Renewable Energy Generation Forecasting on Smart Home Micro Grid using Deep Neural Network

by Djoko Widodo

Submission date: 25-May-2023 12:50PM (UTC+0700)

Submission ID: 2101408480

File name: recasting_on_Smart_Home_Micro_Grid_using_Deep_Neural_Network.pdf (5.24M)

Word count: 4958

Character count: 29741

28-30 April 2021

Zoom Meeting in GMT+7 (Asia/Jakarta)

INTERNATIONAL
CONFERENCE
Artificial Intelligence
28-30 April 2021

Artificial Intelligence and Mechatronics Systems 28-30 April 2021

Organized By

Co Organized

WELCOME SPEECH FROM GENERAL CHAIR OF AIMS 2021

On behalf of the organizing committee of the 2021- International Conference on Artificial Intelligence and Mechatronics Systems (AIMS 2021), we would like to welcome with great pleasure, all delegates to this virtual conference.

As we all know, at the moment, we are facing a situation that has never happened before, the Global Pandemic caused by Coronavirus Disease of 2019 and this issue has affected the lives of people globally, including the lives of academics in education, but this phenomenon must not stop us all, we must face this new challenges

Being held in this April 29, 2021 virtually with the organizer located in Bandung, this event is organized by IEEE Indonesia Section CSS/RAS Joint Chapter; Department of Electrical Engineering, Universitas Padjadjaran, Indonesia and Department of Mechatronics and Biomedical Engineering, Air University, Islamabad, Pakistan and also co-organized by IEEE Indonesia VTS/ITSS Joint Chapter, IEEE Indonesia IMS/ITS Joint Chapter, IEEE Robotics & Automation Society Pakistan and Faculty of Technology & Computer Science, Universitas Prima Indonesia

The AIMS 2021 have attracted many academicians, scientists, engineers, postgraduates, and other professionals from many countries. These conferences aim to promote interaction among engineers, researchers, and scientists active in the related areas. The events are intended to provide a high-level international forum to present, to exchange, and to discuss recent advances, new techniques, and applications in the field of knowledge discussed in this conference.

In total, 138 articles were submitted and 96 articles were received to be presented in this conference, consisting of various countries, Korea, Singapore, Malaysia, China, Pakistan, and also from our beloved country, Indonesia.

Our special thank also goes to all individuals and organizations such as the international program committees (IPC), the conference organizers, the reviewers, and the authors, for their contribution in making AIMS 2021 not only a successful international conference but also as a memorable gathering event.

We are also grateful for the support of the publication services, All Accepted & presented papers (virtual) will be submitted to: IEEE Xplore Digital Library, and other several journal for selected papers.

We hope that it should give you a beautiful memory in addition to new insights and friends gathered during the conference, we are truly grateful for your contribution and interest and hopefully all of us will get pleasure from AIMS 2021.

Thank you.

Arjon Turnip, Ph.D
Chair of Organising Committee AIMS 2021

ORGANIZING COMMITTEE

General Chair : Arjon Turnip (Universitas Padjadjaran, Indonesia)

Noman Naseer (Air University, Pakistan)

Secretary Chair : Dessy Novita (Universitas Padjadjaran, Indonesia)

Jahan Zeb Gul (Air University, Pakistan)

George Tampubolon (Institut Teknologi Nasional, Indonesia)

May Fernando Nainggolan (Universitas Padjadjaran, Indonesia)

Technical Program Chair : Hammad Nazeer (Air University, Pakistan)

Bambang Mukti Wibawa (Universitas Padjadjaran, Indonesia)

Nanang Rohadi (Universitas Padjadjaran, Indonesia)

Gilbert Sihombing (Institut Teknologi Bandung, Indonesia)

Publication Chair : Endra Joelianto (Institut Teknologi Bandung, Indonesia)

Darmawan Hidayat (Universitas Padjadjaran, Indonesia)

Publicity Chair : Mohammad Taufik (Universitas Padjadjaran, Indonesia)

Abdi Dharma (Universitas Prima Indonesia, Indonesia)

Yuliarman Saragih (Universitas Singaperbangsa, Indonesia)

International Relation : Rana Iqtidar Shakoor (Air University, Pakistan)

Chair Emiliano (Universitas Padjadjaran, Indonesia)

Erwin Sitompul (President University, Indonesia)

Regional Chair : Nendi Suhendi (Universitas Padjadjaran)

Wendi Saragih (Universitas Sangga Buana YPKP, Indonesia)

Chair of Session Panel : Mardi Turnip (Universitas Prima Indonesia, Indonesia)

Giraldo Sihombing (Institut Teknologi Bandung, Indonesia)

Registration Chair : Ferlin Firdaus (Universitas Komputer Indonesia, Indonesia)

Exhibition Chair : Agus Trisanto (Universitas Padjadjaran, Indonesia)

Industrial Chair : Peri Turnip (International Women University, Indonesia)

Finance Chair : Ristama Simatupang (Universitas Terbuka, Indonesia)

Chintya Yohana (Sekolah Tinggi Akutansi Negara, Indonesia)

INTERNATIONAL PROGRAM COMMITTEE (IPC)

- Omar Ahmad (Comsats University, Islamabad)
- Dessy Novita (Universitas Padjadjaran, Indonesia)
- Umar Shahbaz Khan (NUST College of E&ME, Rawalpindi)
- Izhar Ul Haq (University of Engineering and Technology, Peshawar)
- Atif Mehdi (University of Central Punjab, Lahore)
- Darmawan Hidayat (Universitas Padjadjaran, Indonesia)
- Sajid Saleem (National University of Modern Languages, Islamabad)
- Nanang Rohadi (Universitas Padjadjaran, Indonesia)
- Faraz Akram Riphah (International University, Islamabad)
- Bambang Mukti Wibawa (Universitas Padjadjaran, Indonesia)
- Muhammad Jawad Khan (National University of Science and Technology, Islamabad)
- Mohammad Taufik (Universitas Padjadjaran, Indonesia)
- Jahan Zeb Gul (Air University, Islamabad)
- · Agus Trisanto (Universitas Padjadjaran, Indonesia)
- Erwin Sitompul (President University, Indonesia)
- Sumaira Kausar (Bahria University, Islamabad)
- Wajahat Mehmood (Qazi Comsats University Islamabad, Lahore Campus)

- Syed Hammad Nazeer Gilani (Air University, Islamabad)
- Emiliano (Universitas Padjadjaran, Indonesia)
- Yuliarman Saragih (Universitas Singaperbangsa, Indonesia)
- Refi Ikhtiari (Universitas Prima Indonesia, Indonesia)
- Augie Widyotriatmo (Institut Teknologi Bandung, Indonesia)
- Daniel Sutopo (Politeknik Batam, Indonesia)
- Rini Akmeliawati (International Islamic University Malaysia, Malaysia)
- Le Hoa Nguyen (Hanoi University of Science and Technology, Vietnam)
- Intan Zaurah Mat Darus (Universiti Teknologi Malaysia)
- Ivan Kristianto Singgih (Korea Advanced Institute of Science & Technology, Korea)
- Poltak Sihombing (Universitas Sumatera Utara, Indonesia)
- Vivi Kasim (College of Bioengineering, Chongqing University, China)
- Hendrik Santosa (Department of Radiology, University of Pittsburgh, USA)
- Chrismis Novalinda Ginting (Faculty of Nursing and Midwifery, Rector of Universitas Prima)
- Shelly Iskandar (Faculty of Medicine, Universitas Padjajaran, Indonesia)
- Pham Van Tuan (The University of Danang University of Science and Technology)
- Nguyen Thi Anh (Danang International Institute of Technology The University of Danang)
- Intan Nurma Yulita (Universitas Padjajaran, Indonesia)
- Riski Titian Ginting (Universitas Prima Indonesia, Indonesia)
- Hairus Abdullah (Universitas Prima Indonesia, Indonesia)
- Nico Saputro, (Universitas Katolik Parahyangan, Indonesia)
- Ali Sadiyoko (Universitas Katolik Parahyangan, Indonesia)

- Bagus Arthaya (Universitas Katolik Parahyangan, Indonesia)
- Wonsub Chung (Pusan National University, Republic of Korea)
- Agussalim, (Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia)
- Wahyudi Agustiono (University of Trunojoyo Madura, Indonesia)
- Erwan Adi Saputro (Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia)
- I Gede Susrama (Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia)
- Euis Nurul Hidayah (Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia)

Table of Contents

S. No	Paper ID	Paper Title	
1	1570699762	The Implementation of Building Intelligent Smart Energy using LSTM Neural Network	
2	1570699828	Optimal economic dispatch for power generation under the lagrange method	
3	1570699978	Interference Analysis for Vehicle to Vehicle Communication Using Visible Light Communication	11
4	1570700022	Renewable Energy Generation Forecasting on Smart Home Micro Grid using Deep Neural Network	16
5	1570700194	A Modified Maximum Power Point Tracking Algorithm Using Grey Wolf Optimization for Constant Power Generation of Photovoltaic System	20
6	1570700310	Applied TOU program to control electricity peak demand under demand side response model	26
7	1570700318	Socially Assistive Robot Interaction by Objects Detection and Face Recognition on Convolutional Neural Network for Parental Monitoring	31
8	1570700332	Performance Analysis on Artificial Bee Colony Algorithm for Path Planning and Collision Avoidance in Swarm Unmanned Aerial Vehicle	37
9	1570700355	IoT Long Range (LoRa) for Land Boundary Monitoring System	
10	1570700591	Development of Smart Home System Based on Artificial Intelligence with Variable Learning Rate to Manage Household Energy Consumption	
11	1570700802	Color Mapping for Volume Rendering Using Digital Imaging and Communications in Medicine Images	
12	1570700947	The Partial Modelling of Non-Linear Analog Distance Sensor using Piecewise Newton Polynomials Algorithm to Minimize the Occurrence of Runge's Phenomenon	59
13	1570701235	Viana Safe: Smart Safe and Secure Platform Based on CCTV Analytics in Pandemic Covid-19 Situation Use Case Railway Station	65
14	1570702165	CFD Analysis for Combination Savonius and Darrieus Turbine with Differences in the Number of Savonius Turbine Blades	72
15	1570702450	The Object Detection on Video Transmission over Wireless Visual Sensor Network	77
16	1570702718	Traffic Signs Detection and Recognition System Using the YOLOv4 Algorithm	83
17	1570703056	Design and Analysis of Knee Joint for Transfemoral Amputees	89
18	1570703354	Forecasting Raw Material Inventory Using the Single Moving Average and Supplier Selection Using the Analytical Hierarchy Process	94
19	1570703436	Speed and Yaw Rate Response Optimization based on Parameter Estimation for Electrical Bus Mathematical Model	100
20	1570703490	Obtaining the Optimum Estimated Coefficient Value of Tire Cornering Stiffness and Air Drag for a Commuter Electric Car Model Using the Curve Fitting Least Square Method	106

21	1570704068	Parallel Control Structure: From Conventional To Intelligent	112
22	1570704498	Rating Prediction of Product Reviews of Bangla Language using Machine Learning Algorithms	118
23	1570705176	PERFORMANCE OF COMBINING HILL CIPHER ALGORITHM AND CAESAR CIPHER ALGORITHM IN TEXT SECURITY	124
24	1570705338	Experimental Analysis of Vehicle-to-Vehicle Communication using Light Detection and Ranging (LIDAR) for Detection and Data Transmission	129
25	1570705358	Application of Cuk Converter for Capacitor-Less Electrolytic on the Light-Emitting Diode Driver with Artificial Neural Network	
26	1570705655	Eyeball Identification and Tracking using Digital Image Processing	141
27	1570705689	Rice Shelf-Life Prediction Using Support Vector Regression 24 AlgorithmBased on Electronic Nose Dataset	146
28	1570705779	Rice Quality Detection Using Gradient Tree Boosting Based On Electronic Nose Dataset	151
29	1570705780	Automatic Counting Shrimp Larvae Based You Only Look Once (YOLO)	156
30	1570705796	Design and Implementation of Pick and Place Manipulation System for Industrial Automation	160
31	1570705889	A Survey of Emotion Recognition using Physiological Signal in Wearable Devices	166
32	1570705937	Multiclass Classification of Brain-Computer Interface Motor Imagery System: A Systematic Literature Review	172
33	1570706172	IoT-based Accident Detection and Emergency Alert System for Motorbikes	178
34	1570706202	fNIRS Based Multi-Class Mental Workload Classification Using Recurrence Plots and CNN-LSTM	183
35	1570706353	Minimizing the Losses and Cost of a Radial Network Connected to DG,PV and Batteries using Firefly Algorithm in Al-Bayda city, Libya	189
36	1570706695	A Feasibility Study of M2M/IoT Numbering Model in Indonesia	195
37	1570707663	Forecasting Daily Visitors and Menu Demands in an Indonesian Chain Restaurant using Support Vector Regression Machine	201
38	1570707691	Data Classification of Patient Characteristics Based on Nutritional Treatment Using the K-Nearest Neighbors Algorithm	207
39	1570708116	Literature Review of People Counting	213
40	1570708129	Enhancement Accuracy for Indoor Positioning System on Non-Line of Sight Channel using Visible Light Communications	219
41	1570708169	Core Power Modelling of High-Temperature Engineering Test Reactor (HTTR) Using Nonlinear Least Squares Method for Parameter Estimation	224

42	1570708408	An Optimized Off-grid Renewable Micro-Grid Design and Feasibility Analysis for Remote Industries	230
42	1370700400	of Gadoon Swabi (Pakistan)	230
<u> </u>		Malicious Image Detection Using Convolutional	
43	1570708592	Neural Network	236
		Assistive Smart Home Environment using Head	
44	1570709877	Gestures and EEG Eye Blink Control Schemes	242
		The Effect of Wave Stirring Mechanism in Improving Heating	
45	1570710097		248
		Uniformity in Microwave Chamber For Fishing Industry Expression Classification For User Experience Testing Using	
46	1570710404	Convolutional Neural Network	253
		Implementation of Cloud Based Action Recognition	
47	1570710505	Backend Platform	259
48	1570710521	Empathetic Chatbot Enhancement and	265
		Development: A Literature Review	
49	1570710528	Multi-Pole Road Sign Detection Based on Faster Region-based	271
		Convolutional Neural Network (Faster R-CNN)	
50	1570710531	Visual Training Improves Motor Imagery Ability for Rehabilitation	276
50	1070710001	visual riaming improves vision imagery riomsy for remainmenton	270
		Classification of sensorimotor cortex signals based on the task	
51	1570710532	durations: an fNIRS-BCI study	281
		30	
52	1570710589	Alveolar Bone Detection from Dental Cone Beam	286
		Computed Tomography using YOLOv3-tiny	
53	1570710619	Detection of Copy Move Forgery in Medical Images Using Deep	292
	1070710010	Learning	
54	1570710623	A Combinatorial Optimization Approach to Determining Optimal Data	298
	1070710020	in Cluster	270
55	1570710636	Modeling Indonesian COVID-19 Contact Tracing	303
	1070710000	using Social Network Analysis	505
56	1570710998	Design and Fabrication of Exoskeleton for Power Augmentation of Arm	309
30	15/0/10996	using Intuitive Control	309
		Prefrontal Cortex Activation Measured during Different Footwear and	
57	1570711004	Ground Conditions Using fNIRS – A Case Study	315
		EEG Spectral Comparison Between Occipital and Prefrontal Cortices	
58	1570711011	for Early Detection of Driver Drowsiness	321
59	1570711141	A Comparative Analysis of Multiple Biasing	327
		Techniques for Qbiased Softmax Regression Algorithm	
60	1570711259	Programming Language Translator For Integration Client Application	332
		With Web APIs	
		A genetic algorithm with an elitism replacement	
61	1570712046	method for solving the nonfunctional web service	336
		composition under fuzzy QoS parameters	
62	1570712115	Human Emotion Detection with Speech Recognition Using Mel-	343
02	13/0/12/13	1frequency Cepstral Coefficient and Support Vector Machine	343
63	1570712551	Factors Influencing the Shadow Path Loss Model with Different	349
03	13/0/12331	Antenna Gains Over Large-Scale Fading Channel	349
64	1570712700	Model QSAR Classification Using Conv1D-LSTM	254
64	1570713700	of Dipeptidyl Peptidase-4 Inhibitors	354
		Comparison Accuracy of Multi-Layer Perceptron	
65	1570713701	and DNN in QSAR Classification for	360
65		Acetylcholinesterase Inhibitors	500
		Acceptationnesserase minorors	

66	1570713703	One-Dimensional Convolutional Neural Network Method as The Predicting Model for Interactions Between Drug and Protein on Heterogeneous Network	366
67	1570714895	Literature Study of Face Recognition using The Viola-Jones Algorithm	
68	1570715150	Flight Dynamics Modeling of Dual Thrust System Hybrid UAV	378
69	1570715788	The Evaluation of Adulteration in Milk Using The Propagation of Ultrasonic Waves	383
70	1570715794	Development of Vehicle Detection for One-Way Traffic Violation Based on Internet of Things	387
71	1570715797	Measurement of Attenuation and Velocity on Ultrasonic Waves in Adulteration of Honey to Find Their Correlation	392
72	1570715799	INVESTIGATION OF HUSK-ADULTERATED RICE BRAN USING ULTRASONIC WAVE	
73	1570717494	Antioxidant Activity of Flavonoid Compounds in Ethanol and Ethyl Acetate Extract from Citrus Sinensis	
74	1570717516	Effect of Treadmill Exercises on Vo2Max, Haemoglobin Levels and Erythrocyte Index among Military Candidates	407
75	1570719031	Antioxidant and Wound Healing Potential of Persea Americana Mill. Leaves extract	412
76	1570719722	EEG Brainmapping Analysis of Mental Arithmetic Task Performed by Drug Convicts	417
77	1570719812	Design of 2D LiDAR-based Indoor SLAM for Medical Robot Covid-19	423
78	1570720284	Design of Arrhythmia Early Detection Interface Using Laravel Framework	428
79	1570720356	3D Control System of Arm Robot Prototype for Skin Cancer Detection	434
80	1570720922	EMBEDDED SYSTEM REAL TIME DATA ACQUISITION SYSTEM USING FPGA TECHNOLOGY FOR DETECTION AND COUNTING OF PD SIGNALFROM PICO PULSE GENERATOR	441
81	1570720934	High Sensitivity and Selectivity of Mercury Sensor Based Membrane Ion Selective Electrode with Sputtring Method	445

Renewable Energy Generation Forecasting on Smart Home Micro Grid using Deep Neural Network

Purwanto

Doctoral Program of Environmental Science, School of Postgraduates Studies Department of Chemical Engineering, Faculty of Engineering Universitas Diponegoro Semarang, Indonesia purwanto@live.undip.ac.id

Djoko Adi Widodo
Department of Electrical Engineering,
Faculty of Engineering
Universitas Negeri Semarang
Semarang, Indonesia
djokoadiwidodo@mail.unnes.ac.id

Hermawan

Doctoral Program of Environmental Science, School of Postgraduates Studies Department of Electrical Engineering, Faculty of Engineering Universitas Diponegoro Semarang, Indonesia suherman.mz@che.undip.ac.id

Nur Iksan
Department of Electrical Engineering,
Faculty of Engineering
Universitas Negeri Semarang
Semarang, Indonesia
nur.iksan@mail.unnes.ac.id

Suherman

Doctoral Program of Environmental Science, School of Postgraduates Studies Department of Chemical Engineering, Faculty of Engineering Universitas Diponegoro Semarang, Indonesia

hermawan.60@gmail.com

Abstract— The implementation of smart grid on a micro scale in this study was for household electricity fulfillment needs. The use of renewable energy sources such as solar power will be integrated through a smart grid so that households can become independent in providing electricity and not depend on state electricity. Besides, it can also reduce monthly electricity costs when integrated with the state electricity network. Smart Micro Grid also enables the availability of energy management services such as monitoring, prediction, forecasting, scheduling and decision-making that was supported by some technologies such as artificial intelligent, smart sensors so that consumer use of electricity was more efficient. In this research, the forecasting method developed using the Deep Neural Network (DNN) and the Gate Recurrent Unit (GRU) as the architectural model. The GRU model was chosen because it has better performance compared to other models, namely LSTM, Auto-LSTM, Auto-GRU with MAE and MSE values of 0.0342 and 0.00245.

Keywords—Renewable Energy, Forecasting, Smart Home, Micro Grid, Deep Learning, Gate Recurrent Unit

I. INTRODUCTION

Increasing the capacity to supply electrical energy was very important and carried out massively by various countries in the world. This was done to respond to the increasing demand for electricity in the industrial sector, commercial and office buildings as well as housing. Currently, renewable energy development was being actively implemented in various countries, including Indonesia. Renewable energy technology was a good solution because of the potential for unlimited energy availability and safety. This renewable energy will be converted into electrical energy so that it can reduce dependence on state electricity. This technology provides benefits in the form of reduced electricity costs and reduced carbon emissions.

Photovoltaic (PV) technology was one of the most commonly used renewable energies. This technology will convert solar energy into electrical energy. The application of PV technology on the Smart Home Micro Grid (SHMG) can allow the integration of energy sources from state electricity with solar energy. The use of this technology was highly dependent on the presence of solar radiation, environmental temperature, weather conditions and geographic location. To

maintain the availability of electricity supply to consumers, it was necessary to control the use of electricity sources from the sun and utility networks through the forecasting process of the availability of renewable electrical energy that will be produced in the future.

In this research, the forecasting method will be developed using Deep Neural Network (DNN) to predict solar power generation. This paper consists of five chapters, including chapter one discusses the background, chapter two discusses related research, chapter three discusses solar power generation forecasting methods, chapter four discusses the analysis of experimental results, chapter five contains conclusions

II. RELATED WORKS

Renewable energy was an important solution to increase the capacity of electricity supply with unlimited availability and safety and helps reduce carbon emissions in the air. PV systems were most commonly used and many researchers were developing the use of PV to become a renewable energy source [1]. The process of integrating PV into the power grid was equipped with an energy management system so that it can monitor and control the performance of the energy supply system and can also predict the generation of electrical energy from the PV system so that the electricity supply becomes stable [2]. The process of predicting the generation of solar energy was very dependent on weather conditions which can change at any time so that it becomes a challenge in this research. Therefore, it was necessary to develop appropriate machine learning methods in order to produce valid and accurate predictions.

Several researchers have developed forecasting methods for solar power generation. Person [3] performed solar energy forecasting using a gradient boosted regression trees model. Tang [4] proposed a forecasting model using the Lasso approach. Researchers [5] [6] [7] used a deep learning method consisting of several neuron network structures, such as LSTM, auto encoder, deep belief network and subsequently compared to ANN. This study uses a deep learning approach with a neuron network structure that will be compared with the high prediction accuracy such as GRU [8], LSTM [9],

Auto GRU [10] and Auto LSTM [11] so that the exact neuron structure can be found for use in deep learning.

III. RENEWABLE ENERGY GENERATION FORECASTING

The existence of houses that still rely on conventional power plants that were sourced from fossil fuels can be possible to be integrated with non-fossil power plants that utilize renewable energy, for example solar power plants. Smart home equipped with appliances and home area network can be upgraded to form a grid for energy supply. Smart micro grid was a grid for energy supply in the home area that allows integration of the two energy sources. Through this micro grid, there will be automatic coordination and control in the use of energy supplies. Micro grid response occurs when the sensor detects that the energy supply from the solar panel was in optimal condition so that the electricity supply switches to that source. Figure 1 below shows a SHMG that has been installed.

Fig. 1. Smart Home Micro Grid Installation

The developed IoT module has been implemented on a grid to support the monitoring process on SHMG in obtaining and transferring the data needed to carry out PV generation predictions. This module was made based on the circuit design shown in Figure 2. In this IoT module, the data transfer process was carried out using WIFI access. In addition, this module was also equipped with several sensors, namely temperature, humidity, voltage and current sensors. Furthermore, this grid was also equipped with a data logger module to obtain electrical data for both DC and AC. In the DC data logger, the measurement process was carried out to obtain electrical data generated by solar panels and on batteries. Furthermore, in the AC data logger, the measurement process was carried out to obtain electrical data on the grid after passing through the inverter. Figure 2 below was a number of modules installed on the grid.

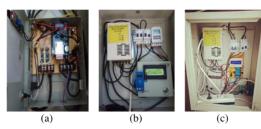


Fig. 2. IoT and Monitoring Module. a) IoT Module, b) Data Looger AC Module, c) Data Logger DC Module

The energy management system on the smart home micro grid has several stages, namely: data monitoring, data analysis, forecasting, optimization and control. Data related to environmental conditions, batarai, weather, and others were carried out through a monitoring process. Some of the sensors

that have been installed on SHMG for monitoring purposes include power sensors from solar panels, temperature and humidity sensors, solar radiation sensors and battery sensors. The data resulting from this monitoring process was usually still in the form of raw data so that initial processing must be carried out in the form of noise filtering, discretization, normalization, and others. The data analysis stage was carried out to obtain data in the form of information using the machine learning method. Furthermore, the results of the data analysis process were used for applications in energy management systems including prediction, forecasting and regression applications and others.

SHMG has an energy source that was not only from state electricity but also from renewable energy, namely solar energy which was integrated with each other. Utilization of solar energy uses a photovoltaic system that converts solar energy into electrical energy. The electric power generated from this conversion process depends on weather conditions and the temperature of the surrounding environment. Besides, it was also influenced by the materials used and the geographical location of the solar panels. In this study, modeling forecasting energy originating from solar energy will refer to weather conditions in the form of time series.

The weather time series data can then be modeled for the solar PV power forecasting process in the form $(x_1, x_2, ..., x_n)$. The forecasting process was carried out to predict day futures. Furthermore, this study maps historical weather data and solar PV power prediction [7] [10] for the next day as shown in Formula 1 as follows

$$\hat{y} = f(x_1, x_2, \dots, x_n) \tag{1}$$

Where,

 \hat{y} , represents the predicted solar PV power

f, states the weather history data mapping function

x, represents the weather parameter

n, represents the number of weather parameters

The weather parameters used in the solar PV power forecasting process were represented by n=3, which means there were 3 weather parameters, namely::

- Irradiance (kW/m2)
- Air Temperature (°C)
- Panel Temperature (°C)

This study uses a deep learning approach with several models implemented in solar PV power forecasting applications, including LSTM, GRU, Auto GRU and Auto LSTM. Long short-term memory (LSTM), also known as a recurrent neural network (RNN), was a specialized neural network with repeated connections between neurons that allow it to learn from current and previous information to find solutions. In contrast, RNN will have difficulty getting information when two cells were far apart. LSTMs have special neurons known as memory cells which can be used to store useful information over a period of time. LSTM has three gate controllers, namely forget gate, input gate, and output gate.

The gated recurrent unit (GRU) was a special LSTM to reduce the length of training time of the LSTM. The GRU only has two gates, namely a reset gate and an update gate that controls the flow of information within the unit. Auto-LSTM

consists of two machine learning algorithms, namely AutoEncoder (AE) and LSTM. In its implementation, the LSTM model was trained and installed using historically coded weather data generated by the AE coding side. The Auto-GRU model consists of AE and GRU which this model has the same concept as Auto-LSTM.

DNN architecture can be shown in Figure 3. Several weather parameters that were used as historical data will be entered into the DNN architecture. DNN architecture consists of input layer, several hidden layers with memory units will be added to carry out the training process. The results of this training will be output which was forwarded to the Output layer.

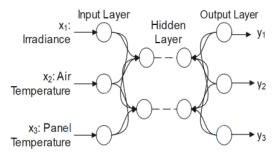


Fig. 3. The Architecture of DNN

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Several experiments will be carried out to evaluate the methods used in solar PV power forecasting applications. We will make comparisons on several models implemented in solar PV power forecasting applications, including LSTM, GRU, Auto GRU and Auto LSTM using the dataset obtained from SHMG. Based on the monitoring process carried out by the installed sensor modules, some electrical data from the measurement results on the grid can be obtained, including electrical data on batteries and solar panels, which were shown in Figures 4 and 5 below.

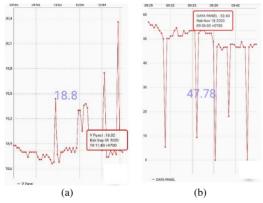


Fig. 4. Measurement data on solar panels: a). Voltage b) Power

Fig. 5. Measurement data on solar Baterai

The solar PV power forecasting process uses time series data obtained during the monitoring process. This dataset consists of current and voltage data (V-I) and weather data, namely irradiance (kW / m^2) , air temperature (°C) and panel temperature (°C). The available dataset consists of five-minute, hourly and daily.

The performance evaluation process was carried out to verify the effectiveness of the deep learning algorithm that was used to predict the generated solar PV power. The DL algorithm was implemented in Python using the Keras API with the Tensorflow framework. Evaluation measurements use Mean Absolute Error (MAE) and Mean Square Error (MSE). Furthermore, prediction accuracy was done by comparing several models implemented in DL including LSTM, GRU, Auto GRU and Auto LSTM. Table 1 below shows the results of the measurement accuracy of the predictions.

TABLE I. PREDICTION PERFORMANCE ON MAE AND MSE

Approach	LSTM	GRU	Auto- LSTM	Auto- GRU
MAE	0.0533	0.0342	0.0803	0.0528
MSE	0.0035	0.00245	0.00893	0.00425
_				

Based on the results of the prediction evaluation in Table 1, it can be seen that GRU was a model that has better performance compared to other models with MAE and MSE values of 0.0342 and 0.00245.

V. COUNCLUSION

The smart home micro grid has an energy source that was not only from state electricity but also from renewable energy, namely solar energy which was integrated with each other. The prediction process for solar PV power was highly dependent on weather conditions, which can change at any time, causing instability in the power grid which causes electricity operators to balance electricity consumption and power generation to avoid wasting energy. Therefore, it was necessary to develop appropriate machine learning methods in order to produce valid and accurate predictions. In this research, the forecasting method was developed using DNN and GRU as architectural models. The GRU model was chosen because it has better performance compared to other models with MAE and MSE values of 0.0342 and 0.00245.

ACKNOWLEDGMENT

We would like to thank to The Directorate of Research and Community Service – Ministry of Research, Technology and Higher Education (DRPM – Kemenristekdikti); and Diponegoro University (UNDIP) for their assistance in facilitating research.

REFERENCES

- S. Parhizi, H. Lotfi, A. Khodaei and S. Bahramirad, "State of the Art in Research on Microgrids: A Review," IEEE Access, vol. 3, pp. 890 -925, 2015.
- [2] S. Bacha, D. Picault, B. Burger, I. Etxeberria-Otadui and J. Martins, "Photovoltaics in Microgrids: An Overview of Grid Integration and Energy Management Aspects," IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 33 - 46, 2015.
- [3] C. Persson, P. Bacher, T. Shiga and H. Madsen, "Multi-site solar power forecasting using gradient boosted regression trees," Solar Energy, pp. 423-436, 2017.
- [4] N. Tang, S. Mao, Y. Wang and M. Nelms, "LASSO-Based Single Index Model for Solar Power Generation Forecasting," in Global Communications Conference, Singapore, 2017.
- [5] A. Gensler, J. Henze, B. Sick and N. Raabe, "Deep Learning for solar power forecasting—An approach using AutoEncoder and LSTM

- Neural Networks," in IEEE International Conference on Systems, Man, and Cybernetics (SMC), Hungaray, 2016.
- [6] A. Gensler, J. Henze, B. Sick and N. Raabe, "Deep Learning for solar power forecasting — An approach using AutoEncoder and LSTM Neural Networks," in International Conference on Systems, Man, and Cybernetics (SMC), Budapest, 2017.
- [7] D. A. Widodo, N. Iksan, E. D. Udayanti and Djuniadi, "Renewable energy power generation forecasting using deep learning method," in The 9th Engineering International Conference, Semarang, Indonesia, 2020.
- [8] K. Cho, B. v. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. Bengio, "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation," arxiv: Computation and Language, 2014.
- [9] A. Alzahrani, P. Shamsi, M. Ferdowsi and C. Dagli, "Solar irradiance forecasting using deep recurrent neural networks," in International Conference on Renewable Energy Research and Applications (ICRERA), USA, 2017.
- [10] I. A. Mariam AlKandari, "Solar Power Generation Forecasting Using Ensemble Approach Based on Deep Learning and Statistical Methods," Applied Computing and Informatics, 2020.
- [11] A. Gensler, J. Henze, B. Sick and N. Raabe, "Deep learning for solar power," in International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016.

Renewable Energy Generation Forecasting on Smart Home Micro Grid using Deep Neural Network

ORIGINALITY REPORT

12% SIMILARITY INDEX

6%
INTERNET SOURCES

7% PUBLICATIONS

O% STUDENT PAPERS

PRIMARY SOURCES

"[Front cover]", 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2020

1 %

Publication

M. Jayashankara, Priyansh Shah, Anshul Sharma, Prasenjit Chanak, Sanjay Kumar Singh. "A Novel Approach for Short-Term Energy Forecasting in Smart Buildings", IEEE Sensors Journal, 2023

1 %

Publication

Vailet Hikmat Faraj Al Khattat, Siti Barirah Ahmad Anas, Abdu Saif. "An Efficient 3D Indoor Positioning System Based on Visible Light Communication", 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA), 2022

<1%

Iwan Setiawan, Achmad Hidayatno, Haris Kuspranoto, Trias Andromeda, Mochammad Facta, Hermawan Hermawan. "Fixed Point

<1%

Arithmetic Implementation of Digital Proportional - Resonant Single-Phase Current Controllers", 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE), 2020

Publication

5	Submitted to University of Western Ontario Student Paper	<1%
6	kinetik.umm.ac.id Internet Source	<1%
7	www.slideshare.net Internet Source	<1%
8	Submitted to Northcentral Student Paper	<1%
9	Xiong Cheng, Pengfei Zhang, Yiqi Zhou, Daying Sun, Wenhua Gu, Yutao Yue, Xiaodong Huang. "A Bidirectional Deep Learning Approach for Designing MEMS Sensors", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023 Publication	<1%
10	Submitted to Liverpool John Moores University Student Paper	<1%
11	Tong Fu, Ping Chen, Bo Zhang. "A Correction	<1%

Method for the Measurement of Frequency-

dependent Attenuation Coefficient with

Curved Surface Specimens Using Normal Contact transducer", IEEE Sensors Journal, 2023

Publication

Submitted to University of Technology, <1% 12 Sydney Student Paper wos.academiascience.org <1% 13 Internet Source Submitted to University of East London Student Paper <1% A. F. Duprat, T. Huynh, G. Dreyfus. "Toward a Principled Methodology for Neural Network Design and Performance Evaluation in QSAR. Application to the Prediction of LogP", Journal of Chemical Information and Computer Sciences, 1998 Publication Seyed Kian Mousavikia, Erfan <1% 16 Gholizadehazari, Morteza Mousazadeh, Siddika Berna Ors Yalcin, "Instruction Set Extension of a RiscV Based SoC for Driver Drowsiness Detection", IEEE Access, 2022 Publication Submitted to Louisiana State University 17 Student Paper

18	Student Paper	<1%
19	arg.ciirc.cvut.cz Internet Source	<1%
20	repositori.usu.ac.id Internet Source	<1%
21	www.research-collection.ethz.ch Internet Source	<1%
22	"MECnIT 2020 Table of Contents", 2020 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT), 2020 Publication	<1%
23	Submitted to American University of the Middle East Student Paper	<1%
24	Dinda Nabila Amartha, Dedy Rahman Wijaya, Suryatiningsih. "Classification of Competition Content on Web Pages using a Machine Learning Algorithm", 2022 10th International Conference on Information and Communication Technology (ICoICT), 2022 Publication	<1%
25	Submitted to Florida International University Student Paper	<1%

26	Mandal, Paras, Surya Teja Swarroop Madhira, Ashraf Ul haque, Julian Meng, and Ricardo L. Pineda. "Forecasting Power Output of Solar Photovoltaic System Using Wavelet Transform and Artificial Intelligence Techniques", Procedia Computer Science, 2012.	<1%
27	Submitted to The University of the South Pacific Student Paper	<1%
28	Submitted to University of Teesside Student Paper	<1%
29	dokumen.pub Internet Source	<1%
30	repository.unair.ac.id Internet Source	<1%
31	summit.sfu.ca Internet Source	<1%
32	cje.ejournal.org.cn Internet Source	<1%
33	ejurnal.itats.ac.id Internet Source	<1%
34	ieeexplore.ieee.org Internet Source	<1%
35	journals.sfu.ca	

Internet Source

		<1%
36	proceeding.nstproceeding.com Internet Source	<1%
37	pubmed.ncbi.nlm.nih.gov Internet Source	<1%
38	www.cambridge.org Internet Source	<1%
39	www.icacomit.org Internet Source	<1%

Exclude quotes On Exclude bibliography On

Exclude matches < 10 words

Renewable Energy Generation Forecasting on Smart Home Micro Grid using Deep Neural Network

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	
PAGE 11	
PAGE 12	
PAGE 13	
PAGE 14	