose would decompose at 250-350 
°C and 325-400 °C, respectively [38]. The rate of decomposition of lignocellulose macromolecules would 
increase with increasing the pyrolysis temperature, resulting in more condensable light fractions [39], thus 
high bio-oil yield. However, extremely high temperature would promote the production of the non-
condensable fractions resulting in higher yield of gaseous pyrolysis product [40]. 
 

Table 2. The yield of pyrolysis products produced from the pyrolysis of Sengon wood sawdust with a 
particle size of 297 μm at 600 oC using a fixed-bed pyrolyser. 

Type of product Yield (wt.%) 
Bio-oil 45.66 
Biochar 29.97 
Gaseous product* 24.37 

*by difference 

 
The physical and chemical properties of the Sengon wood bio-oil produced through fast pyrolysis 

technique were measured, including the density, viscosity, and total acid number as shown in Table 3. The 
density of the bio-oil was not directly related to the quality of the bio-oil. However, this property could 
provide an indication whether heavy or light molecules were predominant in the bio-oil [41]. The low 
density of the bio-oil produced in this study (1.07 g/mL) indicated that light molecules with relatively low 
molecular weight were predominant due to severe decomposition process at 600 °C during the pyrolysis 
resulting in more condensable light fractions.  
 

Table 3. The characteristics of the bio-oil produced from the pyrolysis of Sengon wood sawdust with a 
particle size of 297 μm at 600 oC using a fixed-bed pyrolyser. 

Property (unit) Value (wt.%) 
Density (g/mL) 1.07 

Viscosity (cP) 2.40 
TAN (mg KOH/g) 0.73 

 
Another parameter evaluated in this study for the bio-oil quality is viscosity. This parameter is 

affected by the liquid temperature, the strength of intermolecular forces, and the molecular weight and the 
amount of the soluble components in the liquid bio-oil [42]. The pyrolysis temperature of 600 °C has 
resulted in the bio-oil with light components (short carbon chains, low molecular weight) in the 
considerable amount, resulting in the bio-oil with a low viscosity of 2.40 cP (see Table 3) [43]. 

The total acid number of the Sengon wood bio-oil was determined by using an aliquot method, as 
presented in Table 3. This parameter provided an estimation of the content of organic acids in the bio-oil 
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[44]. The high content of organic acids in bio-oil or liquid fuels would lead to corrosion to engines and/or 
the equipment used in the further processes such as biorefinery [8]. The high total acid number (0.73 mg/g) 
of the Sengon wood bio-oil used as the feedstock in the esterification process suggested the high organic 
acid content in the bio-oil. It was likely due to the presence of organic acids such as carboxylic acids as a 
result of the decomposition of the lignocellulose macromolecules at higher pyrolysis temperature [45]. The 
acid removal from the bio-oil is extremely important to minimise the corrosiveness of the bio-oil prior to 
its use as a fuel or its further processes in the biorefinery through an appropriate upgrading technique. A 
bio-oil upgrading through an esterification technique using TCA/H-zeolite was investigated with different 
weight ratios of bio-oil-to-methanol over various reaction times. 

 
Bio-oil upgrading through TCA/H-zeolite-catalysed esterification over different weight ratios 
of bio-oil-to-methanol 

The esterification of the Sengon wood bio-oil in the presence of the TCA/H-zeolite catalyst was 
carried out with various weight ratios of bio-oil-to-methanol of 2:1, 1:1, 1:2 and 1:3 at 70 °C, a catalyst 
loading of 10 wt%, a 60-min reaction time, and a stirring rate of 500 rpm. The liquid and the possible 
formed coke after each esterification experiment were recovered to close the mass balance, as presented in 
Table 4. The mass balance closure was higher than 90 wt% indicating a proper experimental execution [46]. 
The coke yield in all experiments was very low of < 1 wt%. This indicated that the possible repolymerisation 
between the reactive components in the bio-oil leading to the formation of coke could be prevented during 
the bio-oil esterification [47] in the presence of the TCA/H-zeolite catalyst. 
 
Table 4. The mass balance closure during the esterification of the Sengon wood bio-oil in the presence of 

TCA/H-zeolite catalyst with various weight ratios of bio-oil-to-methanol. 
Weight ratio of BO-to-

methanol 
Recovered liquid 

(wt%) 
Coke yield 

(wt%) 
Total recovery 

(%) 
2:1 94.11 0.0407 94.15 
1:1 91.90 0.0404 91.94 
1:2 91.88 0.0394 91.92 
1:3 97.79 0.0334 97.82 

 

The density, viscosity and total acid number of the liquid obtained after the TCA/H-zeolite-catalysed 
esterification with various weight ratios of bio-oil-to-methanol at 70 °C were measured as presented in 
Table 5. A catalyst loading of 10 wt%, a 60-min reaction time, and a stirring rate of 500 rpm were employed 
during each experiment. The density of the esterified oil insignificantly changed with relatively abundant 
addition of methanol compared to the original mixture of the bio-oil and methanol before reaction in the 
case of the experiments with a weight ratio of bio-oil-to-methanol of 1:2 and 1:3. The relatively unchanged 
density indicated the relatively similar molecular weight of components in the bio-oil after esterification. 
The esterification would allow the change in the bio-oil microstructure through the formation of esters or 
acetals [48]. The similar trend was observed for the viscosity of the esterified oil; the more the methanol 
added during the esterification, the lower the change in the viscosity of the bio-oil. The presence of 
methanol could enhance the bio-oil stability [49] and further decrease the rate of aging during storage [50]. 

 
Table 5. The density, viscosity and total acid number of the bio-oil after esterification in the presence of 

TCA/H-zeolite catalyst with various weight ratios of bio-oil-to-methanol. 

Bio-oil property 
Weight ratio of bio-oil-to-methanol 

2:1 1:1 1:2 1:3 
Initial Final Initial Final Initial Final Initial Final 

Density (g/mL) 1.0227 1.0252 0.9861 0.9866 0.9415 0.9417 0.9153 0.9186 
Viscosity (cP) 2.1094 2.2316 1.9417 2.0283 1.7896 1.8521 1.5643 1.6034 
TAN (mg/g) 0.6921 0.3498 0.5852 0.2939 0.5316 0.2031 0.4132 0.1813 

 
Unlike the insignificant changes in the bio-oil density and viscosity, a considerable change in the total 

acid number of the esterified oil was observed after the esterification in the presence of the TCA/H-zeolite 
catalyst, as presented in Table 5. The decrease in the total acid number of the bio-oil after esterification was 
49.46%, 49.78%, 61.79% and 56.12% for the TCA/H-zeolite-catalysed esterification with a bio-oil-to-
methanol weight ratio of 2:1, 1:1, 1:2 and 1:3 respectively. The addition of extra methanol in the 
esterification with a 1:2 weight ratio could promote the decrease in the total acid number of the bio-oil by 
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ca 25% in comparison with that with a 2:1 and 1:1 weight ratio. The decrease in the total acid number of 
the bio-oil after esterification could be an indication of the formation of esters as a result of the reaction 
between carboxylic acids in the bio-oil feedstock and methanol in the presence of the TCA/H-zeolite 
catalyst [51]. In addition, aldehydes in the bio-oil feedstock could also react with methanol in the presence 
of acid catalysts, such as TCA/H-zeolite catalyst, to form acetals [52]. The extra addition of methanol in 
the esterification system (in the case of that with a 1:2 and 1:3 weight ratio) could promote the equilibrium 
shift to the products, resulting in the increase in the production of products, i.e., esters or acetals [53]. 

A further increase in the methanol addition in the esterification with a 1:3 weight ratio did not cause 
a higher decrease in the total acid number of the bio-oil after esterification in the presence of the TCA/H-
zeolite catalyst. It might indicate that the equilibrium was not disturbed by the extra addition of methanol 
in the 1:3 esterification experiment. The weight ratio of bio-oil-to-methanol of 1:2 was then chosen as the 
condition in the further experiments with various reaction times. 
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Figure 4. The IR spectra of (A) the fresh bio-oil and the bio-oils after esterification with a weight ratio of 
bio-oil-to-methanol of (B) 2:1, (C) 1:1, (D) 1:2 and (E) 1:3 in the presence of the TCA/H-zeolite catalyst. 

 

Further observation on the possible formation of esterification products, e.g., esters, an FTIR 
measurement was conducted towards the fresh bio-oil (the bio-oil before the esterification) and the bio-oils 
after the esterification with different weight ratios of bio-oil-to-methanol in the presence of the TCA/H-
zeolite catalyst. The IR spectra of the fresh and esterified bio-oils are depicted in Figure 4. A considerable 
increase in the peak intensity of the hydroxyl and C‒H alkane groups at wavenumbers of 3350 cm-1 and 
2950-2800 cm-1, respectively, in the esterified bio-oils (Figure 4(B)-(E)) was observed, possibly due to the 
formation of esters [54]. In addition, a significant increase in the peak intensity of C‒O groups at a 
wavenumber of 1000 cm-1 was observed as an indication of the presence of methanol in the reaction system, 
as well as the formation of ester [53]. Meanwhile, the decrease in the peak intensity at a wavenumber of 
1750 cm-1 designated for the carbonyl groups from carboxylic acids, aldehydes and ketones [52], possibly 
due to its conversion to acetals [55, 56].  

 
Bio-oil upgrading through TCA/H-zeolite-catalysed esterification over different reaction times 

The esterification of the Sengon wood bio-oil in the presence of the TCA/H-zeolite catalyst over 
different reaction times at 70 °C with a catalyst loading of 10 wt%, a weight ratio of bio-oil-to-methanol of 
1:2, stirring rate of 500 rpm was carried out with a total recovery of > 90%, as listed in Table 6, indicating 
a proper experimental execution. The recovered liquid contained the esterification products and possible 
remaining reactants. Table 6 shows that the coke yield coke was very low (< 1 wt%), indicating that the 
coke formation during the bio-oil esterification in the presence of the TCA/H-zeolite could be avoided [53]. 

Over prolonged reaction times, the density of the bio-oil after esterification underwent a negligible 
change, only by < 1%, possibly due to the enhanced stability of the bio-oil during the esterification as is 
shown in Table 7. The susceptibility of the reactive components of the bio-oil towards re-polymerisation 
has lowered resulting in the bio-oil with similar compositions of molecular weight [57]. 
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Table 6. The mass balance closure during the esterification of the Sengon wood bio-oil in the presence of 
TCA/H-zeolite catalyst for 15-60 min reaction times. 

Reaction time (min) Recovered liquid (wt%) Coke yield (wt%) Total (%) 
15 92.95 0.0354 92.98 
30 95.34 0.0370 95.38 
45 92.92 0.0375 92.96 
60 91.88 0.0394 91.92 

 
 

Table 7. The density, viscosity and total acid number of the bio-oil after esterification in the presence of 
TCA/H-zeolite catalyst for 15-60 min reaction times. 

Bio-oil property 
Esterification time (min) 

15 30 45 60 
Initial Final Initial Final Initial Final Initial Final 

Density (g/mL) 0.9394 0.9399 0.9393 0.9401 0.9393 0.9406 0.9415 0.9417 
Viscosity (cP) 1.7748 1.7908 1.7789 1.8040 1.7704 1.8308 1.7896 1.8521 
TAN (mg/g) 0.5074 0.2646 0.5161 0.2588 0.5196 0.2241 0.5316 0.2032 

 
The similar trend was observed for the viscosity of the bio-oil after esterification in the presence of 

the TCA/H-zeolite over various reaction times at 70 °C with a catalyst loading of 10 wt%, a weight ratio of 
bio-oil-to-methanol of 1:2, stirring rate of 500 rpm. Insignificant changes in the bio-oil viscosity by 3-5% 
were observed, indicating the prevention of the formation of heavy molecules during the catalysed 
esterification, possibly by the formation of esters and acetals [48]. 
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Figure 5. The IR spectra of the bio-oils after a (A) 0-min, (B) 15-min, (C) 30-min, (D) 45-min and (E) 

60-min esterification in the presence of the TCA/H-zeolite catalyst. 
 

Alike the change in the total acid number of the bio-oil after esterification with various weight ratios 
of bio-oil-to-methanol, the total acid number of that after the esterification over various reaction times 
decreased considerably. Over a 15-min reaction time, the total acid number of the bio-oil after the catalysed 
esterification decreased by 47.85%. A prolonged esterification of 30 min only caused a further decrease in 
the total acid number of the bio-oil by 4% (with a 49.85% decrease). A further prolonged reaction times of 
45 and 60 min caused a bit higher decrease in the total acid number of bio-oil by 13% and 8%, respectively 
(with 56.78% and 61.78% decrease, respectively). These data suggested that carboxylic acids in the bio-oil 
feedstock were converted to esters in a quite fast rate at the beginning of the esterification of the bio-oil in 
the presence of TCA/H-zeolite catalyst [51]. The rate of esterification became slower by longer reaction 
times (30-60 min). Probably, the components of the bio-oil feedstock competed to attach to the active sites 
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of the catalysts over time resulting in the high surface coverage [58]. However, not all of these reactants 
adsorbed at the catalyst surface could be accommodate to react with methanol as the co-adsorbed alcohol-
acids intermediates at the catalyst surface were required to allow the reactions to take place [10]. 

A measurement using an FTIR spectrophotometer was conducted towards the fresh bio-oil and the 
bio-oils obtained after the TCA/H-zeolite-catalysed esterification over different reaction times. The IR 
spectra of the bio-oils before and after esterification over different reaction times are presented in Figure 5. 
A similar observation of the IR spectra with those in Figure 4 was obtained. An increase in the peak intensity 
of the hydroxyl and C‒H groups at wavenumbers of 3350 and 2950-2800 cm-1, respectively, was observed 
in Figure 5, indicating the formation of water as a side-product of esterification between methanol and 
carboxylic acids [55, 56]. The formation of esters was also indicated by the increase in the C‒O groups at 
a wavenumber of 1000 cm-1 [53]. Moreover, the carbonyl-containing compounds as designated by the peaks 
at a wavenumber 1750 cm-1 [53] in the bio-oil were possibly converted to acetals [55], as indicated by the 
decrease in the corresponding peak intensity. 

 
Comparing the activity of zeolite catalysts during the esterification of Sengon wood bio-oil 

The activity of the TCA/H-zeolite catalyst during the esterification of the Sengon wood sawdust was 
confirmed by comparing to that of the pre-treated zeolite and H-zeolite catalysts. The study was performed 
using the following condition: a temperature of 70 °C, a weight ratio of bio-oil-to-methanol of 1:2 and a 
reaction time of 60 min. A blank experiment in the absence of any catalyst was also carried out to support 
the justification on the performance of the TCA/H-zeolite catalyst. The liquid after esterification as well as 
the possible formed coke was recovered and weighed to close the mass balance as presented in Table 8. 

 
Table 8. The mass balance closure during the esterification of the Sengon wood bio-oil in the presence of 

various catalysts. 
Type of catalyst Recovered liquid (wt%) Coke Yield (wt%) Total (%) 
NA 94.42 0.016 94.44 
Pre-treated zeolite  93.18 0.043 93.23 
H-zeolite  94.90 0.041 94.94 
TCA/H-zeolite  91.88 0.039 91.92 

 

The data in Table 8 suggested that negligible coke formation (< 1%) was observed. The presence of 
methanol during the heating up bio-oil was significant in preventing the re-polymerisation of reactive 
components in the bio-oil feedstock. The good mass balance closure in Table 8 indicated that the 
experiments were carried out properly. The properties of the bio-oil after the esterification of the bio-oil in 
the presence of various zeolite catalysts at 70 °C with a catalyst loading of 10 wt%, a weight ratio of bio-
oil-to-methanol of 1:2, stirring rate of 500 rpm for a 60-min reaction time were investigated as listed in 
Table 9. 

 
Table 9. The density, viscosity and total acid number of the bio-oil after esterification in the presence of 

the zeolite catalysts. 

Bio-oil property 
Reaction time 

(min) 
Type of catalyst 

NA Pre-treated zeolite H-zeolite TCA/H-zeolite 
Density(g/mL) 0 0.9176 0.9101 0.9140 0.9415 

60 0.9179 0.9347 0.9392 0.9417 
Viscosity (cP) 0 1.7336 1.7257 1.7373 1.7896 

60 1.8367 2.3055 2.1174 1.8521 
TAN (mg/g) 0 0.7006 0.6515 0.5731 0.5316 

 60 0.5947 0.4240 0.2843 0.2032 
 

The density of the bio-oil after the esterification in Table 9 showed an insignificant change even in 
the absence of a catalyst. It suggested that the addition of methanol gave a significant effect in stabilising 
the reactive component of the bio-oil [53]. In contrast, the viscosity of the bio-oil after esterification in the 
presence and absence of a catalyst has increased in a different level ranging from 3.94% to 39.97%. The 
lowest increase in the viscosity of the bio-oil after esterification was observed for that in the presence of 
the TCA/H-zeolite catalyst (3.94%), while the highest increase was observed for that in the presence of the 
pre-treated zeolite catalyst (39.97%). The blank experiment in the absence of a catalyst did not show a 
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significant increase in the viscosity of the bio-oil after esterification possibly due to the limited interaction 
of the reactive components in the bio-oil feedstock with methanol [59]. On the other hand, the presence of 
the zeolite catalysts might promote the interaction between reactive components themselves or with 
methanol [23]. The pre-treated zeolite might facilitate the interactions between reactive components to 
polymerise and form bigger molecules with higher molecular weight. As a result, the viscosity of the bio-
oil increased significantly after esterification in the presence of the pre-treated zeolite catalyst. 

The bio-oil esterification in the presence of zeolite catalysts (pre-treated, H-zeolite and TCA/H-zeolite 
catalysts) showed a significant decrease in the total acid number of the bio-oil after esterification by 
34.92%, 50.39% and 61.78%, respectively. It was clear that the modification of Indonesian zeolite using 
TCA could enhance its activity in catalysing the esterification of the Sengon wood bio-oil. It was possibly 
due to the increase in the acid active sites at the catalyst surface as the result of the TCA modification over 
the zeolite catalyst [60]. 
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Figure 6. The IR spectra of the esterified bio-oils in the presence of (A) no catalyst, (B) pre-treated 

zeolite, (C) H-zeolite and (E) the TCA/H-zeolite catalysts. 
 
The change in the functionalities of the bio-oils before and after the esterification of the bio-oils in 

the absence and presence of a catalyst was investigated using an FTIR spectrophotometer, as presented in 
Figure 6. The high peak intensity of the C‒O groups in the esterified bio-oils in Figure 6 indicated the 
formation of esters [53]. The presence of the TCA/H-zeolite did promote the formation of esters (and 
possibly other esterification products, e.g., acetals [56]) in comparison with that of other zeolite catalysts.  
 
Conclusions 

This study investigated the activity of the TCA/H-zeolite catalyst during the bio-oil esterification in 
the presence of methanol over various weight ratios of bio-oil-to-methanol and reaction times. The presence 
of TCA/H-zeolite catalyst during the esterification of the bio-oil could suppress the formation of coke. In 
the presence of TCA/H-zeolite, the weight ratios of bio-oil-to-methanol significantly affected the decrease 
in the total acid number of the bio-oil after the esterification. Moreover, the esterification of Sengon wood 
bio-oil in the presence of the TCA/H-zeolite catalyst took place in a fast rate, indicated by the decrease in 
the total acid number of the bio-oil by 47.85% over a 15-min esterification. Compared to the uncatalysed 
esterification, the presence of the TCA/H-zeolite catalyst could further enhance the decrease in the total 
acid number up to 65.83%. 

The esterification at higher temperatures and using a pressurised reactor would improve the quality 
of the esterified bio-oil. Furthermore, the combination between hydrocracking and esterification could 
simultaneously undergo in the presence of hydrogen and hydroprocessing catalysts. 
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Abstract  

 The bio-oil produced from the pyrolysis of biomass is highly corrosive due to the high content of 
organic acids. These organic acids could be removed through an appropriate upgrading process, i.e., 
esterification using alcohols to form less polar esters. In this study, the bio-oil used as the feedstock in the 
esterification was produced from the pyrolysis of Sengon wood with a particle size of 297 µm at 600 °C. 
The esterification was performed at 70 °C in the presence of a trichloro acetic acid (TCA)-modified 
Indonesian H-zeolite catalyst with various weight ratios of bio-oil-to-methanol and reaction times under a 
constant stirring rate of 500 rpm. The esterification progress was indicated by the decrease in the total acid 
number of the bio-oil after esterification. No significant coke formation (< 0.05 wt%) was observed 
indicating that the suppression of repolymerisation could be achieved. This study showed that the 
esterification underwent in a fast rate, indicated by the decrease in the total acid number of the bio-oil by 
47.85 % only over a 15-min esterification. Compared to the uncatalysed esterification, the TCA/zeolite-
catalysed esterification showed a higher decrease in the total acid number of the bio-oil up to 65.83 %, due 
to the conversion of the carboxylic acids to esters. 

Keywords: Esterification, Sengon wood bio-oil, TCA-modified Indonesian zeolite, Total acid number 
 
 
Introduction 

The fossil fuel depletion has promoted the exploration of new renewable energy resources. Biomass 
has been considered as a promising renewable energy resource due to its high availability, its 
environmentally friendly properties and its zero competition with food sector [1]. A liquid fuel could be 
produced as the main product from the fast pyrolysis of biomass [2] that is well known as bio-oil or 
pyrolysis oil. Sengon wood, as an abundantly available feedstock in Indonesia was used in this study for 
bio-oil production. Sengon wood contains lignin, cellulose, and hemicellulose of 26.1, 45.4 and 21.0 % and 
respectively [3]. The high content of cellulose in Sengon wood would result in the high yield of bio-oil [4], 
allowing a sustainable starting material for liquid fuel production. 

The bio-oil produced from the pyrolysis of biomass could be used as a fuel for boilers, stationary as 
well as sterling engines [5]. However, the bio-oil cannot be directly used as a fuel for transportation due to 
several unfavourable properties such as high water content leading to low calorific value and high oxygen 
content resulting in highly instable properties [6]. In addition, the bio-oil contains high amount of organic 
acids making it highly corrosive and causing a big challenge during its use as a fuel or its compatibility 
during further processing in the biorefinery [7]. A bio-oil upgrading is required for the bio-oil to meet the 
requirements as liquid transportation fuels [8]. 

Esterification has been reported to show a great potential as bio-oil upgrading technique to reduce the 
acids content of the bio-oil [9]. It converts the organic acids in the bio-oil to e.g., esters in the presence of 
alcohols and acid catalysts [10]. The use of solid acid catalysts during the esterification of bio-oil has been 
considered more beneficial in comparison with that of homogeneous catalysts due to the easy separation 
resulting in a more efficient and cost-effective process [11]. Several solid acid catalysts such as ion 
exchange resins [12], modified zirconia [13,14], Amberlysts [15-17], acid modified rice husk ash [18], and 
heteropoly acids [19] have been used as a catalyst in the esterification of the “real” bio-oil as well as model 
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compounds mimicking bio-oil. In addition, zeolite-based catalysts have been reported to show a great 
potential as a catalyst for esterification of bio-oil [20-24].  

A special attention has been paid to Indonesian natural zeolite primarily in related to its application 
as a catalyst for bio-oil upgrading. It has a good porosity and modifiable Brønsted acid sites [25] at its 
surface to anticipate the complicated compositions and behaviour of the bio-oil during the esterification. 
The modification of Brønsted acid sites at the Indonesian zeolite surface to improve the Brønsted acidity 
could enhance the catalytic activity of Indonesian zeolite during the esterification of the bio-oil. 

The Brønsted acidity of the Indonesian zeolite could be improved by strong acid modification, e.g., 
trichloroacetic acid (TCA) resulting in the zeolite with a better Brønsted acidity [26]. However, the 
application of TCA-modified Indonesian natural zeolite as a catalyst for esterification of bio-oil produced 
from the fast pyrolysis of Sengon wood was rare. More studies to investigate the activity of the TCA-
modified Indonesian natural zeolite are necessary to evaluate its potential as a catalyst for the bio-oil 
esterification. This study focused on the esterification of the bio-oil produced from the fast pyrolysis of 
Sengon wood sawdust with various weight ratios of bio-oil-to-methanol and reaction times to investigate 
the esterification behaviour of organic acids in the bio-oil primarily acetic acid in the presence of methanol 
and TCA-modified Indonesian natural zeolite as a solid acid catalyst. 
 
Materials and methods 

 Preparation and characterisation of a TCA-modified Indonesian natural zeolite catalyst 
The Indonesian natural zeolite from Wonosari, Yogyakarta, Indonesia was used as a starting material 

of the zeolite catalyst. It was purchased from CV. SSGT Zeolite, Indonesia. The natural zeolite was 
prepared as previously reported [24]. Briefly, the natural zeolite with a particle size range of 100 - 120 μm 
was activated using sequent chemical and physical activation method. Prior to activation process, the 
natural zeolite was washed in distilled water and dried at 110 °C for 3 h to allow the physical contaminant 
removal. “Pre-treated zeolite” corresponds the natural zeolite from this pre-treatment step. 

The natural zeolite was chemically treated using 1 % HF, 6 N HCl and 1 N NH4Cl solutions (prepared 
from 50 % HF, 37 % HCl, and solid NH4Cl, obtained from E. Merck, respectively) in a sequence. This 
chemical activation was followed with a physical activation, i.e., calcination of the natural zeolite sample 
at 500 °C under nitrogen atmosphere to produce “H-zeolite” catalyst [24].  

The modification of the “H-zeolite” catalyst with chloroacetic acid was carried out as reported by 
Ávila et al. [6] with some adjustment. A 5 g of TCA was dissolved in 9 mL of demineralised water in an 
Erlenmeyer flask. A 10 g of “H-zeolite” was added in the TCA solution. The mixture was then heated at 
80 °C under a continuous stirring with a low stirring rate of 100 rpm until no water left. The solid obtained 
was dried in an oven at 110 °C for 2 h resulting in the “TCA/H-zeolite” catalyst. 

The formation of the “TCA/H-zeolite” catalyst was confirmed based on the appearance of 
characteristics vibration peaks at wavenumbers of 830 and 680 cm−1 (the stretching vibration of C-Cl bonds) 
[26] in the IR spectrum. The IR spectrum of the “TCA/H-zeolite” catalyst was obtained using a Perkin-
Elmer Frontier Spotlight 200 type-Fourier transform infrared spectrophotometer. In addition, the possible 
change in the crystalline structure of Indonesian natural zeolite was evaluated using a PANalytical Xpert’3 
Powder X-ray diffractometer. 

The surface properties of the “TCA/H-zeolite” catalyst were characterised using a Quantachrome 
Nova 1,200e surface area analyser. The specific surface area, total pore volume and average pore radius 
were determined using a BET-BJH isotherm adsorption. Moreover, the acidity of the “TCA/H-zeolite” 
catalyst was determined using an ammonia adsorption. The amount of ammonia adsorbed at the catalyst 
surface was assigned as the total acidity of the catalyst in mmol ammonia per gram catalyst. This 
quantitative measurement of the catalyst acidity was combined with the analysis of the chemical 
functionalities of the catalyst to confirm the presence of the new bonds of ammonia with the Lewis and 
Brønsted acid sites at the catalyst surface at wavenumbers of 1,640, 1,550 and 1,450 cm−1.  

 
Catalytic esterification of sengon wood bio-oil 
The esterification of the bio-oil with methanol in the presence of  “TCA/H-zeolite” catalyst was 

carried out in a batch reactor system equipped with a temperature monitor and magnetic stirrer. The 
esterification was conducted at 70 °C, with a catalyst loading of 10 wt%, a stirring rate of 500 rpm, and 
various weight ratios of bio-oil-to-methanol of 1:1, 2:1, 1:2 and 1:3. The Sengon wood bio-oil used in the 
esterification process was produced from the pyrolysis of Sengon wood sawdust with a particle size of 297 
μm at 600 °C using a fixed-bed pyrolyser as previously reported [24]. The esterification with a weight ratio 
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of bio-oil-to-methanol which gave the highest decrease in the total acid number of the bio-oil after 
esterification underwent that with various esterification times of 15, 30, 45 and 60 min. 

After each experiment, the mixture of liquid esterification products and possible remaining reactants 
was recovered and designated as the esterified bio-oil. The coke formation was determined based on the 
weight difference of solid catalyst before and after the esterification. The yield of coke was calculated using 
Eq. (1) to close the mass balance. W′cat and W0

cat are designated as the weight of the “TCA/H-zeolite” 
catalyst after and before the esterification of the bio-oil, respectively, while Wbio-oil fed is the weight of the 
bio-oil fed in each esterification experiment. 
 

𝐶𝑜𝑘𝑒 𝑦𝑖𝑒𝑙𝑑 =  
ௐᇱ೎ೌ೟ିௐబ

೎ೌ೟

ௐ್೔೚ష೚೔೗ ೑೐೏
𝑥100%             (1) 

 
 Characterisation of the bio-oil after esterification 

The esterified bio-oil after each esterification experiment was characterised, including the density, 
viscosity and total acid number. The density and viscosity of the esterified bio-oil were determined using a 
gravimetric method by means of a pycnometer and an Ostwald viscometer, respectively.  

The total acid number (TAN) of the esterified bio-oil was measured using an SNI 01-3555-1998 
procedure as follows. The bio-oil sample was dissolved in acetone to 96 wt% clear solution of bio-oil. A 
2.5 g of the bio-oil solution was heated to boil and added with 2-3 drops of phenolphthalein solution. The 
titration of the bio-oil solution was conducted using 0.1 N KOH solution until a light red colour appeared. 
The total acid number of the esterified bio-oil was calculated using Eq. (2). MWKOH, NKOH, and VKOH are 
designated as the molecular weight, normal concentration and volume of KOH solution, respectively. 
Meanwhile, Wsample and dilution are designated as the weight of the sample and the magnitude of dilution 
employed during the measurement of TAN. 

 

𝑇𝐴𝑁 =
ெௐ಼ೀಹ × ே಼ೀಹ×௏಼ೀಹ

ௐೞೌ೘೛೗೐
× 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛            (2) 

 
Results and discussion 

 The characteristics of TCA/H-zeolite catalyst 
The important properties of the TCA/H-zeolite catalyst prepared in this study was investigated, 

including the chemical functionalities, the possible change in the crystalline structure, the surface porosity, 
and the total acidity. The chemical functionalities of the TCA/H-zeolite catalyst were represented by the 
spectra in Figure 1. The general featured functionalities of the zeolite with aluminosilicate framework were 
shown by the appearance of a vibration peak −OH groups at 3,200 - 3,600 cm−1. In addition, bending 
vibrations of Al-OH/Si-OH were observed at 1,650 - 1,400 cm−1, while stretching vibrations of Si-O/Al-O 
were observed at wavenumbers of 1,250 - 950 and 820 - 650 cm−1.  

The success of the zeolite modification with TCA was confirmed by the appearance of stretching 
vibrations of C-Cl bonds at wavenumbers of 840 and 690 cm−1 [26] at the IR spectrum of the TCA/H-
zeolite catalyst (Figure 1(c)). These vibrations indicated the chemical interaction between TCA and the ‒
OH groups of the zeolite. 

The change in the crystalline structure of the zeolite over subsequent chemical and physical treatment 
as well as TCA modification was evaluated through the XRD patterns of the pre-treated zeolite, H-zeolite 
and the TCA/H-zeolite catalysts, as shown in Figure 2. The similar XRD patterns and peak intensity in 
Figure 2 indicated that the zeolite did not undergo a significant change in the crystalline structure over the 
subsequent treatments. Moreover, the intensity of the 3 highest peaks denoted that the mordenite mineral 
structure was predominant in the zeolite catalysts.  
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Figure 1 IR spectra of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite. 
 
 

 

Figure 2 The diffraction patterns of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite. 
 
 

The measurement of the total (Lewis and Brønsted) acidity of the TCA/H-zeolite catalyst was 
performed to support the data of IR spectra indicating the success of the zeolite modification with TCA. 
The significant increase of the total acidity of the TCA/H-zeolite catalyst would further evidence of the 
success modification in this study. In addition, the enhanced total acidity of the TCA/H-zeolite catalyst 
would promote a better esterification process as this acid active sites would play important roles in 
catalysing the esterification of bio-oil with methanol [13]. 

The total acidity of the TCA/H-zeolite catalyst was conducted through ammonia adsorption in 
combination with a gravimetric method. The amount of ammonia adsorbed at the catalyst surface would 
provide the data the number of acid active sites interacting with the adsorbed ammonia [27,28]. 

The total acidity of the TCA/H-zeolite catalyst in comparison with the pre-treated and H-zeolite is 
presented in Table 1. A significant increase in the total acidity of the TCA/H-zeolite catalyst was observed, 
1.7 folds from that of H-zeolite. It was most likely due to the modification of the zeolite with TCA resulting 
in the chemical interaction of carbonyl oxygen or hydroxyl oxygen of TCA with the Brønsted acid sites of 
H-zeolite [29]. 
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Table 1 The total acidity and the surface porosity of the zeolite catalysts. 

Type of 
catalyst 

Total acidity 
(mmol NH3/g) 

Surface area 
(m2/g) 

Total pore volume 
(cm3/g) 

Average pore radius 
(Å) 

Pre-treated 
zeolite 

0.94 12.82 0.077 119.96 

H-zeolite 1.20 22.26 0.065 588.35 

TCA/H-zeolite 3.28 28.41 0.075 526.31 

 
 
Furthermore, the interaction between ammonia Lewis’s base and the Brønsted and Lewis sites of the 

catalyst was evaluated through the IR spectra of the TCA/H-zeolite catalyst in Figure 3. The interaction of 
ammonia with the Lewis and Brønsted active sites was designated by the vibrations at wavenumbers of 
1,450 cm−1 and 1,550 - 1,640 cm−1, respectively [30]. 
 
 

 

Figure 3 IR spectra of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite after NH3 adsorption. 
 
 
The surface porosity of a catalyst is an important property of the catalyst in supporting the catalytic 

performance. It was due to the presence of active sites at the catalyst surface including the catalyst pores 
[31]. The surface porosity of the TCA/H-zeolite catalyst determined in this study included specific surface 
area, total pore volume and average pore radius of the catalyst as presented in Table 1.  

The surface porosity data in Table 1 showed that chemical and physical treatment towards the pre-
treated zeolite caused a significant increase (73.63 %) in the surface area of the H-zeolite catalyst. It was 
might due to the impurity removal and the formation of new pores during the treatment [32]. A further 
increase (27.63 %) in the specific surface area was also observed in the TCA/H-zeolite catalyst, probably 
due to the surface modification using a strong acid TCA at the solid H-zeolite surface [33,34]. 

A significant increase of the average pore radius of the H-zeolite catalyst in comparison with the pre-
treated zeolite catalyst (3.9 folds) was also observed. The acid treatment followed with calcination at high 
temperature of 500 °C probably could cause impurity removal resulting in an increase in the pore size of 
the zeolite [33]. Moreover, the growth of the pore structure might take place due to the chemical treatment 
during the preparation of the H-zeolite catalyst [35]. However, a slight decrease (~10 %) of the average 
pore radius was observed after the zeolite modification with TCA. The TCA introduction with a quite high 
concentration (ca. 35 %) at the H-zeolite surface followed with a low drying temperature (80 °C) might 
promote the pore occupation by the TCA molecules, resulting in the decrease of the average pore size of 
the zeolite [36]. 
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Unlike the considerable changes in the specific surface area and average pore radius, the total pore 
volume of the zeolite catalysts was almost unchanged; only ~15 % of change was observed. The 
insignificant change in the total pore volume accompanied with the increase in the average pore radius 
might be probably attributed to the reduction of the pore depth at the zeolite surface. This would allow the 
easier interaction between the surface-active sites and the reactants during the esterification of the bio-oil. 

 
 Production and characterisation of the bio-oil from the pyrolysis of sengon wood sawdust 

The bio-oil used as the feedstock during the esterification in this study was produced from the fast 
pyrolysis of Sengon wood sawdust with a particle size of 297 μm at 600 °C using a fixed-bed pyrolyser. 
The yield of the bio-oil was considerably high of 45.66 wt%, as presented in Table 2. Such high temperature 
would help the lignocellulose macromolecules to undergo good decomposition during the pyrolysis [37]. 
Lignocellulose composes of lignin, cellulose and hemicellulose with specific decomposition temperatures. 
Lignin would decompose at 300 - 550 °C, while hemicellulose and cellulose would decompose at 250 - 350 
and 325 - 400 °C, respectively [38]. The rate of decomposition of lignocellulose macromolecules would 
increase with increasing the pyrolysis temperature, resulting in more condensable light fractions [39], thus 
high bio-oil yield. However, extremely high temperature would promote the production of the non-
condensable fractions resulting in higher yield of gaseous pyrolysis product [40]. 
 
 
Table 2 The yield of pyrolysis products produced from the pyrolysis of Sengon wood sawdust with a 
particle size of 297 μm at 600 °C using a fixed-bed pyrolyser. 

Type of product Yield (wt.%) 

Bio-oil 45.66 

Biochar 29.97 

Gaseous product* 24.37 

*by difference 
 
 

The physical and chemical properties of the Sengon wood bio-oil produced through fast pyrolysis 
technique were measured, including the density, viscosity, and total acid number as shown in Table 3. The 
density of the bio-oil was not directly related to the quality of the bio-oil. However, this property could 
provide an indication whether heavy or light molecules were predominant in the bio-oil [41]. The low 
density of the bio-oil produced in this study (1.07 g/mL) indicated that light molecules with relatively low 
molecular weight were predominant due to severe decomposition process at 600 °C during the pyrolysis 
resulting in more condensable light fractions.  
 
 
Table 3 The characteristics of the bio-oil produced from the pyrolysis of Sengon wood sawdust with a 
particle size of 297 μm at 600 °C using a fixed-bed pyrolyser. 

Property (unit) Value (wt.%) 

Density (g/mL) 1.07 

Viscosity (cP) 2.40 

TAN (mg KOH/g) 0.73 

 
 

Another parameter evaluated in this study for the bio-oil quality is viscosity. This parameter is 
affected by the liquid temperature, the strength of intermolecular forces, and the molecular weight and the 
amount of the soluble components in the liquid bio-oil [42]. The pyrolysis temperature of 600 °C has 
resulted in the bio-oil with light components (short carbon chains, low molecular weight) in the 
considerable amount, resulting in the bio-oil with a low viscosity of 2.40 cP (see Table 3) [43]. 

The total acid number of the Sengon wood bio-oil was determined by using an aliquot method, as 
presented in Table 3. This parameter provided an estimation of the content of organic acids in the bio-oil 
[44]. The high content of organic acids in bio-oil or liquid fuels would lead to corrosion to engines and/or 
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the equipment used in the further processes such as biorefinery [8]. The high total acid number (0.73 mg/g) 
of the Sengon wood bio-oil used as the feedstock in the esterification process suggested the high organic 
acid content in the bio-oil. It was likely due to the presence of organic acids such as carboxylic acids as a 
result of the decomposition of the lignocellulose macromolecules at higher pyrolysis temperature [45]. The 
acid removal from the bio-oil is extremely important to minimise the corrosiveness of the bio-oil prior to 
its use as a fuel or its further processes in the biorefinery through an appropriate upgrading technique. A 
bio-oil upgrading through an esterification technique using TCA/H-zeolite was investigated with different 
weight ratios of bio-oil-to-methanol over various reaction times. 
 
 Bio-oil upgrading through TCA/H-zeolite-catalysed esterification over different weight ratios 
of bio-oil-to-methanol 

The esterification of the Sengon wood bio-oil in the presence of the TCA/H-zeolite catalyst was 
carried out with various weight ratios of bio-oil-to-methanol of 2:1, 1:1, 1:2 and 1:3 at 70 °C, a catalyst 
loading of 10 wt%, a 60-min reaction time, and a stirring rate of 500 rpm. The liquid and the possible 
formed coke after each esterification experiment were recovered to close the mass balance, as presented in 
Table 4. The mass balance closure was higher than 90 wt% indicating a proper experimental execution 
[46]. The coke yield in all experiments was very low of < 1 wt%. This indicated that the possible 
repolymerisation between the reactive components in the bio-oil leading to the formation of coke could be 
prevented during the bio-oil esterification [47] in the presence of the TCA/H-zeolite catalyst. 
 
 
Table 4 The mass balance closure during the esterification of the sengon wood bio-oil in the presence of 
TCA/H-zeolite catalyst with various weight ratios of bio-oil-to-methanol. 

Weight ratio of BO-to-methanol 
Recovered liquid 

(wt%) 
Coke yield 

(wt%) 
Total recovery 

(%) 

2:1 94.11 0.0407 94.15 

1:1 91.90 0.0404 91.94 

1:2 91.88 0.0394 91.92 

1:3 97.79 0.0334 97.82 

 
 
 The density, viscosity and total acid number of the liquid obtained after the TCA/H-zeolite-catalysed 
esterification with various weight ratios of bio-oil-to-methanol at 70 °C were measured as presented in 
Table 5. A catalyst loading of 10 wt%, a 60-min reaction time, and a stirring rate of 500 rpm were employed 
during each experiment. The density of the esterified oil insignificantly changed with relatively abundant 
addition of methanol compared to the original mixture of the bio-oil and methanol before reaction in the 
case of the experiments with a weight ratio of bio-oil-to-methanol of 1:2 and 1:3. The relatively unchanged 
density indicated the relatively similar molecular weight of components in the bio-oil after esterification. 
The esterification would allow the change in the bio-oil microstructure through the formation of esters or 
acetals [48]. The similar trend was observed for the viscosity of the esterified oil; the more the methanol 
added during the esterification, the lower the change in the viscosity of the bio-oil. The presence of 
methanol could enhance the bio-oil stability [49] and further decrease the rate of aging during storage [50]. 
 
 
Table 5 The density, viscosity and total acid number of the bio-oil after esterification in the presence of 
TCA/H-zeolite catalyst with various weight ratios of bio-oil-to-methanol. 

Bio-oil property 

Weight ratio of bio-oil-to-methanol 

2:1 1:1 1:2 1:3 

Initial Final Initial Final Initial Final Initial Final 

Density (g/mL) 1.0227 1.0252 0.9861 0.9866 0.9415 0.9417 0.9153 0.9186 

Viscosity (cP) 2.1094 2.2316 1.9417 2.0283 1.7896 1.8521 1.5643 1.6034 

TAN (mg/g) 0.6921 0.3498 0.5852 0.2939 0.5316 0.2031 0.4132 0.1813 
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 Unlike the insignificant changes in the bio-oil density and viscosity, a considerable change in the total 
acid number of the esterified oil was observed after the esterification in the presence of the TCA/H-zeolite 
catalyst, as presented in Table 5. The decrease in the total acid number of the bio-oil after esterification 
was 49.46, 49.78, 61.79 and 56.12 % for the TCA/H-zeolite-catalysed esterification with a bio-oil-to-
methanol weight ratio of 2:1, 1:1, 1:2 and 1:3 respectively. The addition of extra methanol in the 
esterification with a 1:2 weight ratio could promote the decrease in the total acid number of the bio-oil by 
ca 25 % in comparison with that with a 2:1 and 1:1 weight ratio. The decrease in the total acid number of 
the bio-oil after esterification could be an indication of the formation of esters as a result of the reaction 
between carboxylic acids in the bio-oil feedstock and methanol in the presence of the TCA/H-zeolite 
catalyst [51]. In addition, aldehydes in the bio-oil feedstock could also react with methanol in the presence 
of acid catalysts, such as TCA/H-zeolite catalyst, to form acetals [52]. The extra addition of methanol in 
the esterification system (in the case of that with a 1:2 and 1:3 weight ratio) could promote the equilibrium 
shift to the products, resulting in the increase in the production of products, i.e., esters or acetals [53]. 

A further increase in the methanol addition in the esterification with a 1:3 weight ratio did not cause 
a higher decrease in the total acid number of the bio-oil after esterification in the presence of the TCA/H-
zeolite catalyst. It might indicate that the equilibrium was not disturbed by the extra addition of methanol 
in the 1:3 esterification experiment. The weight ratio of bio-oil-to-methanol of 1:2 was then chosen as the 
condition in the further experiments with various reaction times. 
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Figure 4 The IR spectra of (A) the fresh bio-oil and the bio-oils after esterification with a weight ratio of 
bio-oil-to-methanol of (B) 2:1, (C) 1:1, (D) 1:2 and (E) 1:3 in the presence of the TCA/H-zeolite catalyst. 
 
 
 Further observation on the possible formation of esterification products, e.g., esters, an FTIR 
measurement was conducted towards the fresh bio-oil (the bio-oil before the esterification) and the bio-oils 
after the esterification with different weight ratios of bio-oil-to-methanol in the presence of the TCA/H-
zeolite catalyst. The IR spectra of the fresh and esterified bio-oils are depicted in Figure 4. A considerable 
increase in the peak intensity of the hydroxyl and C-H alkane groups at wavenumbers of 3,350 cm−1 and 
2,950 - 2,800 cm−1, respectively, in the esterified bio-oils (Figures 4(B) - 4(E)) was observed, possibly due 
to the formation of esters [54]. In addition, a significant increase in the peak intensity of C-O groups at a 
wavenumber of 1,000 cm−1 was observed as an indication of the presence of methanol in the reaction 
system, as well as the formation of ester [53]. Meanwhile, the decrease in the peak intensity at a 
wavenumber of 1,750 cm−1 designated for the carbonyl groups from carboxylic acids, aldehydes and 
ketones [52], possibly due to its conversion to acetals [55,56].  
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 Bio-oil upgrading through TCA/H-zeolite-catalysed esterification over different reaction times 
The esterification of the Sengon wood bio-oil in the presence of the TCA/H-zeolite catalyst over 

different reaction times at 70 °C with a catalyst loading of 10 wt%, a weight ratio of bio-oil-to-methanol of 
1:2, stirring rate of 500 rpm was carried out with a total recovery of > 90 %, as listed in Table 6, indicating 
a proper experimental execution. The recovered liquid contained the esterification products and possible 
remaining reactants. Table 6 shows that the coke yield coke was very low (< 1 wt%), indicating that the 
coke formation during the bio-oil esterification in the presence of the TCA/H-zeolite could be avoided [53]. 

Over prolonged reaction times, the density of the bio-oil after esterification underwent a negligible 
change, only by < 1 %, possibly due to the enhanced stability of the bio-oil during the esterification as is 
shown in Table 7. The susceptibility of the reactive components of the bio-oil towards re-polymerisation 
has lowered resulting in the bio-oil with similar compositions of molecular weight [57]. 

 
 
Table 6 The mass balance closure during the esterification of the Sengon wood bio-oil in the presence of 
TCA/H-zeolite catalyst for 15 - 60 min reaction times. 

Reaction time (min) Recovered liquid (wt%) Coke yield (wt%) Total (%) 

15 92.95 0.0354 92.98 

30 95.34 0.0370 95.38 

45 92.92 0.0375 92.96 

60 91.88 0.0394 91.92 

 
 

Table 7 The density, viscosity and total acid number of the bio-oil after esterification in the presence of 
TCA/H-zeolite catalyst for 15 - 60 min reaction times. 

Bio-oil property 

Esterification time (min) 

15 30 45 60 

Initial Final Initial Final Initial Final Initial Final 

Density (g/mL) 0.9394 0.9399 0.9393 0.9401 0.9393 0.9406 0.9415 0.9417 

Viscosity (cP) 1.7748 1.7908 1.7789 1.8040 1.7704 1.8308 1.7896 1.8521 

TAN (mg/g) 0.5074 0.2646 0.5161 0.2588 0.5196 0.2241 0.5316 0.2032 

 
 
 The similar trend was observed for the viscosity of the bio-oil after esterification in the presence of 
the TCA/H-zeolite over various reaction times at 70 °C with a catalyst loading of 10 wt%, a weight ratio of 
bio-oil-to-methanol of 1:2, stirring rate of 500 rpm. Insignificant changes in the bio-oil viscosity by 3 - 5 
% were observed, indicating the prevention of the formation of heavy molecules during the catalysed 
esterification, possibly by the formation of esters and acetals [48]. 
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Figure 5 The IR spectra of the bio-oils after a (A) 0-min, (B) 15-min, (C) 30-min, (D) 45-min and (E) 60-
min esterification in the presence of the TCA/H-zeolite catalyst. 
 

 
Alike the change in the total acid number of the bio-oil after esterification with various weight ratios 

of bio-oil-to-methanol, the total acid number of that after the esterification over various reaction times 
decreased considerably. Over a 15-min reaction time, the total acid number of the bio-oil after the catalysed 
esterification decreased by 47.85 %. A prolonged esterification of 30 min only caused a further decrease in 
the total acid number of the bio-oil by 4 % (with a 49.85 % decrease). A further prolonged reaction times 
of 45 and 60 min caused a bit higher decrease in the total acid number of bio-oil by 13 and 8 %, respectively 
(with 56.78 and 61.78 % decrease, respectively). These data suggested that carboxylic acids in the bio-oil 
feedstock were converted to esters in a quite fast rate at the beginning of the esterification of the bio-oil in 
the presence of TCA/H-zeolite catalyst [51]. The rate of esterification became slower by longer reaction 
times (30 - 60 min). Probably, the components of the bio-oil feedstock competed to attach to the active sites 
of the catalysts over time resulting in the high surface coverage [58]. However, not all of these reactants 
adsorbed at the catalyst surface could be accommodate to react with methanol as the co-adsorbed alcohol-
acids intermediates at the catalyst surface were required to allow the reactions to take place [10]. 

A measurement using an FTIR spectrophotometer was conducted towards the fresh bio-oil and the 
bio-oils obtained after the TCA/H-zeolite-catalysed esterification over different reaction times. The IR 
spectra of the bio-oils before and after esterification over different reaction times are presented in Figure 
5. A similar observation of the IR spectra with those in Figure 4 was obtained. An increase in the peak 
intensity of the hydroxyl and C-H groups at wavenumbers of 3,350 and 2,950 - 2,800 cm−1, respectively, 
was observed in Figure 5, indicating the formation of water as a side-product of esterification between 
methanol and carboxylic acids [55,56]. The formation of esters was also indicated by the increase in the C-
O groups at a wavenumber of 1,000 cm−1 [53]. Moreover, the carbonyl-containing compounds as designated 
by the peaks at a wavenumber 1,750 cm−1 [53] in the bio-oil were possibly converted to acetals [55], as 
indicated by the decrease in the corresponding peak intensity. 
 
 Comparing the activity of zeolite catalysts during the esterification of sengon wood bio-oil 

The activity of the TCA/H-zeolite catalyst during the esterification of the Sengon wood sawdust was 
confirmed by comparing to that of the pre-treated zeolite and H-zeolite catalysts. The study was performed 
using the following condition: a temperature of 70 °C, a weight ratio of bio-oil-to-methanol of 1:2 and a 
reaction time of 60 min. A blank experiment in the absence of any catalyst was also carried out to support 
the justification on the performance of the TCA/H-zeolite catalyst. The liquid after esterification as well as 
the possible formed coke was recovered and weighed to close the mass balance as presented in Table 8. 
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Table 8 The mass balance closure during the esterification of the Sengon wood bio-oil in the presence of 
various catalysts. 

Type of catalyst Recovered liquid (wt%) Coke Yield (wt%) Total (%) 

NA 94.42 0.016 94.44 

Pre-treated zeolite 93.18 0.043 93.23 

H-zeolite 94.90 0.041 94.94 

TCA/H-zeolite 91.88 0.039 91.92 

 
 
 The data in Table 8 suggested that negligible coke formation (< 1 %) was observed. The presence of 
methanol during the heating up bio-oil was significant in preventing the re-polymerisation of reactive 
components in the bio-oil feedstock. The good mass balance closure in Table 8 indicated that the 
experiments were carried out properly. The properties of the bio-oil after the esterification of the bio-oil in 
the presence of various zeolite catalysts at 70 °C with a catalyst loading of 10 wt%, a weight ratio of bio-
oil-to-methanol of 1:2, stirring rate of 500 rpm for a 60-min reaction time were investigated as listed in 
Table 9. 
 
 
Table 9 The density, viscosity and total acid number of the bio-oil after esterification in the presence of the 
zeolite catalysts. 

Bio-oil property 
Reaction time 

(min) 

Type of catalyst 

NA Pre-treated zeolite H-zeolite TCA/H-zeolite 

Density(g/mL) 
0 0.9176 0.9101 0.9140 0.9415 

60 0.9179 0.9347 0.9392 0.9417 

Viscosity (cP) 
0 1.7336 1.7257 1.7373 1.7896 

60 1.8367 2.3055 2.1174 1.8521 

TAN (mg/g) 0 0.7006 0.6515 0.5731 0.5316 

 60 0.5947 0.4240 0.2843 0.2032 

 
 
 The density of the bio-oil after the esterification in Table 9 showed an insignificant change even in 
the absence of a catalyst. It suggested that the addition of methanol gave a significant effect in stabilising 
the reactive component of the bio-oil [53]. In contrast, the viscosity of the bio-oil after esterification in the 
presence and absence of a catalyst has increased in a different level ranging from 3.94 - 39.97 %. The lowest 
increase in the viscosity of the bio-oil after esterification was observed for that in the presence of the 
TCA/H-zeolite catalyst (3.94 %), while the highest increase was observed for that in the presence of the 
pre-treated zeolite catalyst (39.97 %). The blank experiment in the absence of a catalyst did not show a 
significant increase in the viscosity of the bio-oil after esterification possibly due to the limited interaction 
of the reactive components in the bio-oil feedstock with methanol [59]. On the other hand, the presence of 
the zeolite catalysts might promote the interaction between reactive components themselves or with 
methanol [23]. The pre-treated zeolite might facilitate the interactions between reactive components to 
polymerise and form bigger molecules with higher molecular weight. As a result, the viscosity of the bio-
oil increased significantly after esterification in the presence of the pre-treated zeolite catalyst. 

The bio-oil esterification in the presence of zeolite catalysts (pre-treated, H-zeolite and TCA/H-zeolite 
catalysts) showed a significant decrease in the total acid number of the bio-oil after esterification by 34.92, 
50.39 and 61.78 %, respectively. It was clear that the modification of Indonesian zeolite using TCA could 
enhance its activity in catalysing the esterification of the Sengon wood bio-oil. It was possibly due to the 
increase in the acid active sites at the catalyst surface as the result of the TCA modification over the zeolite 
catalyst [60]. 
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Figure 6 The IR spectra of the esterified bio-oils in the presence of (A) no catalyst, (B) pre-treated zeolite, 
(C) H-zeolite and (E) the TCA/H-zeolite catalysts. 

 
 
 The change in the functionalities of the bio-oils before and after the esterification of the bio-oils in 
the absence and presence of a catalyst was investigated using an FTIR spectrophotometer, as presented in 
Figure 6. The high peak intensity of the C-O groups in the esterified bio-oils in Figure 6 indicated the 
formation of esters [53]. The presence of the TCA/H-zeolite did promote the formation of esters (and 
possibly other esterification products, e.g., acetals [56]) in comparison with that of other zeolite catalysts.  
 
Conclusions 

 This study investigated the activity of the TCA/H-zeolite catalyst during the bio-oil esterification in 
the presence of methanol over various weight ratios of bio-oil-to-methanol and reaction times. The presence 
of TCA/H-zeolite catalyst during the esterification of the bio-oil could suppress the formation of coke. In 
the presence of TCA/H-zeolite, the weight ratios of bio-oil-to-methanol significantly affected the decrease 
in the total acid number of the bio-oil after the esterification. Moreover, the esterification of Sengon wood 
bio-oil in the presence of the TCA/H-zeolite catalyst took place in a fast rate, indicated by the decrease in 
the total acid number of the bio-oil by 47.85 % over a 15-min esterification. Compared to the uncatalysed 
esterification, the presence of the TCA/H-zeolite catalyst could further enhance the decrease in the total 
acid number up to 65.83 %. 

The esterification at higher temperatures and using a pressurised reactor would improve the quality 
of the esterified bio-oil. Furthermore, the combination between hydrocracking and esterification could 
simultaneously undergo in the presence of hydrogen and hydroprocessing catalysts. 
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Abstract  

 The bio-oil produced from the pyrolysis of biomass is highly corrosive due to the high content of 

organic acids. These organic acids could be removed through an appropriate upgrading process, i.e., 

esterification using alcohols to form less polar esters. In this study, the bio-oil used as the feedstock in the 

esterification was produced from the pyrolysis of Sengon wood with a particle size of 297 µm at 600 °C. 

The esterification was performed at 70 °C in the presence of a trichloro acetic acid (TCA)-modified 

Indonesian H-zeolite catalyst with various weight ratios of bio-oil-to-methanol and reaction times under a 

constant stirring rate of 500 rpm. The esterification progress was indicated by the decrease in the total acid 

number of the bio-oil after esterification. No significant coke formation (< 0.05 wt%) was observed 

indicating that the suppression of repolymerisation could be achieved. This study showed that the 

esterification underwent in a fast rate, indicated by the decrease in the total acid number of the bio-oil by 

47.85 % only over a 15-min esterification. Compared to the uncatalysed esterification, the TCA/zeolite-

catalysed esterification showed a higher decrease in the total acid number of the bio-oil up to 65.83 %, due 

to the conversion of the carboxylic acids to esters. 

Keywords: Esterification, Sengon wood bio-oil, TCA-modified Indonesian zeolite, Total acid number 

 

 

Introduction 

The fossil fuel depletion has promoted the exploration of new renewable energy resources. Biomass 

has been considered as a promising renewable energy resource due to its high availability, its 

environmentally friendly properties and its zero competition with food sector [1]. A liquid fuel could be 

produced as the main product from the fast pyrolysis of biomass [2] that is well known as bio-oil or 

pyrolysis oil. Sengon wood, as an abundantly available feedstock in Indonesia was used in this study for 

bio-oil production. Sengon wood contains lignin, cellulose, and hemicellulose of 26.1, 45.4 and 21.0 % and 

respectively [3]. The high content of cellulose in Sengon wood would result in the high yield of bio-oil [4], 

allowing a sustainable starting material for liquid fuel production. 

The bio-oil produced from the pyrolysis of biomass could be used as a fuel for boilers, stationary as 

well as sterling engines [5]. However, the bio-oil cannot be directly used as a fuel for transportation due to 

several unfavourable properties such as high water content leading to low calorific value and high oxygen 

content resulting in highly instable properties [6]. In addition, the bio-oil contains high amount of organic 

acids making it highly corrosive and causing a big challenge during its use as a fuel or its compatibility 

during further processing in the biorefinery [7]. A bio-oil upgrading is required for the bio-oil to meet the 

requirements as liquid transportation fuels [8]. 

Esterification has been reported to show a great potential as bio-oil upgrading technique to reduce the 

acids content of the bio-oil [9]. It converts the organic acids in the bio-oil to e.g., esters in the presence of 

alcohols and acid catalysts [10]. The use of solid acid catalysts during the esterification of bio-oil has been 

considered more beneficial in comparison with that of homogeneous catalysts due to the easy separation 

resulting in a more efficient and cost-effective process [11]. Several solid acid catalysts such as ion 

exchange resins [12], modified zirconia [13,14], Amberlysts [15-17], acid modified rice husk ash [18], and 

heteropoly acids [19] have been used as a catalyst in the esterification of the “real” bio-oil as well as model 

compounds mimicking bio-oil. In addition, zeolite-based catalysts have been reported to show a great 

potential as a catalyst for esterification of bio-oil [20-24].  
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A special attention has been paid to Indonesian natural zeolite primarily in related to its application 

as a catalyst for bio-oil upgrading. It has a good porosity and modifiable Brønsted acid sites [25] at its 

surface to anticipate the complicated compositions and behaviour of the bio-oil during the esterification. 

The modification of Brønsted acid sites at the Indonesian zeolite surface to improve the Brønsted acidity 

could enhance the catalytic activity of Indonesian zeolite during the esterification of the bio-oil. 

The Brønsted acidity of the Indonesian zeolite could be improved by strong acid modification, e.g., 

trichloroacetic acid (TCA) resulting in the zeolite with a better Brønsted acidity [26]. However, the 

application of TCA-modified Indonesian natural zeolite as a catalyst for esterification of bio-oil produced 

from the fast pyrolysis of Sengon wood was rare. More studies to investigate the activity of the TCA-

modified Indonesian natural zeolite are necessary to evaluate its potential as a catalyst for the bio-oil 

esterification. This study focused on the esterification of the bio-oil produced from the fast pyrolysis of 

Sengon wood sawdust with various weight ratios of bio-oil-to-methanol and reaction times to investigate 

the esterification behaviour of organic acids in the bio-oil primarily acetic acid in the presence of methanol 

and TCA-modified Indonesian natural zeolite as a solid acid catalyst. 

 

Materials and methods 

 Preparation and characterisation of a TCA-modified Indonesian natural zeolite catalyst 

The Indonesian natural zeolite from Wonosari, Yogyakarta, Indonesia was used as a starting material 

of the zeolite catalyst. It was purchased from CV. SSGT Zeolite, Indonesia. The natural zeolite was 

prepared as previously reported [24]. Briefly, the natural zeolite with a particle size range of 100 - 120 μm 

was activated using sequent chemical and physical activation method. Prior to activation process, the 

natural zeolite was washed in distilled water and dried at 110 °C for 3 h to allow the physical contaminant 

removal. “Pre-treated zeolite” corresponds the natural zeolite from this pre-treatment step. 

The natural zeolite was chemically treated using 1 % HF, 6 N HCl and 1 N NH4Cl solutions (prepared 

from 50 % HF, 37 % HCl, and solid NH4Cl, obtained from E. Merck, respectively) in a sequence. This 

chemical activation was followed with a physical activation, i.e., calcination of the natural zeolite sample 

at 500 °C under nitrogen atmosphere to produce “H-zeolite” catalyst [24].  

The modification of the “H-zeolite” catalyst with chloroacetic acid was carried out as reported by 

Ávila et al. [6] with some adjustment. A 5 g of TCA was dissolved in 9 mL of demineralised water in an 

Erlenmeyer flask. A 10 g of “H-zeolite” was added in the TCA solution. The mixture was then heated at 

80 °C under a continuous stirring with a low stirring rate of 100 rpm until no water left. The solid obtained 

was dried in an oven at 110 °C for 2 h resulting in the “TCA/H-zeolite” catalyst. 

The formation of the “TCA/H-zeolite” catalyst was confirmed based on the appearance of 

characteristics vibration peaks at wavenumbers of 830 and 680 cm−1 (the stretching vibration of C-Cl bonds) 

[26] in the IR spectrum. The IR spectrum of the “TCA/H-zeolite” catalyst was obtained using a Perkin-

Elmer Frontier Spotlight 200 type-Fourier transform infrared spectrophotometer. In addition, the possible 

change in the crystalline structure of Indonesian natural zeolite was evaluated using a PANalytical Xpert’3 

Powder X-ray diffractometer. 

The surface properties of the “TCA/H-zeolite” catalyst were characterised using a Quantachrome 

Nova 1,200e surface area analyser. The specific surface area, total pore volume and average pore radius 

were determined using a BET-BJH isotherm adsorption. Moreover, the acidity of the “TCA/H-zeolite” 

catalyst was determined using an ammonia adsorption. The amount of ammonia adsorbed at the catalyst 

surface was assigned as the total acidity of the catalyst in mmol ammonia per gram catalyst. This 

quantitative measurement of the catalyst acidity was combined with the analysis of the chemical 

functionalities of the catalyst to confirm the presence of the new bonds of ammonia with the Lewis and 

Brønsted acid sites at the catalyst surface at wavenumbers of 1,640, 1,550 and 1,450 cm−1.  

 

Catalytic esterification of sengon wood bio-oil 

The esterification of the bio-oil with methanol in the presence of  “TCA/H-zeolite” catalyst was 

carried out in a batch reactor system equipped with a temperature monitor and magnetic stirrer. The 

esterification was conducted at 70 °C, with a catalyst loading of 10 wt%, a stirring rate of 500 rpm, and 

various weight ratios of bio-oil-to-methanol of 1:1, 2:1, 1:2 and 1:3. The Sengon wood bio-oil used in the 

esterification process was produced from the pyrolysis of Sengon wood sawdust with a particle size of 297 

μm at 600 °C using a fixed-bed pyrolyser as previously reported [24]. The esterification with a weight ratio 

of bio-oil-to-methanol which gave the highest decrease in the total acid number of the bio-oil after 

esterification underwent that with various esterification times of 15, 30, 45 and 60 min. 
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After each experiment, the mixture of liquid esterification products and possible remaining reactants 

was recovered and designated as the esterified bio-oil. The coke formation was determined based on the 

weight difference of solid catalyst before and after the esterification. The yield of coke was calculated using 

Eq. (1) to close the mass balance. W′cat and W0
cat are designated as the weight of the “TCA/H-zeolite” 

catalyst after and before the esterification of the bio-oil, respectively, while Wbio-oil fed is the weight of the 

bio-oil fed in each esterification experiment. 

 

𝐶𝑜𝑘𝑒 𝑦𝑖𝑒𝑙𝑑 =  
𝑊′𝑐𝑎𝑡−𝑊0

𝑐𝑎𝑡

𝑊𝑏𝑖𝑜−𝑜𝑖𝑙 𝑓𝑒𝑑
𝑥100%             (1) 

 

 Characterisation of the bio-oil after esterification 

The esterified bio-oil after each esterification experiment was characterised, including the density, 

viscosity and total acid number. The density and viscosity of the esterified bio-oil were determined using a 

gravimetric method by means of a pycnometer and an Ostwald viscometer, respectively.  

The total acid number (TAN) of the esterified bio-oil was measured using an SNI 01-3555-1998 

procedure as follows. The bio-oil sample was dissolved in acetone to 96 wt% clear solution of bio-oil. A 

2.5 g of the bio-oil solution was heated to boil and added with 2-3 drops of phenolphthalein solution. The 

titration of the bio-oil solution was conducted using 0.1 N KOH solution until a light red colour appeared. 

The total acid number of the esterified bio-oil was calculated using Eq. (2). MWKOH, NKOH, and VKOH are 

designated as the molecular weight, normal concentration and volume of KOH solution, respectively. 

Meanwhile, Wsample and dilution are designated as the weight of the sample and the magnitude of dilution 

employed during the measurement of TAN. 

 

𝑇𝐴𝑁 =
𝑀𝑊𝐾𝑂𝐻 × 𝑁𝐾𝑂𝐻×𝑉𝐾𝑂𝐻

𝑊𝑠𝑎𝑚𝑝𝑙𝑒
× 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛            (2) 

 

Results and discussion 

 The characteristics of TCA/H-zeolite catalyst 

The important properties of the TCA/H-zeolite catalyst prepared in this study was investigated, 

including the chemical functionalities, the possible change in the crystalline structure, the surface porosity, 

and the total acidity. The chemical functionalities of the TCA/H-zeolite catalyst were represented by the 

spectra in Figure 1. The general featured functionalities of the zeolite with aluminosilicate framework were 

shown by the appearance of a vibration peak −OH groups at 3,200 - 3,600 cm−1. In addition, bending 

vibrations of Al-OH/Si-OH were observed at 1,650 - 1,400 cm−1, while stretching vibrations of Si-O/Al-O 

were observed at wavenumbers of 1,250 - 950 and 820 - 650 cm−1.  

The success of the zeolite modification with TCA was confirmed by the appearance of stretching 

vibrations of C-Cl bonds at wavenumbers of 840 and 690 cm−1 [26] at the IR spectrum of the TCA/H-

zeolite catalyst (Figure 1(c)). These vibrations indicated the chemical interaction between TCA and the ‒

OH groups of the zeolite. 

The change in the crystalline structure of the zeolite over subsequent chemical and physical treatment 

as well as TCA modification was evaluated through the XRD patterns of the pre-treated zeolite, H-zeolite 

and the TCA/H-zeolite catalysts, as shown in Figure 2. The similar XRD patterns and peak intensity in 

Figure 2 indicated that the zeolite did not undergo a significant change in the crystalline structure over the 

subsequent treatments. Moreover, the intensity of the 3 highest peaks denoted that the mordenite mineral 

structure was predominant in the zeolite catalysts.  
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Figure 1 IR spectra of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite. 

 

 

 

Figure 2 The diffraction patterns of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite. 

 

 

The measurement of the total (Lewis and Brønsted) acidity of the TCA/H-zeolite catalyst was 

performed to support the data of IR spectra indicating the success of the zeolite modification with TCA. 

The significant increase of the total acidity of the TCA/H-zeolite catalyst would further evidence of the 

success modification in this study. In addition, the enhanced total acidity of the TCA/H-zeolite catalyst 

would promote a better esterification process as this acid active sites would play important roles in 

catalysing the esterification of bio-oil with methanol [13]. 

The total acidity of the TCA/H-zeolite catalyst was conducted through ammonia adsorption in 

combination with a gravimetric method. The amount of ammonia adsorbed at the catalyst surface would 

provide the data the number of acid active sites interacting with the adsorbed ammonia [27,28]. 

The total acidity of the TCA/H-zeolite catalyst in comparison with the pre-treated and H-zeolite is 

presented in Table 1. A significant increase in the total acidity of the TCA/H-zeolite catalyst was observed, 

1.7 folds from that of H-zeolite. It was most likely due to the modification of the zeolite with TCA resulting 

in the chemical interaction of carbonyl oxygen or hydroxyl oxygen of TCA with the Brønsted acid sites of 

H-zeolite [29]. 
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Table 1 The total acidity and the surface porosity of the zeolite catalysts. 

Type of 

catalyst 

Total acidity 

(mmol NH3/g) 

Surface area 

(m2/g) 

Total pore volume 

(cm3/g) 

Average pore radius 

(Å) 

Pre-treated 

zeolite 
0.94 12.82 0.077 119.96 

H-zeolite 1.20 22.26 0.065 588.35 

TCA/H-zeolite 3.28 28.41 0.075 526.31 

 

 

Furthermore, the interaction between ammonia Lewis’s base and the Brønsted and Lewis sites of the 

catalyst was evaluated through the IR spectra of the TCA/H-zeolite catalyst in Figure 3. The interaction of 

ammonia with the Lewis and Brønsted active sites was designated by the vibrations at wavenumbers of 

1,450 cm−1 and 1,550 - 1,640 cm−1, respectively [30]. 

 

 

 

Figure 3 IR spectra of a) pre-treated zeolite, b) H-zeolite and c) TCA/H-zeolite after NH3 adsorption. 

 

 

The surface porosity of a catalyst is an important property of the catalyst in supporting the catalytic 

performance. It was due to the presence of active sites at the catalyst surface including the catalyst pores 

[31]. The surface porosity of the TCA/H-zeolite catalyst determined in this study included specific surface 

area, total pore volume and average pore radius of the catalyst as presented in Table 1.  

The surface porosity data in Table 1 showed that chemical and physical treatment towards the pre-

treated zeolite caused a significant increase (73.63 %) in the surface area of the H-zeolite catalyst. It was 

might due to the impurity removal and the formation of new pores during the treatment [32]. A further 

increase (27.63 %) in the specific surface area was also observed in the TCA/H-zeolite catalyst, probably 

due to the surface modification using a strong acid TCA at the solid H-zeolite surface [33,34]. 

A significant increase of the average pore radius of the H-zeolite catalyst in comparison with the pre-

treated zeolite catalyst (3.9 folds) was also observed. The acid treatment followed with calcination at high 

temperature of 500 °C probably could cause impurity removal resulting in an increase in the pore size of 

the zeolite [33]. Moreover, the growth of the pore structure might take place due to the chemical treatment 

during the preparation of the H-zeolite catalyst [35]. However, a slight decrease (~10 %) of the average 

pore radius was observed after the zeolite modification with TCA. The TCA introduction with a quite high 

concentration (ca. 35 %) at the H-zeolite surface followed with a low drying temperature (80 °C) might 

promote the pore occupation by the TCA molecules, resulting in the decrease of the average pore size of 

the zeolite [36]. 
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Unlike the considerable changes in the specific surface area and average pore radius, the total pore 

volume of the zeolite catalysts was almost unchanged; only ~15 % of change was observed. The 

insignificant change in the total pore volume accompanied with the increase in the average pore radius 

might be probably attributed to the reduction of the pore depth at the zeolite surface. This would allow the 

easier interaction between the surface-active sites and the reactants during the esterification of the bio-oil. 

 

 Production and characterisation of the bio-oil from the pyrolysis of sengon wood sawdust 

The bio-oil used as the feedstock during the esterification in this study was produced from the fast 

pyrolysis of Sengon wood sawdust with a particle size of 297 μm at 600 °C using a fixed-bed pyrolyser. 

The yield of the bio-oil was considerably high of 45.66 wt%, as presented in Table 2. Such high temperature 

would help the lignocellulose macromolecules to undergo good decomposition during the pyrolysis [37]. 

Lignocellulose composes of lignin, cellulose and hemicellulose with specific decomposition temperatures. 

Lignin would decompose at 300 - 550 °C, while hemicellulose and cellulose would decompose at 250 - 350 

and 325 - 400 °C, respectively [38]. The rate of decomposition of lignocellulose macromolecules would 

increase with increasing the pyrolysis temperature, resulting in more condensable light fractions [39], thus 

high bio-oil yield. However, extremely high temperature would promote the production of the non-

condensable fractions resulting in higher yield of gaseous pyrolysis product [40]. 

 

 

Table 2 The yield of pyrolysis products produced from the pyrolysis of Sengon wood sawdust with a 

particle size of 297 μm at 600 °C using a fixed-bed pyrolyser. 

Type of product Yield (wt.%) 

Bio-oil 45.66 

Biochar 29.97 

Gaseous product* 24.37 

*by difference 

 

 

The physical and chemical properties of the Sengon wood bio-oil produced through fast pyrolysis 

technique were measured, including the density, viscosity, and total acid number as shown in Table 3. The 

density of the bio-oil was not directly related to the quality of the bio-oil. However, this property could 

provide an indication whether heavy or light molecules were predominant in the bio-oil [41]. The low 

density of the bio-oil produced in this study (1.07 g/mL) indicated that light molecules with relatively low 

molecular weight were predominant due to severe decomposition process at 600 °C during the pyrolysis 

resulting in more condensable light fractions.  

 

 

Table 3 The characteristics of the bio-oil produced from the pyrolysis of Sengon wood sawdust with a 

particle size of 297 μm at 600 °C using a fixed-bed pyrolyser. 

Property (unit) Value (wt.%) 

Density (g/mL) 1.07 

Viscosity (cP) 2.40 

TAN (mg KOH/g) 0.73 

 

 

Another parameter evaluated in this study for the bio-oil quality is viscosity. This parameter is 

affected by the liquid temperature, the strength of intermolecular forces, and the molecular weight and the 

amount of the soluble components in the liquid bio-oil [42]. The pyrolysis temperature of 600 °C has 

resulted in the bio-oil with light components (short carbon chains, low molecular weight) in the 

considerable amount, resulting in the bio-oil with a low viscosity of 2.40 cP (see Table 3) [43]. 

The total acid number of the Sengon wood bio-oil was determined by using an aliquot method, as 

presented in Table 3. This parameter provided an estimation of the content of organic acids in the bio-oil 

[44]. The high content of organic acids in bio-oil or liquid fuels would lead to corrosion to engines and/or 
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the equipment used in the further processes such as biorefinery [8]. The high total acid number (0.73 mg/g) 

of the Sengon wood bio-oil used as the feedstock in the esterification process suggested the high organic 

acid content in the bio-oil. It was likely due to the presence of organic acids such as carboxylic acids as a 

result of the decomposition of the lignocellulose macromolecules at higher pyrolysis temperature [45]. The 

acid removal from the bio-oil is extremely important to minimise the corrosiveness of the bio-oil prior to 

its use as a fuel or its further processes in the biorefinery through an appropriate upgrading technique. A 

bio-oil upgrading through an esterification technique using TCA/H-zeolite was investigated with different 

weight ratios of bio-oil-to-methanol over various reaction times. 

 

 Bio-oil upgrading through TCA/H-zeolite-catalysed esterification over different weight ratios 

of bio-oil-to-methanol 

The esterification of the Sengon wood bio-oil in the presence of the TCA/H-zeolite catalyst was 

carried out with various weight ratios of bio-oil-to-methanol of 2:1, 1:1, 1:2 and 1:3 at 70 °C, a catalyst 

loading of 10 wt%, a 60-min reaction time, and a stirring rate of 500 rpm. The liquid and the possible 

formed coke after each esterification experiment were recovered to close the mass balance, as presented in 

Table 4. The mass balance closure was higher than 90 wt% indicating a proper experimental execution 

[46]. The coke yield in all experiments was very low of < 1 wt%. This indicated that the possible 

repolymerisation between the reactive components in the bio-oil leading to the formation of coke could be 

prevented during the bio-oil esterification [47] in the presence of the TCA/H-zeolite catalyst. 

 

 

Table 4 The mass balance closure during the esterification of the sengon wood bio-oil in the presence of 

TCA/H-zeolite catalyst with various weight ratios of bio-oil-to-methanol. 

Weight ratio of BO-to-methanol 
Recovered liquid 

(wt%) 

Coke yield 

(wt%) 

Total recovery 

(%) 

2:1 94.11 0.0407 94.15 

1:1 91.90 0.0404 91.94 

1:2 91.88 0.0394 91.92 

1:3 97.79 0.0334 97.82 

 

 

 The density, viscosity and total acid number of the liquid obtained after the TCA/H-zeolite-catalysed 

esterification with various weight ratios of bio-oil-to-methanol at 70 °C were measured as presented in 

Table 5. A catalyst loading of 10 wt%, a 60-min reaction time, and a stirring rate of 500 rpm were employed 

during each experiment. The density of the esterified oil insignificantly changed with relatively abundant 

addition of methanol compared to the original mixture of the bio-oil and methanol before reaction in the 

case of the experiments with a weight ratio of bio-oil-to-methanol of 1:2 and 1:3. The relatively unchanged 

density indicated the relatively similar molecular weight of components in the bio-oil after esterification. 

The esterification would allow the change in the bio-oil microstructure through the formation of esters or 

acetals [48]. The similar trend was observed for the viscosity of the esterified oil; the more the methanol 

added during the esterification, the lower the change in the viscosity of the bio-oil. The presence of 

methanol could enhance the bio-oil stability [49] and further decrease the rate of aging during storage [50]. 

 

 

Table 5 The density, viscosity and total acid number of the bio-oil after esterification in the presence of 

TCA/H-zeolite catalyst with various weight ratios of bio-oil-to-methanol. 

Bio-oil property 

Weight ratio of bio-oil-to-methanol 

2:1 1:1 1:2 1:3 

Initial Final Initial Final Initial Final Initial Final 

Density (g/mL) 1.0227 1.0252 0.9861 0.9866 0.9415 0.9417 0.9153 0.9186 

Viscosity (cP) 2.1094 2.2316 1.9417 2.0283 1.7896 1.8521 1.5643 1.6034 

TAN (mg/g) 0.6921 0.3498 0.5852 0.2939 0.5316 0.2031 0.4132 0.1813 
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 Unlike the insignificant changes in the bio-oil density and viscosity, a considerable change in the total 

acid number of the esterified oil was observed after the esterification in the presence of the TCA/H-zeolite 

catalyst, as presented in Table 5. The decrease in the total acid number of the bio-oil after esterification 

was 49.46, 49.78, 61.79 and 56.12 % for the TCA/H-zeolite-catalysed esterification with a bio-oil-to-

methanol weight ratio of 2:1, 1:1, 1:2 and 1:3 respectively. The addition of extra methanol in the 

esterification with a 1:2 weight ratio could promote the decrease in the total acid number of the bio-oil by 

ca 25 % in comparison with that with a 2:1 and 1:1 weight ratio. The decrease in the total acid number of 

the bio-oil after esterification could be an indication of the formation of esters as a result of the reaction 

between carboxylic acids in the bio-oil feedstock and methanol in the presence of the TCA/H-zeolite 

catalyst [51]. In addition, aldehydes in the bio-oil feedstock could also react with methanol in the presence 

of acid catalysts, such as TCA/H-zeolite catalyst, to form acetals [52]. The extra addition of methanol in 

the esterification system (in the case of that with a 1:2 and 1:3 weight ratio) could promote the equilibrium 

shift to the products, resulting in the increase in the production of products, i.e., esters or acetals [53]. 

A further increase in the methanol addition in the esterification with a 1:3 weight ratio did not cause 

a higher decrease in the total acid number of the bio-oil after esterification in the presence of the TCA/H-

zeolite catalyst. It might indicate that the equilibrium was not disturbed by the extra addition of methanol 

in the 1:3 esterification experiment. The weight ratio of bio-oil-to-methanol of 1:2 was then chosen as the 

condition in the further experiments with various reaction times. 
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Figure 4 The IR spectra of (A) the fresh bio-oil and the bio-oils after esterification with a weight ratio of 

bio-oil-to-methanol of (B) 2:1, (C) 1:1, (D) 1:2 and (E) 1:3 in the presence of the TCA/H-zeolite catalyst. 

 

 

 Further observation on the possible formation of esterification products, e.g., esters, an FTIR 

measurement was conducted towards the fresh bio-oil (the bio-oil before the esterification) and the bio-oils 

after the esterification with different weight ratios of bio-oil-to-methanol in the presence of the TCA/H-

zeolite catalyst. The IR spectra of the fresh and esterified bio-oils are depicted in Figure 4. A considerable 

increase in the peak intensity of the hydroxyl and C-H alkane groups at wavenumbers of 3,350 cm−1 and 

2,950 - 2,800 cm−1, respectively, in the esterified bio-oils (Figures 4(B) - 4(E)) was observed, possibly due 

to the formation of esters [54]. In addition, a significant increase in the peak intensity of C-O groups at a 

wavenumber of 1,000 cm−1 was observed as an indication of the presence of methanol in the reaction 

system, as well as the formation of ester [53]. Meanwhile, the decrease in the peak intensity at a 

wavenumber of 1,750 cm−1 designated for the carbonyl groups from carboxylic acids, aldehydes and 

ketones [52], possibly due to its conversion to acetals [55,56].  
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 Bio-oil upgrading through TCA/H-zeolite-catalysed esterification over different reaction times 

The esterification of the Sengon wood bio-oil in the presence of the TCA/H-zeolite catalyst over 

different reaction times at 70 °C with a catalyst loading of 10 wt%, a weight ratio of bio-oil-to-methanol of 

1:2, stirring rate of 500 rpm was carried out with a total recovery of > 90 %, as listed in Table 6, indicating 

a proper experimental execution. The recovered liquid contained the esterification products and possible 

remaining reactants. Table 6 shows that the coke yield coke was very low (< 1 wt%), indicating that the 

coke formation during the bio-oil esterification in the presence of the TCA/H-zeolite could be avoided [53]. 

Over prolonged reaction times, the density of the bio-oil after esterification underwent a negligible 

change, only by < 1 %, possibly due to the enhanced stability of the bio-oil during the esterification as is 

shown in Table 7. The susceptibility of the reactive components of the bio-oil towards re-polymerisation 

has lowered resulting in the bio-oil with similar compositions of molecular weight [57]. 

 

 

Table 6 The mass balance closure during the esterification of the Sengon wood bio-oil in the presence of 

TCA/H-zeolite catalyst for 15 - 60 min reaction times. 

Reaction time (min) Recovered liquid (wt%) Coke yield (wt%) Total (%) 

15 92.95 0.0354 92.98 

30 95.34 0.0370 95.38 

45 92.92 0.0375 92.96 

60 91.88 0.0394 91.92 

 

 

Table 7 The density, viscosity and total acid number of the bio-oil after esterification in the presence of 

TCA/H-zeolite catalyst for 15 - 60 min reaction times. 

Bio-oil property 

Esterification time (min) 

15 30 45 60 

Initial Final Initial Final Initial Final Initial Final 

Density (g/mL) 0.9394 0.9399 0.9393 0.9401 0.9393 0.9406 0.9415 0.9417 

Viscosity (cP) 1.7748 1.7908 1.7789 1.8040 1.7704 1.8308 1.7896 1.8521 

TAN (mg/g) 0.5074 0.2646 0.5161 0.2588 0.5196 0.2241 0.5316 0.2032 

 

 

 The similar trend was observed for the viscosity of the bio-oil after esterification in the presence of 

the TCA/H-zeolite over various reaction times at 70 °C with a catalyst loading of 10 wt%, a weight ratio of 

bio-oil-to-methanol of 1:2, stirring rate of 500 rpm. Insignificant changes in the bio-oil viscosity by 3 - 5 

% were observed, indicating the prevention of the formation of heavy molecules during the catalysed 

esterification, possibly by the formation of esters and acetals [48]. 
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Figure 5 The IR spectra of the bio-oils after a (A) 0-min, (B) 15-min, (C) 30-min, (D) 45-min and (E) 60-

min esterification in the presence of the TCA/H-zeolite catalyst. 

 

 

Alike the change in the total acid number of the bio-oil after esterification with various weight ratios 

of bio-oil-to-methanol, the total acid number of that after the esterification over various reaction times 

decreased considerably. Over a 15-min reaction time, the total acid number of the bio-oil after the catalysed 

esterification decreased by 47.85 %. A prolonged esterification of 30 min only caused a further decrease in 

the total acid number of the bio-oil by 4 % (with a 49.85 % decrease). A further prolonged reaction times 

of 45 and 60 min caused a bit higher decrease in the total acid number of bio-oil by 13 and 8 %, respectively 

(with 56.78 and 61.78 % decrease, respectively). These data suggested that carboxylic acids in the bio-oil 

feedstock were converted to esters in a quite fast rate at the beginning of the esterification of the bio-oil in 

the presence of TCA/H-zeolite catalyst [51]. The rate of esterification became slower by longer reaction 

times (30 - 60 min). Probably, the components of the bio-oil feedstock competed to attach to the active sites 

of the catalysts over time resulting in the high surface coverage [58]. However, not all of these reactants 

adsorbed at the catalyst surface could be accommodate to react with methanol as the co-adsorbed alcohol-

acids intermediates at the catalyst surface were required to allow the reactions to take place [10]. 

A measurement using an FTIR spectrophotometer was conducted towards the fresh bio-oil and the 

bio-oils obtained after the TCA/H-zeolite-catalysed esterification over different reaction times. The IR 

spectra of the bio-oils before and after esterification over different reaction times are presented in Figure 

5. A similar observation of the IR spectra with those in Figure 4 was obtained. An increase in the peak 

intensity of the hydroxyl and C-H groups at wavenumbers of 3,350 and 2,950 - 2,800 cm−1, respectively, 

was observed in Figure 5, indicating the formation of water as a side-product of esterification between 

methanol and carboxylic acids [55,56]. The formation of esters was also indicated by the increase in the C-

O groups at a wavenumber of 1,000 cm−1 [53]. Moreover, the carbonyl-containing compounds as designated 

by the peaks at a wavenumber 1,750 cm−1 [53] in the bio-oil were possibly converted to acetals [55], as 

indicated by the decrease in the corresponding peak intensity. 

 

 Comparing the activity of zeolite catalysts during the esterification of sengon wood bio-oil 

The activity of the TCA/H-zeolite catalyst during the esterification of the Sengon wood sawdust was 

confirmed by comparing to that of the pre-treated zeolite and H-zeolite catalysts. The study was performed 

using the following condition: a temperature of 70 °C, a weight ratio of bio-oil-to-methanol of 1:2 and a 

reaction time of 60 min. A blank experiment in the absence of any catalyst was also carried out to support 

the justification on the performance of the TCA/H-zeolite catalyst. The liquid after esterification as well as 

the possible formed coke was recovered and weighed to close the mass balance as presented in Table 8. 
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Table 8 The mass balance closure during the esterification of the Sengon wood bio-oil in the presence of 

various catalysts. 

Type of catalyst Recovered liquid (wt%) Coke Yield (wt%) Total (%) 

NA 94.42 0.016 94.44 

Pre-treated zeolite 93.18 0.043 93.23 

H-zeolite 94.90 0.041 94.94 

TCA/H-zeolite 91.88 0.039 91.92 

 

 

 The data in Table 8 suggested that negligible coke formation (< 1 %) was observed. The presence of 

methanol during the heating up bio-oil was significant in preventing the re-polymerisation of reactive 

components in the bio-oil feedstock. The good mass balance closure in Table 8 indicated that the 

experiments were carried out properly. The properties of the bio-oil after the esterification of the bio-oil in 

the presence of various zeolite catalysts at 70 °C with a catalyst loading of 10 wt%, a weight ratio of bio-

oil-to-methanol of 1:2, stirring rate of 500 rpm for a 60-min reaction time were investigated as listed in 

Table 9. 

 

 

Table 9 The density, viscosity and total acid number of the bio-oil after esterification in the presence of the 

zeolite catalysts. 

Bio-oil property 
Reaction time 

(min) 

Type of catalyst 

NA Pre-treated zeolite H-zeolite TCA/H-zeolite 

Density(g/mL) 
0 0.9176 0.9101 0.9140 0.9415 

60 0.9179 0.9347 0.9392 0.9417 

Viscosity (cP) 
0 1.7336 1.7257 1.7373 1.7896 

60 1.8367 2.3055 2.1174 1.8521 

TAN (mg/g) 0 0.7006 0.6515 0.5731 0.5316 

 60 0.5947 0.4240 0.2843 0.2032 

 

 

 The density of the bio-oil after the esterification in Table 9 showed an insignificant change even in 

the absence of a catalyst. It suggested that the addition of methanol gave a significant effect in stabilising 

the reactive component of the bio-oil [53]. In contrast, the viscosity of the bio-oil after esterification in the 

presence and absence of a catalyst has increased in a different level ranging from 3.94 - 39.97 %. The lowest 

increase in the viscosity of the bio-oil after esterification was observed for that in the presence of the 

TCA/H-zeolite catalyst (3.94 %), while the highest increase was observed for that in the presence of the 

pre-treated zeolite catalyst (39.97 %). The blank experiment in the absence of a catalyst did not show a 

significant increase in the viscosity of the bio-oil after esterification possibly due to the limited interaction 

of the reactive components in the bio-oil feedstock with methanol [59]. On the other hand, the presence of 

the zeolite catalysts might promote the interaction between reactive components themselves or with 

methanol [23]. The pre-treated zeolite might facilitate the interactions between reactive components to 

polymerise and form bigger molecules with higher molecular weight. As a result, the viscosity of the bio-

oil increased significantly after esterification in the presence of the pre-treated zeolite catalyst. 

The bio-oil esterification in the presence of zeolite catalysts (pre-treated, H-zeolite and TCA/H-zeolite 

catalysts) showed a significant decrease in the total acid number of the bio-oil after esterification by 34.92, 

50.39 and 61.78 %, respectively. It was clear that the modification of Indonesian zeolite using TCA could 

enhance its activity in catalysing the esterification of the Sengon wood bio-oil. It was possibly due to the 

increase in the acid active sites at the catalyst surface as the result of the TCA modification over the zeolite 

catalyst [60]. 
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Figure 6 The IR spectra of the esterified bio-oils in the presence of (A) no catalyst, (B) pre-treated zeolite, 

(C) H-zeolite and (E) the TCA/H-zeolite catalysts. 

 

 

 The change in the functionalities of the bio-oils before and after the esterification of the bio-oils in 

the absence and presence of a catalyst was investigated using an FTIR spectrophotometer, as presented in 

Figure 6. The high peak intensity of the C-O groups in the esterified bio-oils in Figure 6 indicated the 

formation of esters [53]. The presence of the TCA/H-zeolite did promote the formation of esters (and 

possibly other esterification products, e.g., acetals [56]) in comparison with that of other zeolite catalysts.  

 

Conclusions 

 This study investigated the activity of the TCA/H-zeolite catalyst during the bio-oil esterification in 

the presence of methanol over various weight ratios of bio-oil-to-methanol and reaction times. The presence 

of TCA/H-zeolite catalyst during the esterification of the bio-oil could suppress the formation of coke. In 

the presence of TCA/H-zeolite, the weight ratios of bio-oil-to-methanol significantly affected the decrease 

in the total acid number of the bio-oil after the esterification. Moreover, the esterification of Sengon wood 

bio-oil in the presence of the TCA/H-zeolite catalyst took place in a fast rate, indicated by the decrease in 

the total acid number of the bio-oil by 47.85 % over a 15-min esterification. Compared to the uncatalysed 

esterification, the presence of the TCA/H-zeolite catalyst could further enhance the decrease in the total 

acid number up to 65.83 %. 

The esterification at higher temperatures and using a pressurised reactor would improve the quality 

of the esterified bio-oil. Furthermore, the combination between hydrocracking and esterification could 

simultaneously undergo in the presence of hydrogen and hydroprocessing catalysts. 
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