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Abstract. The dynamics of the spring-pendulum system with two degrees of freedom were 
studied. The motion of this system is restricted to be in a vertical plane so that the chosen 
generalized coordinates are the increased length of the spring 𝑢 and the swing angle of 
pendulum 𝜃. Hamiltonian of the system is obtained from the Legendre transformation of 
Lagrangian. Hamilton’s equation yields four differential equations that represent the 
dynamic of the system. The obtained results were visualized in configuration space and 
phase space trajectories. It is shown that generally the greater the initial swing angle, the 
more complex pattern will occur followed by the appearance of chaotic phenomena. 
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INTRODUCTION 
The review of the physical pendulum system is still 
evolving even though it is a very familiar case in classical 
mechanics. One of them is a physical pendulum system 
driven by a magnetic field through a theoretical and 
numerical analysis of one-side oscillation [1]. The 
existence of chaotic behavior and multiperiodicity for 
various values of the frequency of the current signal was 
shown from bifurcation diagrams obtained numerically 
and verified by experimental estimates. Previously, 
observations of magnetic interactions in the double 
pendulum system had been carried out numerically and 
experimentally [2]. Few chaotic zones have been 
detected numerically and confirmed experimentally, 
where the bifurcation diagrams are also used to show the 
scenarios of transition from regular to chaotic motion 
and vice versa. The chaotic motions of a double 
pendulum demonstrate how complicated the motion of a 
simple dynamic system can be when the system and the 
motion become nonlinear [3-6]. The next work is a 
double pendulum case that has been modeled with the 
fractional dynamics approach to find their equation of 
motion [7]. Moreover, a double pendulum system with 
magnetic field interaction has been adopted to improve 
the efficiency of piezoelectric energy harvesters (PEH) 
to harvest energy from human motions [8]. 

Apart from the double pendulum, the case that is often 
discussed is the spring-pendulum system. Wahyuni et al. 
have derived the equations of motion for this case in their 
Lagrangian form [9]. The equation of motion represented 

by the second-order differential equation is obtained 
from the two general coordinates used, i.e. the increase 
in the length of the spring and the angle of the pendulum. 
The same system but with a different arrangement was 
studied by Rini et al., namely by inverting the spring to 
be at the bottom of the pendulum [10]. Both of these 
systems are solved by the Lagrangian method, and then 
the dynamics of the generalized coordinates to time are 
described. In addition, the usual way of describing 
system dynamics can be done through configuration 
space and phase space. Configuration space is the space 
defined by the generalized coordinates, while phase 
space is defined by the position and momentum of the 
particle as they change in time. The state of a particle can 
be represented by a point in phase space, and its 
movement consequently creates a path or trajectory 
within that space [11]. 

This study is a continuation of the work of Wahyuni et 
al. [9] with a Hamiltonian review. The work only derives 
the Lagrangian equation and then describes the 
generalized coordinate dynamics of 𝑢 and 𝜃 with respect 
to time. This study is very different from the studies 
mentioned above [1-11] because this is only a theoretical 
study. The important point of this study is the process of 
deriving the system's equations of motion and then 
visualizing it from different spaces, namely the 
configuration space and the phase space. This drawing 
will be carried out for several samples of initial swing 
angles. 
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METHODOLOGY 
The Spring-Pendulum System 
The spring-pendulum system was depicted in Figure 1, 
consisted of the spring with length 𝑙!, increased length of 
the spring 𝑢, and mass 𝑚! in the end of spring. In 
addition, the pendulum with mass 𝑚" connected to the 
mass 𝑚! with the massless rod 𝑙". The angle 𝜃 represent 
the swing angle of the pendulum with respect to the 
vertical line. We assume that all movement occurs in two 
dimensionals, vertical plane. It is assumed that the spring 
can only move up and down in oscillations, not deviate 
with the pendulum, which represents applications in 
daily tools that springs only move in one dimension. The 
mass 𝑚! is constrained by the spring constant, and the 
pendulum is constrained by the constant length of the 
rod. Starting from two degrees of freedom for each of the 
two objects, the two constraints reduce the number of 
degrees of freedom to two, one for each object.  

Research Methodology 
Based on Figure 1 we can determine that the generalized 
coordinates for this system are 𝑢 and 𝜃. The Hamiltonian 
(𝐻) of this system is given by the Legendre 
transformation of the Lagrangian (𝐿) and Hamilton's 
equation of this system as two pairs of first-order 
differential, i.e. 𝜃 coordinates representation as 

−�̇�# =
𝜕𝐻
𝜕𝜃 				 ; 						 �̇� =

𝜕𝐻
𝜕𝑝#

 
(1) 

and 𝑢 coordinates representation as 

−�̇�$ =
𝜕𝐻
𝜕𝑢 				 ; 				 �̇� =

𝜕𝐻
𝜕𝑝$

 
(2) 

The study of such differential equations is crucial for 
understanding the system’s behavior. These two pairs 
yield four equations of motion were solved using 
numerical methods. The numerical method chosen is the 
4th order Runge-Kutta which has a good approximation 
[12-15]. Let %&

%'
= 𝑓(𝑦, 𝑥), we can find the approximation 

of  𝑦(𝑥 + Δ𝑥) as 

𝑦(𝑥 + Δ𝑥) = 𝑦(𝑥) +
1
6
(𝑗! + 2𝑗" + 2𝑗( + 𝑗)) 

where  
 𝑗! = Δ𝑥	𝑓(𝑦, 𝑥) 

𝑗" = Δ𝑥	𝑓 :𝑦 +
𝑗!
2 , 𝑥 +

Δ𝑥
2 ;	 

𝑗( = Δ𝑥	𝑓 :𝑦 +
𝑗"
2 , 𝑥 +

Δ𝑥
2 ; 

𝐽) = Δ𝑥	𝑓(𝑦 + 𝑗(, 𝑥 + Δ𝑥) 

(3) 

We use the visualization results only to explain the 
dynamics of motion. So, the solution of the differential 
equations was not generated, but are presented in the 
form of graphs that represent the motion of objects, both 
in the configuration space and the phase space. To 
facilitate visualization, several parameters are used as 
needed. 

RESULTS AND DISCUSSION 
The Hamilton’s Equation 

The Lagrangian of the system is given by the equation  

𝐿	 = 	
1
2
(𝑚! +𝑚")�̇�" +

1
2𝑚",𝑙"

"�̇�" − 2𝑙" 𝑠𝑖𝑛 𝜃�̇��̇�3 −
1
2 𝑘𝑢

" +𝑚"𝑔(𝑢 + 𝑙" 𝑐𝑜𝑠 𝜃) (4) 

(4) 

where �̇� = 𝑑𝑢/𝑑𝑡 and �̇� = 𝑑𝜃/𝑑𝑡 [9]. The Lagrangian 
was chosen where the zero potential energy at the point 
𝑚! hanged. 

The generalized momenta 𝑝# and 𝑝$ we obtain 
respectively as 

𝑝# =
𝜕𝐿
𝜕�̇�

= 𝑚"𝑙"
"�̇� − 𝑚"𝑙" 𝑠𝑖𝑛 𝜃�̇� 

(5) 

𝑝$ =
*+
*$̇
= −𝑚"𝑙" 𝑠𝑖𝑛 𝜃�̇� + (𝑚! +𝑚")�̇�. (6) 

Equation (5) multiply with sin 𝜃 and equation (6) 
multiply with 𝑙" respectively yield 

sin 𝜃	𝑝# = 𝑚"𝑙"
" 𝑠𝑖𝑛 𝜃�̇� − 𝑚"𝑙" 𝑠𝑖𝑛" 𝜃�̇� (7) 

𝑙"𝑝$ = −𝑚"𝑙"
" 𝑠𝑖𝑛 𝜃�̇� + 𝑙"(𝑚! +𝑚")�̇�. (8) 

Eliminate �̇� from equation (7) and (8) by adding them 
together, so we get 

sin 𝜃	𝑝8 + 𝑙9𝑝: = +𝑙9(𝑚; +𝑚9) −𝑚9𝑙9 𝑠𝑖𝑛9 𝜃3�̇� (9) 

In the end, we obtain the rate of increased length of the 
spring with time as 

�̇� =
𝑠𝑖𝑛 𝜃𝑝# + 𝑙"𝑝$

𝑙"F𝑚! +𝑚" −𝑚" 𝑠𝑖𝑛" 𝜃G
 

(10) 

To get the rate of swing angle with time, substitute 
equation (10) into equation (5), we get 

𝑝! = 𝑚"𝑙"
"�̇� − 𝑚"𝑙" 𝑠𝑖𝑛 𝜃 +

𝑠𝑖𝑛 𝜃𝑝! + 𝑙"𝑝#
𝑙"-𝑚$ +𝑚" −𝑚" 𝑠𝑖𝑛" 𝜃.

/ (11) 

 
Figure 1. Spring-pendulum system 

 



On the Dynamics of Spring-Pendulum System: an overview of configuration space and phase space 
(Siti Wahyuni, Nur Widya Rini, Joko Saefan) 

 ____________________________________________________________________________________________________________________  
  

 
Vol. 24 | No. 1 | February 2024 | DOI: 10.24815/jn.v24i1.33247  24 
  

𝑚"𝑙"
"�̇� = 	

(𝑚! +𝑚")	𝑝# +𝑚"𝑙" 𝑠𝑖𝑛 𝜃𝑝$
F𝑚! +𝑚" −𝑚" 𝑠𝑖𝑛" 𝜃G

 
(12) 

�̇� = 	
(𝑚1 + 𝑚2)	𝑝𝜃 + 𝑚2𝑙2 𝑠𝑖𝑛 𝜃𝑝𝑢
𝑚2𝑙22(𝑚1 + 𝑚2 − 𝑚2 𝑠𝑖𝑛2 𝜃)

 
(13) 

The Hamiltonian (𝐻) of mechanical system in function 
of the rate of coordinates with time, conjugate momenta, 
and Lagrangian is obtain using Legendre 
Transformation, i.e 

𝐻 = ∑ 𝑝1�̇�11 − 𝐿. (14) 

with 𝑝1 is the generalized momenta and 𝑞�̇� = 𝑑𝑞𝑖/𝑑𝑡 
where 𝑞1 is the generalized coordinates [16]. We obtain 

𝐻 = 𝑝$�̇� + 𝑝#�̇� − 𝐿(𝑢, 𝜃, �̇�, �̇�). (15) 

Substitute equations (4), (10), and (13) together into 
equation (15), we get Hamiltonian of the spring-
pendulum system as 

𝐻 =
(𝑚$ +𝑚")𝑝!"

2𝑚"𝑙"
"(𝑚$ +𝑚" 𝑐𝑜𝑠" 𝜃)

+
𝑝#"

2(𝑚$ +𝑚" 𝑐𝑜𝑠" 𝜃)

+
𝑠𝑖𝑛 𝜃𝑝!𝑝#

𝑙"(𝑚$ +𝑚" 𝑐𝑜𝑠" 𝜃)
+ 

1
2𝑘𝑢

9 −𝑚9𝑔(𝑢 + 𝑙9 cos 𝜃) 

(16) 

Decomposing equation (16) with the set of equations (1) 
and (2) yields four first-order differential equation, that 
are. 

−�̇�8 =
𝑎𝑚9+𝑚𝑝89 +𝑚9𝑙99𝑝:93

𝑏 +
𝑎(𝑏 + 𝑐)𝑝8𝑝:

𝑙9𝑏9
+ 𝑔𝑐 

(17) 

−�̇�$ = 𝑘𝑢 −𝑚"𝑔 (18) 

�̇� = 	
𝑚𝑝#
𝑏𝑚"𝑙""

+
𝑐𝑝$
𝑏𝑙"𝑚"

 (19) 

�̇� =
𝑝$
𝑏 +

𝑐𝑝#
𝑏𝑙"𝑚"

 (20) 

where 𝑚 = 𝑚! +𝑚", 𝑎 = 2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃, 𝑏	 = 	𝑚! +
𝑚" 𝑐𝑜𝑠" 𝜃, and 𝑐 = 𝑚" 𝑠𝑖𝑛 𝜃. 

Let P𝑝#̇ , 𝑝$̇, �̇�, �̇�Q = [𝑥!, 𝑥", 𝑥(, 𝑥)] = 𝑥1 where 𝑖 =
1, 2	, 3	and	4, and the solutions of equation (17-20) 
[𝑝# , 𝑝$, 𝜃, 𝑢] = [𝑦!, 𝑦", 𝑦(, 𝑦)] = 𝑦1 .	So the numerical 
solution as 4th order Runge-Kutta method can be written 
as 

𝑦1(𝑡 + ℎ) = 𝑦1(𝑡) +
1
6 (𝑗1! + 2𝑗1" + 2𝑗1( + 𝑗1)) 

(21) 

Where 𝑗1! = ℎ𝑥1(𝑡, 𝑦1),			𝑗1" = ℎ𝑥1 Z𝑡 +
3
"
, 𝑦1 +

4!"
"
[,			𝑗1( = ℎ𝑥1 Z𝑡 +

3
"
, 𝑦1 +

4!#
"
[,			𝑗1) = ℎ𝑥1(𝑡 + ℎ,

𝑦1 + 𝑗1(), and ℎ is time step. 

There are several representations to describe the equation 
of motion, such as time evolution, configuration space, 
phase-space, Poincare section, bifurcation, or the 
detailed methods to expose the motion. For example, 
Amer et al. uses evolutionary time, phase space, and 
Poincare representations to describe system dynamics 
[17]. In this work, we vary the initial swing angle 𝜃5 to 
visualize the configuration space and the three-
dimensional phase space. The initial coordinates of the 
motion are (0,0,0) and the parameters used for all the 
visualization are shown in Table 1. 

Table 1. Parameters used for all the visualization 
Symbol Description Value Unit 

𝑙$  equilibrium spring length 1 m 
𝑙"  rod length 1 m 
𝑚$  mass attached at the spring 0.1 kg 
𝑚"  mass attached at the rod 0.1 kg 
𝑔  gravitation constant 9.8 ms-2 

𝑘  spring constant 10 Nm-1 

 
 

    

(a)  (b)  (c)  (d)  

Figure 2. Configuration spaces for spring-pendulum with 𝑢5 = 0.2	m, 𝑝$$ = 𝑝#$ = 	0, and initial angle 𝜃5 (a) 
0.3	rad, (b)	0.6 rad, (c) 0.9 rad, (d) 1.2	rad. 
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Figure 2 demonstrates the configuration space on the 
planes (𝜃, 𝑢) where several phase trajectories with 
constant initial value 𝑢5 = 0.2	m, 𝑝$$ = 𝑝#$ = 	0 and 
corresponding to different values 𝜃5. The plane area was 
𝑙! − 𝑢 to 𝑙! + 𝑢 and −𝜃5 to +𝜃5. It can be seen that for 
small values 𝜃5 phase trajectories are corresponding to 
motion on the linear oscillation mode. These shapes 
gradually begin to distort with increasing 𝜃5 and turn into 
other phase trajectories that are more complex in 
character. This is same interpretation with the work of 
Smirnov et.al. [18]. 

The three-dimensional phase-space was shown in Figure 
3. The system was plotted for initial values 𝑢5 = 0.2 m, 
𝑝$ = 𝑝# = 0 and corresponding initial angles, 𝜃5 = 0.6 

rad and 𝜃5 = 1.2 rad. Those values are chosen for the 
simulation to distinguish significant states of the system. 
The simulations have allowed the motion to evolve for a 
time 𝑇 = 15 seconds with 𝛥𝑇	 = 	0.00001. The vertical 
axis represents time evolution or the flow of the time, 
while the horizontal axes represent the two phase-space 
coordinates separately, (𝜃, 𝑝#) and (𝑢, 𝑝$). This 
description follows Semkiv et al. [19] who made an 
integral curve in the phase space. In this work, 
coordinates 𝑢 represent the spring motion, while 
coordinates 𝜃 represent the pendulum motion. System 
leads to periodic motion for small angle 𝜃5 = 0.6 rad, 
while for large angle 𝜃5 = 1.2 rad indicates system 
approach to a chaotic motion.  

   

(a)  

    

(b)  

Figure 3. Three-dimensional phase space plot of motion the spring-pendulum system with initial values 𝑢5 = 0.2 
m, 𝑝$ = 𝑝# = 0 and initial angles (a) 𝜃5 = 0.6 rad, (b)	𝜃5 = 1.2 rad. 

 

      

(a)  (b)  

    

(c)  (d)  
Figure 4. Phase-space plot of motion of the spring-pendulum system with initial values 𝑢5 = 0.2 m, 𝑝$$ =

0, 𝑝#$ = 0.2 kg ms-1 and initial values 𝜃5 (a) 0.3 rad, (b)	0.6 rad, (c) 0.9 rad, (d)	1.2 rad. 
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Figure 3(a) shows that the dynamics of the system with 
small angle condition is predictable for both 𝑢 and 𝜃 
coordinates. However, a different situation can be seen 
in Figure 3(b), where 𝑢 coordinates can still be predicted, 
but 𝜃 coordinates already show a chaotic phenomenon. 
It can be seen that even though the 𝑢 coordinates appear 
irregular but there is no broken path, different from the 𝜃 
coordinates. Therefore, it becomes interesting to 
investigate the 𝜃 coordinates further. 

In order to investigate the characteristics of 𝜃 
coordinates, we describe a two-dimensional phase space 
in the (𝜃, 𝑝#) plane compared to time evolution of 𝜃. 
Each left side of Figure 4 shows a two-dimensional 
projection of a phase-space for the initial values 𝑢5 =
0.2 m, 𝑝$$ = 0, 𝑝#$ = 0.2 kg ms-1 with different initial 
angles. The closed curve of Figure 4(a) and 4(b) is 
composed of eleven overlapping projected curves, in 
accordance with eleven patterns of oscillation in right 
side of the figure. Even though there are slight variations, 
it can still be said that system move in smooth 
oscillations. The precise alignment and closure of these 
curves demonstrate the stability and precise repetition of 
the oscillation. The presence of repeated oscillation 
patterns proves that small swing angles lead to steady 
state oscillations. 

The greater the initial angle, more complex trajectories 
of the systems. It can be seen in Figures 4(c) and 4(d) 
that the horizontal scale has exceeded the range −𝜋 ≤
𝜃 ≤ 𝜋. Because it has exceeded one period 2𝜋, the 
visualization starts again from -𝜋 so that several broken 
patterns appear. The chaotic phenomenon is 
strengthened by the increasingly irregular oscillation 
patterns that appear both in the visualization of the phase 
space and time evolution of 𝜃. This allows us to visually 
illustrate one of the defining characteristics of a complex 
system: unpredictable behavior. The state space is high-
dimensional making it difficult to analyze and visualize 
the behavior of the system for varying input conditions 
[20]. It turns out that theoretical studies like this can also 
be developed and applied in everyday life, for example 
controlling the kinematics of a spring-pendulum system 
using an energy harvesting device. This model has 
become essential in recent times as it uses control sensors 
in industrial applications, buildings, infrastructure, 
automobiles, and transportation [21]. 

CONCLUSION  

The Hamiltonian of the spring-pendulum system has 
been derived with the general coordinates was the 
increase in the length of the spring 𝑢 and the swing angle 
of the pendulum 𝜃. Visualization results in configuration 
space and phase space trajectory show that in general the 
larger the initial swing angle, the more complex patterns 
will occur with complex characteristics, followed by the 
appearance of chaotic phenomena. 
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