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Abstract- Capturing solar radiation through photovoltaic deployment on the rooftop of buildings not only produces clean energy 

but also plays an important role in mitigating carbon dioxide emissions. Semarang State University in Indonesia expanding solar 

energy until 2021 has installed 260 kWp rooftop solar photovoltaic in 8 buildings. Gradually, the rooftop photovoltaic portfolio 

is being improved to realize the vision of the green campus. It is important to conduct a quantitative assessment of the power 

generation potential of rooftop photovoltaics to formulate a policy on effective electricity production integration. The objective 

of this study is to predict the potential for rooftop solar photovoltaic exploration and the potential for mitigating carbon dioxide 

emissions. The method used was the combination of a deep learning approach and aerial photography of an unmanned aerial 

vehicle. It was found that of the 40 tallest building units, the available roof area was approximately  

26,645 m2. The average monthly irradiation was 5.63 kWh/m2/day. Energy potential per year: 8,671.1 GWh (m-Si); 7,234.4 

GWh (p-Si); 4,427 GWh (a-Si); and 7,414.3 GWh (CdTe). Based on local emission factors, the mitigation potential per year 

was: 7,199,468.9 tons of CO2 (m-Si); 6,000,536.3 tons of CO2 (p-Si); 3,674,417.7 tons of CO2 (a-Si), and 6,153,902.9 tons of 

CO2 (CdTe). The findings of the study are dedicated to university management to design and manage roof photovoltaic systems 

reliably and economically. 

Keywords Solar irradiation, deep learning, unmanned aerial vehicle, carbon mitigation, photovoltaic. 

 

1. Introduction 

Meeting the increasing demand for electrical energy from 

new and renewable energy-based sources can help reduce CO2 

emissions in the atmosphere and protect the environment. 

Solar energy is the most promising source of electricity for 

residential, commercial, and industrial applications. Solar 

energy is considered to be one of the sustainable energy 

sources that can meet future energy needs [1–3]. A study 

highlights that the earth receives about 1.8 1011 MW of power 

from solar radiation instantly [4]. Solar energy converted into 

electricity has proven to be technologically robust, scalable, 

and geographically dispersed and has great potential as a 

source of sustainable energy [5, 6]. Solar photovoltaics can 

significantly help buildings increase energy self-sufficiency 

and cost-effectively reduce environmental emissions [7]. 

The need for a change and a sustainable transition to a 

low-carbon emission society is a vision widely promoted in 

Higher Education Institutions. In this context, Semarang State 

University, Indonesia, which has intended to realize the vision 

of becoming a Green Campus, was chosen as a case study in 

this study. By 2022, this institution has installed rooftop solar 

photovoltaic systems in 8 buildings with a total capacity of 

around 260 kWp. The installation of these photovoltaic 

systems aims to reduce the use of electricity from 

conventional fossil fuel power plants which have negative 

impacts on the environment. Most of the day, significant solar 

resources are available in the campus area. According to the 

Meteorology, Climatology, and Geophysics Agency, the 

average monthly air temperature reaches 21°C to 36°C in 

2021. However, until now there has never been a 

comprehensive study of solar energy potential on the roofs of 
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all buildings. However, the output power of rooftop solar 

photovoltaics is highly uncertain due to local meteorological 

factors. Many parameters affect the generation of electricity 

from solar power, but solar insolation is the main component 

[8–10]. Therefore, it is necessary to identify the potential for 

rooftop solar photovoltaics so that it can be utilized for 

sustainable electricity generation planning to meet daily 

electricity needs. On the other hand, the main problem and 

challenge in the production of solar energy is the intermittent 

volatility of photovoltaic power generation due to the 

dynamics of weather conditions [11]. In particular, variations 

in temperature and radiation can have a major impact on the 

quality of electric power produced. 

Estimating the solar potential of an area usually requires 

knowledge of the availability of a suitable area for the 

installation of photovoltaic panels (geographical potential), 

the availability of solar insolation (physical potential), the 

ability or efficiency of certain technologies in converting solar 

energy into electricity by considering technical limitations 

(technical potential), and costs associated with solar panels 

uses for energy generation (economic potential) [12, 13]. 

Studies related to roof geometry and physical features are 

used to evaluate the impact of rooftop solar photovoltaic 

system installations. The approach developed is based on a 

slope using Light Detection and Ranging (LiDAR) data, 

building footprint data, Geographic Information System tools, 

and aerial photography [14]. Evaluation of the potential for 

rooftop solar energy in an area requires information on the 

availability of the appropriate area concerning aspects of solar 

insolation, orientation, slope, and shade [15, 16]. Geographic 

Information Systems (GIS), such as orthophotos and digital 

surface models (DSM) are important elements in determining 

the ideal roof area. There are several techniques used to obtain 

GIS data; manned aerial sensor methods, such as Light 

Detection and Ranging (LiDAR), and manned ground 

methods, such as terrestrial laser scanning or satellite imagery. 

Using manned aerial platforms, such as LiDAR and satellite 

imagery, is time-consuming and expensive. GIS data can be 

obtained by flying an unmanned aerial vehicle (UAV) which 

is now increasingly being adopted directly by researchers 

from various disciplines [17]. UAV photogrammetry has very 

similar accuracy to Real Time Kinematic Global Positioning 

System data. So it is possible to use UAVs to obtain 

photogrammetric data for map making, surveys, and several 

other engineering applications with the advantages of low 

cost, time conservation, and minimum fieldwork [18]. Aerial 

images obtained from unmanned aerial vehicle technology are 

an alternative approach for investigating the roof area of a 

building [19]. 

Solar radiation data has an important role as it provides 

information about all the energy that comes to earth, which is 

needed for the utilization, planning, and design of solar power 

plant. These data are not available from all locations, so 

different climate variables were used to estimate solar 

radiation. The solar radiation level parameter directly affects 

the energy output and efficiency of the photovoltaic system 

[20, 21]. There are several methods to predict the value of 

solar radiation at a location, one of the deep learning-based 

methods that are widely implemented is the Recurrent Neural 

Network. RNNs are a type of neural network that exploits the 

sequential nature of the input data. RNNs can predict random 

input sequences due to their internal memory. Internal 

memory can store information about previous calculations 

[22]. RNN is used to model time-dependent data and gives 

good results in time series data, which has proven successful 

in several application domains [23]. Application of deep 

learning techniques for horizontal daily solar irradiation 

estimation shows a good performance [24, 25]. Another study 

also used deep learning techniques to estimate hourly, daily, 

and yearly solar radiation [26]. 

Based on research studies that have been reviewed, this 

study highlighted (i) the roof surface area of the tallest 

building in the campus area; (ii) the solar insolation level of 

the campus area for a certain period. The objective of this 

study is to estimate the potential for solar photovoltaic energy 

of the tallest rooftop for various types of photovoltaic 

technology and the potential for carbon dioxide that can be 

reduced. This paper is prepared as follows: section 2 

introduces the data set used in this study, section 3 describes 

the methodology for the prediction of the rooftop photovoltaic 

potential and the estimation of carbon dioxide mitigation, 

section 4 presents the results and a step-by-step analysis of the 

estimation process at each stage, and section 5 presents the 

conclusions and provides views for the follow-up 

development of the rooftop solar photovoltaic system of the 

University building. 

2. Materials 

2.1. Description of Building Sample 

The location of this study was the campus area of 

Semarang State University, Central Java Province, Indonesia. 

This institution occupies an area of approximately 157 

hectares. Geographically, the coordinates are between 6°50'-

7°10' south latitude and 109°35' - 110°50' east longitude.  

 

Fig 1. Google Earth Image of Semarang State University 
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Figure 1 shows land and buildings in the campus area 

based on Google Earth Imagery. From site observations, there 

are 94 buildings with various types of area sizes and heights. 

The location of the building is 11 work units, consisting of 

eight faculties and three centers. Detail location name of each 

building is shows in Table 1.  

The tallest building in each location is used as a sample in 

this study. Based on the survey of all locations, it was 

identified that there were 40 units of three-story buildings. The 

surface of the roof area of the tallest building was considered 

ideal because it was not blocked by plants and trees around the 

building. Almost all the roofs of the tallest buildings receive 

sunlight all the time from morning until afternoon. Because 

the roof area was not blocked by trees throughout the day, they 

can be used as options to be studied.  

Information on the roof area of the building is useful for 

estimating the potential for solar power that can be captured 

from the rooftop solar photovoltaic system. Installation of 

photovoltaic panels on the roof is very good for generating 

solar energy [27, 28]. Because of these considerations, the 

roof of the tallest building was very appropriate for study. But 

it should be noted that not every roof surface is fully accessible 

for the installation of photovoltaic panels. Generally, the roof 

surface of the building is used for the placement of exhaust air 

chimneys, water storage tank, communication antennas, and 

outdoor air conditioning units. 

2.2. Daily Solar Irradiation 

This study used local area global horizontal irradiance 

data obtained from the NASA Surface Meteorology and Solar 

Energy database. The total amount of radiation calculated for 

a given location or area was referred to as global radiation 

[29]. Figure 2 presents a daily global radiation graph 

consecutively from January 1 2017 to December 31 2021. In 

one year there were 365 variations of daily global radiation 

data, and for 5 years there were 1,825 variations of data. The 

variability of this radiation value was the interest of this study. 

 

 

Fig 2. Horizontal Surface Insolation in 2017–2021 

3. Methodology 

This study estimated the rooftop solar photovoltaic 

potential in the campus area and carbon dioxide emissions 

mitigation. The study framework is illustrated in Figure 3, the 

rooftop solar photovoltaic potential was based on the variable 

of physical, geographical, and technical potentials, which 

adopts related studies [30, 31]. The variables of physical 

potential based on solar insolation reflect the energy received 

from the sun by the roof of the University building. The 

variables of geographic potential are variables that reflect the 

location or area where solar energy can be captured and used 

for photovoltaic deployment. The variables of technical 

potential are related to the conversion of solar energy received 

by the photovoltaic roof area into electrical energy using the 

technical characteristics of photovoltaic technology or 

photovoltaic efficiency and performance. Our assessment of 

rooftop solar photovoltaic potential combines deep learning 

with aerial photo processing of unmanned aerial vehicles. 

Assessment of emission reductions from the use of renewable 

energy sources is by considering the total rooftop solar 

Table 1. Description of the three-story building 

Building location Number Orientation Roof of facing 

Faculty of Education 5 Peaked Buildings North and south 

Faculty of Art Language 5 Peaked Buildings East and west 

Faculty of Social Sciences 4 Peaked Buildings North and south 

Faculty of Mathematics and Natural Sciences 5 Peaked Buildings East and west 

Faculty of Engineering 5 Flat Building Facing the sky 

Sports Science Faculty 4 Peaked Buildings North and south 

Economics Faculty 3 Flat Building Facing the sky 

Law Faculty 3 Peaked Buildings North and south 

Research Center Building 2 Flat Building Facing the sky 

Library Center Building 2 Peaked Buildings East and west 

Rectorate Center Building 2 Peaked Buildings East and west 
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photovoltaic electricity production and the emission factors of 

the area where the photovoltaic system is installed. 

 

Fig 3. Forecasting framework for photovoltaic and CO2 

mitigation potential 

Solar photovoltaic systems use photovoltaic cells that 

convert solar irradiation into electric power. Factors that affect 

rooftop photovoltaic electricity productivity are the placement 

and orientation of the roof, roof design, roof slope, type of 

photovoltaic, and performance. The rooftop photovoltaic 

potential mainly depends on the efficiency of the photovoltaic 

modules used to generate solar electricity [32, 33]. Thus, it is 

important to choose a solar panel with high efficiency and the 

best performance. The efficiency and performance factors of 

different types of photovoltaic panels vary according to the 

manufacturing technology and materials used. Table 2 

summarizes the efficiency and characteristics of different 

types of photovoltaic panels to illustrate various scenarios of 

solar power generation. The electrical energy output of a 

photovoltaic solar panel is given by Equation 1 [34]: 

𝐸𝑝𝑣 (𝑘𝑊ℎ  ) =  

𝐸𝑠𝑜𝑙  ( 𝑘𝑊ℎ . 𝑚−2  )  𝑥 𝐴  (𝑚2) 𝑥  𝜂𝑝𝑣 𝑥  𝜂𝑝𝑐𝑢  (1) 

Where in 𝐸𝑝𝑣  is the output energy of the solar 

photovoltaic panel in one hour and 𝐸𝑠𝑜𝑙 is the incoming solar 

energy, in one hour, in one unit area; A is the area of the panel; 

𝜂𝑝𝑣 is the photovoltaic panel efficiency value; 𝜂𝑝𝑐𝑢 is the 

efficiency of the power conditioning unit including the 

inverter. For this analysis, the monthly average solar 

insolation value was calculated. Therefore, generation 

estimation from rooftop solar photovoltaic systems was 

carried out hourly, for a typical day of each month of the year. 

So, Equation (1) is modified to  

Equation (2): 

∑ 𝐸𝑝𝑣 ( 𝑘𝑊ℎ ) =𝑁𝑠ℎ

 ∑ 𝐸𝑠𝑜𝑙𝑁𝑠ℎ
(𝑘𝑊ℎ . 𝑚−2 )  𝑥 𝐴  ( 𝑚2  ) 𝑥  𝜂𝑝𝑣  𝑥 𝜂𝑝𝑐𝑢   (2) 

Wherein 𝑁𝑠ℎ is the number of hours of effective sunlight. 

Annual energy output takes into account the number of hours 

of sunlight in 365 days effectively. Emission reduction 

potential was found by considering the weighted average 

emission factor of 0.83 in 2019 in Central Java Province, Grid 

Jamali. Weighted average emission factor data was provided 

by the Ministry of Energy and Human Resources. The total 

emission of reduced CO2 is derived by Equation (3).  

𝐶 =   ∑ 𝐸𝑝𝑣   𝑥𝑁𝑠ℎ   𝑊𝐴𝐸 (3) 

Where in C is tons of CO2 per MWh, ∑ 𝐸𝑝𝑣𝑁𝑠ℎ  is the total 

annual electrical energy from solar photovoltaic generated in 

MWh, and WAE is the weighted average emission factor. 

Table 2. Overview and comparison of four different types of 

PV technologies 

3.1. Rooftop Area Estimation 

The installation of a photovoltaic panel considers 

radiation slope and roof area available on each roof surface. 

Before installing solar panels on the roof of a building, it is 

necessary to assess the location where solar panels to be 

placed. This can significantly improve the panel performance. 

In the Northern Hemisphere, roofs facing south have more 

direct sunlight. On the other side, in the southern hemisphere, 

roofs facing north receive more direct sunlight. Thus, the 

angle of orientation of the roof determines the actual solar 

generation output. The flat roof and low angle of inclination 

receive sunlight for about 8–10 hours, regardless of its 

orientation. However, if the inclination angle is greater than 

20°, the orientation of the building affects the hours of sun 

exposure in the photovoltaic surface area because some parts 

of the photovoltaic surface can be shaded by the roof structure 

itself [35, 36]. 

This study analyzed the roofs of all the tallest buildings, 

which were three-story buildings. The roof area received 

sunlight without being blocked by trees. Based on Google 

Earth imagery and a physical survey of the building, all 

samples of the roofs of three-story buildings were grouped 

into several sub-areas. The procedure for determining the sub-

area and estimating the roof area is shown in Figure 4. 

 

Fig 4. Identification of building samples and estimation of 

roof area 

After choosing a sample of the roof of the building, then 

an unmanned aerial photo was taken for the assessment of the 

roof area. We flew a DJI Mavic 2 Zoom drone equipped with 

a camera at a height of 50 meters. Many photo sets were used 

to create as many as 40 models of the roofs of three-story 

buildings. All models of the roof of these buildings were taken 

PV Technology 
Module efficiency 

(%) 
Panel output (W) 

m-Si 21.5 350 

p-Si 15.06 245 

a-Si 19.8 250 

CdTe 17 320 
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from a platform that corresponds to a predetermined area. The 

model of the building roof was explored using the Agisoft 

Photoscan Professional tool to get the total roof area (AT). 

Thus, AT represents the potential of the roof footprint of the 

study sample used in the calculation. The available roof area 

was effective for installing photovoltaic panels (Apv) and it 

was expressed by Equation (4), after considering the reduction 

of the shading factor and the orientation of the building. 

𝐴𝑝𝑣 =  𝐴𝑇 ∗  𝐹𝑜 ∗  𝐹𝑠 =  𝐴𝑇 ∗  0.5625  (4) 

In this case, AT is the total roof area obtained from the 

model explored with Agisoft Photoscan Professional. Fo and 

Fs are respectively the orientation factor and the shading 

factor. Fo and Fs were estimated by considering the condition 

of the buildings in the study area. From the physical survey of 

buildings, it was identified that around 25% of the buildings 

had flat roofs (Rflat = 0.25). Flat-roof buildings did not 

experience a reduction in the roof area and were not affected 

by the orientation of the building  

(Oflat = 1). On the other hand, there are 75% of the buildings 

are peaked roofs buildings or have slope roofs (Rpeaked = 

0.75). The buildings were considered to have a roof area 

suitability of 50% for photovoltaic installation (Opeaked = 

0.5). So by considering the orientation of the roof of the 

building, the orientation factor (Fo) can be calculated using 

the following approach [32, 37]: 

𝐹𝑜 =  𝑅𝑓𝑙𝑎𝑡 ∗  𝑂𝑓𝑙𝑎𝑡 +  𝑅𝑝𝑒𝑎𝑘𝑒𝑑 ∗  𝑂𝑝𝑒𝑎𝑘𝑒𝑑   

=   0.25 ∗  1  +   0.75 ∗  0.5 =  0.625  (5) 

The next factor that must be taken into account for 

mitigating the roof area is the shading factor. Based on the site 

survey, it was seen that there was no roof area of the buildings 

that were used for water storage tanks and other uses. The roof 

area of the three-story building was also not covered by the 

shade of trees and nearby buildings. Considering these various 

factors, Equation (6) can be used to calculate the shading 

factor. 

𝑆ℎ𝑎𝑑𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐹𝑠) =   0,9  (6) 

The orientation factor (Fo) and the shading factor (Fs) 

have been estimated by considering the physical condition of 

all the sample buildings in the study area. 

3.2. Solar Irradiation Estimation 

This section provides an assessment of the potential for 

solar irradiation available in the campus area located in 

Semarang City, Central Java province, Indonesia. The 

variability of solar radiation depends on the time scale. This 

irradiation value is very important because it can predict the 

energy generated from the exploration of rooftop solar 

photovoltaic systems. This physical potential is defined as the 

global solar radiation on the earth's surface for each time step.  

Figure 5 illustrates daily global radiation from 2017 to 

2022. The variability of the daily radiation value was 

highlighted to obtain the predicted daily radiation value. Since 

the data structure was time series data, the daily solar radiation 

assessment adopted a deep learning approach.  

 

Fig 5. Local area daily solar irradiation variation pattern 

A recurrent neural network (RNN) is a deep learning 

architecture that is widely used to process sequential data.  An 

iterative neural network model is a type of neural network that 

exploits the sequential nature of the input data. The algorithm 

of this model adheres to the iteration principle. The input data 

is fed to the network one by one and the nodes in the network 

store their state at a one-time step and use it to inform the next 

time step. Unlike classical neural networks, RNNs use 

temporal information from input data, which makes them 

more suitable for time series data. The typical structure of a 

repetitive neural network, 𝑥𝑡 , is data inputted at time 𝑡. The 

black box obtaining input from other neurons in the previous 

time step 𝑥𝑡−1, 𝑠𝑡 is a hidden state in the time step 𝑡 and is the 

"memory" of the network. 𝑠𝑡 calculated based on the previous 

hidden state and the input in the current step. 𝑠𝑡 captures 

information about what happened in all the previous time steps 

and is given by Equation (7). 

𝑠𝑡  = 𝑔 (  𝑈𝑥𝑡 +  𝑊𝑠𝑡−1 )  (7) 

Output in step 𝑡 is 𝑦𝑡. To predict the next sequence in the 

time series, it will be a probability vector in the time series. 

Function 𝑔 is usually a nonlinear activation function as the 

hyperbolic tangent (Tanh). RNNs share the same parameters 

(U, V, W) across all steps performing the same task at each 

step, only with different inputs.  

 

Fig 6. RNN architecture for irradiation prediction 

The iterative neural network architecture shown in Figure 

6 was applied to predict daily solar irradiation. The 

configuration consisted of 5 input sizes, 1 output size, 2 

hidden layers, 32 hidden sizes, 21 sequence lengths, 16 batch 

sizes, and root-mean-squared error criteria. The imported 

dataset was 1825 daily irradiation average data. To become 

multivariate, time-series data was divided into quarters in a 

year. Outlier data were interpolated. For prediction purposes, 

the portion for training data was determined to be 80% and 

20% for testing data. The form of iterative neural network data 

was NSF, which defined the amount of data, the sequence 

value, and the number of features. In this context, the sequence 

value was specified as 21, thus the array into train data (N, S, 

F) was (69, 21, 5) and test data (N, S, F) was (17, 21, 5). 
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4. Result and Analysis 

4.1. Estimated Building Roof 

Traces of the roof area of the building throughout the 

sample locations or sub-areas have been obtained. After the 

gross roof area was calculated, a reduction must be made to 

the roof area considering the effects of shading and building 

orientation. The available roof area for photovoltaic panel 

deployment is summarized in Table 3.  

Table 3. Description of the roof area of the three-story 

building 

Sub-area or 

work unit 
Building Total (m2) 

Available 

(m2) 

Faculty of 

Education 
5 2.120 954,0 

Faculty of Art 

Language 
5 8.546 3,845.7 

Faculty of 

Social Sciences 
4 6.295 2,832.8 

Faculty of 

Mathematics 

and Natural 

Sciences 

5 7.726 3,476.7 

Faculty of 

Engineering 
5 7.214 3,246.3 

Sports Science 

Faculty 
4 5.962 2,682.9 

Economics 

Faculty 
3 2.872 1,292.4 

Law Faculty 3 2.279 1,025.6 

Research 

Center Building 
2 3.698 3,328.2 

Library Center 

Building 
2 2.345 1,055.3 

Rectorate 

Center Building 
2 6.456 2,905.2 

The total sample buildings were 40 building units. All of 

these sample buildings were three-story buildings which were 

the tallest in the campus area. The available roof area was 

chosen by considering the reduction of the orientation and 

shade factors in each sample building. Building orientation 

was obtained by considering the slope of the roof on each 

building. Buildings with a slope of up to 10 degrees were 

considered flat roofs because they did not need a reduction. 

While the roof of the building with a slope of 25 degrees or 

more needed a reduction from the orientation factor. 

Reduction of the shading factor for sloping roof buildings was 

not necessary because there was no reserved area in each 

building. While, for flat roof buildings, the reduction of the 

shading factor was calculated because there was a reserved 

area used for building support, such as outdoor air 

conditioning units.  

This study showed that the trace of the roof area of the 

entire sample was 55,513 m2 and the roof area available for 

photovoltaic deployment was 26,645 m2. Based on the traces 

of the roof area of the sampled buildings, it was known that 

not all roof areas were suitable for deploying photovoltaic 

panels as solar power plants. The results of this study 

estimated that only 47.9% of the trace of the roof area of the 

entire three-story building was available for photovoltaic 

panel deployment. Compared to the campus area of 157 

hectares, equivalent to an area of  

1.57 million m2, it showed that the portion of the roof area of 

the building studied in the study was relatively small. 

4.2. Estimated Solar Radiation 

Figure 7 shows the average monthly irradiation of the 

local area obtained from the prediction results using a 

repetitive neural network. Irradiation potential in each month 

was in the range of 3.9–6.7 kWh/m2. The average monthly 

irradiation was 5.6 kWh/m2. The highest irradiation potential 

occurred in March and April, while the lowest irradiation 

occurred in December. From these predictive findings, it can 

be a motivation to utilize solar energy in the local campus area. 

In Indonesia, the average intensity of solar radiation that falls 

on the surface area was around 4.8 kWh/m2 every day. Thus, 

the campus area has a significant solar energy potential 

compared to the national area. 

 

Fig 7. Average of solar irradiation prediction 

Data on the availability of solar irradiation in a place is 

very important for planning solar power plants. These data are 

used to estimate the potential energy output of photovoltaic 

deployment. Photovoltaic solar technology is capable of 

converting to electricity both direct irradiation and diffuse 

irradiation. However, not all regions have available irradiation 

maps or solar insolation maps. Capturing this unexploited 

solar radiation will not only improve the total mix of energy 

but also reduce emissions of greenhouse gases that degrade 

the environment. 

4.3. Estimated Rooftop Solar Photovoltaic Potential 

After obtaining the roof area available for photovoltaic 

deployment in all sub-areas or work unit locations, the 

photovoltaic power potential can be calculated. This study 

found the monthly electrical energy potential as shown in 

Figure 8 for different types of photovoltaics. From the 

estimation, it was found the electrical energy per year of 

8,671.1 GWh (m-Si); 7,234.4 GWh (p-Si); 4,427 GWh  

(a-Si); and 7,414.3 GWh (CdTe). Thus, it is crucial to choose 

a solar panel with high efficiency and the best performance. 
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Fig 8. Monthly roof photovoltaic potential of all building 

samples 

Rooftop photovoltaic deployment can play an important 

role in the transition to low-carbon energy systems. Until now, 

the lack of data on building and environmental aspects has 

impeded accurate estimation of the photovoltaic potential of 

the local area. The case study on the roof of the University 

building provides an overview of the scenario of rooftop 

photovoltaic-based electricity generation. Many variables 

require estimation through various approaches to obtain a 

measurable photovoltaic output. 

4.4. Estimated Carbon Dioxide Emissions  

The potential for mitigating carbon dioxide emissions was 

obtained based on the photovoltaic potential of the solar roof. 

The chart in Figure 9 shows the estimated mitigation potential 

based on the historical emission factors of the local area. This 

emission mitigation potential result was obtained from the use 

of photovoltaic roofs in all sample buildings. From the 

estimates made in this study, mitigation potential per year 

was: 7,199,468.9 tons of CO2 (m-Si); 6,000,536.3 tons of CO2 

(p-Si); 3,674,417.7 tons of CO2 (a-Si); and 6,153,902.9 tons 

of CO2 (CdTe).  

 
Fig 9. Monthly carbon dioxide potential of all building 

samples 

The description of the mitigation potential displayed 

provides information that photovoltaic panels with high 

efficiency and performance provide a proportionally high CO2 

mitigation potential. The estimation results showed that the 

installation of photovoltaic panels on the roofs of University 

buildings can help slow down the pace of climate change. 

4.5. Rooftop Photovoltaic Potential and CO2 Mitigation in 

University Sub-Area  

The potential for clean energy and carbon dioxide 

mitigation in each building in the campus area has been 

identified. The identification results are presented in the chart 

of Figure 10. From the description, it can be seen that the 

greatest potential for clean energy and CO2 mitigation from 

photovoltaic was generated by the roof of the building of the 

Faculty of Mathematics and Natural Sciences with a net 

energy of mono-crystalline PV of 13,260 GWh/year and CO2 

mitigation potential of 1,100,604 tons of CO2/year. The 

potential map of each sub-area or work unit is useful as a 

material for planning the deployment of photovoltaic panels 

in each building. 

 

 
Fig 10. Rooftop photovoltaic potential and CO2 

mitigation in sub-area 

4.6. Photovoltaic Comparison with Clean Energy Potential 

and CO2 Mitigation Potential 

This study has succeeded in comparing the performance 

of 4 types of photovoltaics widely used to produce clean 

energy. The different characteristics and efficiency of each 

photovoltaic used produce different net energy outputs.  
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Fig 11. Average monthly energy potential and CO2 

mitigation 

The description of Figure 11, shows that photovoltaic 

types of mono-crystalline, poly-crystalline, amorphous 

silicon, and cadmium telluride were used on the roof area of 

the University building. The chart shows that the potential for 

clean energy generated from photovoltaic systems was 

directly proportional to the potential for carbon dioxide 

mitigation. Mono-crystalline photovoltaic had the largest 

clean energy potential and carbon dioxide mitigation 

potential, followed by cadmium telluride photovoltaic.  

5. Conclusion 

Assessment of the power generation potential from 

rooftop photovoltaics is very important to create a policy on 

solar power production integration. This study highlighted the 

roof of the tallest buildings and solar insolation in local areas. 

The objective of this study is to predict the potential for 

rooftop solar photovoltaic exploration and the potential for 

mitigating carbon dioxide emissions. The method used in this 

study combined a deep learning approach and aerial 

photography of an unmanned aerial vehicle. Based on the 

study on the 40 tallest buildings, it was found a roof area of 

approximately 26,645 m2 with an average monthly irradiation 

of 5.63kWh/m2/day and energy potential per year of 8,671.1 

GWh (m-Si); 7,234.4 GWh (p-Si); 4,427 GWh (a-Si); and 

7,414.3 GWh (CdTe). Based on local emission factors, it can 

provide mitigation potential per year of: 7,199,468.9 tons of 

CO2 (m-Si); 6,000,536.3 tons of CO2 (p-Si); 3,674,417.7 tons 

of CO2 (a-Si) and 6,153,902.9 tons CO2 (CdTe). These 

findings are dedicated to university management to design and 

manage rooftop photovoltaic systems reliably and 

economically. 
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