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Abstract 

This paper determines the survival rates of patient with breast cancer 
using mixture model, and estimates the proportions of survival 
probabilities of uncured patients until pre-determined times. Baseline 
survival function could not be fully eliminated on EM (expectation 
maximization) algorithm. For estimating the function of baseline 
survival, the assumption of PH (proportional hazard) model is 
employed, in line with Cox’s PH model. Based on baseline survival 
functions, survival rates at pre-determined times in accordance with 
the existing certain characteristics of the patients could then be 
obtained. 

1. Introduction 

The mixture model was based on the function of probability distributions 
(both discretional and continuing distributions in the forms of mixtures): 
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where ( )⋅f  constitutes the density function describing the mixture elements, 

ip  constitutes the mixture weight with ∑
=
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n
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1
1,0  and n constitutes 

the numbers of the elements contained in the mixture. 

The mixture model is called parametric cure mixture model when                
it employs standard probability distributions (as Weibull, Gompertz 
exponential distributions) and generalized F. Discussions on the parametric 
mixture model can be found in [1-13]. 

Mixture model not using standard probability distributions is called non-
parametric cure mixture model used for estimating the cure rates, as 
introduced in [14], by applying the assumption of PH model for the failure 
time distributions of non-cured patients. The employed method was similar 
to the one of Cox’s PH model, namely non-parametric model. However, the 
results from the two similar methods could not be separated from Monte 
Carlo approach which used the concept of likelihood function. The reference 
[15] used Kaplan-Meier’s survival estimators (for estimating failure time 
distributions for uncured patient) and EM algorithm, but the model could not 
produce covariates for uncured patients. 

Chance to be cured, which usually is known as cure rate or surviving 
fraction, is defined as asymptotic value of the survival function for unlimited 
time to come, written as ( )tS

t ∞→
lim  [16]. For this example, t states the 

observed survival time period. Statistical inferences on cure rates are based 
on any given survival rate functions ( ) ( ){ }tTPtS ≥=  and can be written in 

as: 

( ) ( ) ( ),1 0 tSaatS −+=  (2) 

where ( )∞== TPa  or the chance to be cured, and ( ) =tS0  

( ).∞<|≥ XtTP  



Determining the Survival Rates of Breast Cancer Patient … 3167 

The likelihood function for the mixture model is given by 

( ) ( ) ( ) ( ) ( )[ ] .1
1

1∏
=

δ−δ π−+|π|π=
n

i
iiiuiiiui ii zxtSzxtfzL  (3) 

For estimating the unknown parameters in the mixture model we used 
EM algorithm, which consists of E-step and M-step. E-step calculates the 
function of expectancy for the likelihood logs, in which the purposes were to 
estimate the density function, the survival function and the proportions of 
uncured patients. M-step concerns with the maximization of the likelihood 
functions, which relates to the estimations of the density function, the 
survival function and the proportion of the uncured patients. 

EM algorithm constitutes an iterated approach for studying the model of 
data (data which have some lost values) through 4 steps [17]: (1) select an 
initial association for the parameters of the model, (2) determine the expected 
values of the lost data, (3) write the inducted parameters for a new model 
based on the combination between the expected and the original values in the 
data, and (4) when the parameters are not convergent, repeat step (2) by 
using a new model.  

2. Methods 

This research was designed using deductive-analytic approach. The 
population for this research consisted of patient who sought help from RSUP 
Dr Sardjito Yogyakarta (RSUP Sardjito) for breast cancer. The sample for 
this research consisted of breast cancer patients (BCP), taken from the same 
population based on a five-year survival. 

The data for this research were secondary data collected from clinical 
studies and medical records of the BCP treated in the Hospital. The medical 
records consisted of registered numbers, the patient’ name, dates of births, 
dates of first visits, dates of check outs or dates of last re-visits, disease 
stadiums, types of treatments and post-treatment health statuses. The data 
were analyzed deductively based on reviews on the results of previous 
studies, clinical definitions, clinical assumptions and clinical theorems. 
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3. Results and Discussions 

The data on the BCP based on respective ages, survivals, clinical 
stadiums and received treatments are illustrated in a histogram as shown in 
Figure 1. 

 

Figure 1. Histogram BCP RSUP Sardjito. 

Based on the data shown in Figure 1, we can figure out the ages of the 
BCP seeking for treatments in RSUP Sardjito, as can be seen in Table 1. 

Table 1. Statistical values of the ages of BCPs RSUP Sardjito 
Statistical values Value (years of ages) 

Means 46.79 
Standards of deviations 9.83 

Minimum 27 
Maximum 74 

 From Table 1, it can be seen that the average age of BCPs treated in 
RSUP Sardjito was 46.79. This is in accordance with the finding of previous 
review that in Indonesia, the highest incidence of breast cancer was found in 
females of productive ages (40-49 years old) [18]. As comparisons, the 
average age of BCPs in Jakarta was 46 years old while in Surabaya was 47. 
The life times of BCPs treated in RSUP Sardjito can be seen in Table 2. 
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Table 2. Life times of BCPs RSUP Sardjito 
Life times Value (in months) 

Mean 9.21 

Standard of deviation 15.63 

Minimum 0.03 

Maximum 48.5 

From Table 2, it can be seen that the average life time of BCPs treated in 
RSUP Sardjito was 9.21 months (less than a year). This low average of life 
time was caused by the BCP’s age and stadium of the disease at the time 
when the individual first came to RSUD for seeking medical help (as 
illustrated in the histogram in Figure 1). The illustration of the life times of 
BCPs based on ages is shown in Figure 2. 

   

Figure 2. Life time BCP based ages. 

From Figure 2, it can be seen that the higher the age of the BCP, the 
lower would her life time be. The life times of BCPs treated in RSUP 
Sardjito were assumed as distributed in Weibull fashion with θ and β 
parameters. This assumption is supported by time interval in probability plots 
as shown below (Figure 3). 



Nurkaromah Dwidayati and Zaenuri 3170 

       

Figure 3. Probability plot. 

From the above assumption we can then construct a plot for the hazard 
function (Figure 4) and another one for the survival function (Figure 5). 

   

Figure 4. Hazard function. 

Hazard function refers to conditional failure rate, which is the probability 
of mortality for a very short time interval, with an assumption that the 
individual would remain alive during the earliest time interval. In other 
words, it also means a limited probability stating that a BCP would die in a 
very short time interval of [ ]ttt Δ+,  if it was known that the individual 

would remain alive until the time of t. This probability constitutes an 
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inclination to die as a function of the individual’s age, meaning that ( )th  is 

the proportion of the individual’s ages during which she would die in a time 
interval of [ ]., ttt Δ+  Hazard function implies a mortality risk per unit of 

time during the aging process. 

In the cases of BCPs treated in RSUP Sardjito, based on Figure 4, it can 
be seen that the bigger the life time of t (the individual’s age keeps 
increasing) the higher would the value of the hazard function be. It shows 
that the older BCPs have higher risk to die than the younger ones. 

   

Figure 5. Survival function. 

Survival function implies the chance of BCP to remain alive until the 
time period beyond the time of t. From the graph shown above, it can be seen 
that higher the time t, lower would the chance of the individual to remain 
alive beyond time t. 

The illustrations of our assumptions on life time distributions for the 
BCPs treated in RSUP Sardjito is shown in Figure 6. 
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Figure 6. Life time distributions. 

Most of the BCPs treated in RSUP Sardjito (64%) had high stadiums 
(stadium III and stadium IV). Those who came to RSUP Sardjito in early 
stadiums (stadium I and stadium II) were only 36%. For more detailed 
illustrations, see Table 3. 

Table 3. Stadium of BCPs RSUP Sardjito 

Stadium Percentage (%) 

I 3 

II 33 

III 32 

IV 32 

Relating to the disease stadiums of the BCPs seeking for medical help in 
RSUP Sardjito, the treatments were given in four categories: (1) medication 
in low dosages, (2) mastectomy, (3) radiation and (4) chemotherapy. From 
the histogram in Figure 1, it can be seen that the BCPs were mostly treated 
by means of chemotherapy and mastectomy. For more detailed information, 
see Table 4. 



Determining the Survival Rates of Breast Cancer Patient … 3173 

Table 4. Medical treatments on BCPs RSUP Sardjito 
Treatments Percentage (%) 

Low dosage medications 2 

Mastectomy 43 

Radiation 8 

Chemoterapy 47 

From Table 4, it can be seen that the treatments given to the BCPs are 
mostly chemotherapy followed by mastectomy. This is in line with the facts 
that 64 BCPs seeking for medical treatments in RSUP Sardjito were in high 
stadiums (III and IV) and 33 were in stadium II. More detailed information 
on the statuses of BCPs treated in RSUP Sardjito can be seen in Table 5. 

Table 5. Cure status on BCPs RSUP Sardjito PKPD 
Cure status Percentage (%) 

Cure (1) 63 

Uncured (0) 37 

From Table 5, it can be seen that the BCPs who either died or just lost 
from the records at the end of this research were 37% while those who were 
cured or alive were 63%. The median survival time can be seen in Figure 7. 

   total    871.5799955   .0722825           100          1         5      33.
 >   
                                                                              
> %
           time at risk     rate        subjects        25%       50%       75
 >   
                         incidence       no. of            Survival time      

   analysis time _t:  thnhdp
         failure _d:  cure

. stsum

 
Figure 7. Survival time median. 

The central inclination illustrated in Figure 7 is the median but not 
average due to the fact that with at least one individual having too short or to 
long (or both) life times, the average survival time would not be proportional 
(would be either too big or too small or both). Based on previous analyses, 
ages and disease stadiums of the BCPs and treatments influence the life 
times. The relationships among these variables are expressed in Cox’s 
regression model for PH shown in Figure 8. 
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   treatment    -.2665868   .1555409    -1.71   0.087    -.5714414    .0382679
     stadium    -.0719014   .1749772    -0.41   0.681    -.4148503    .2710475
        umur     .0064848    .013542     0.48   0.632    -.0200571    .0330267
                                                                              
          _t        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood  =    -219.1161                     Prob > chi2     =     0.1944
                                                   LR chi2( 3)      =       4.71
Time at risk    =   921.479997
No. of failures =           63
No. of subjects =          100                     Number of obs   =        100

Cox regression -- Breslow method for ties

Iteration 0:   log likelihood =  -219.1161
Refining estimates:
Iteration 3:   log likelihood =  -219.1161
Iteration 2:   log likelihood =  -219.1161
Iteration 1:   log likelihood = -219.13443
Iteration 0:   log likelihood = -221.47074

   analysis time _t:  thnhdp
         failure _d:  cure

. stcox umur stadium treatment, nohr

 
Figure 8. Relation inter variable. 

Based on the above analyses, a regression model for Cox’s PH can be 
formulated as follows: 

( ) ( ) ( ),2665868,00719014,00064848,0exp 3210 xxxthth −−=  

where =:1x  age of the BCP, =:2x  disease stadium; =:3x  type of treatment 

The function for survival rate can be written as follows: 

( ) ( ) ( ).321 2665868,00719014,00064848,0exp
0

xxxtStS −−=  

Examples. Assume that a 43-year old female individual gets breast 
cancer of stadium III and received chemotherapy (=4) as the necessary 
medical treatment for her. After treatment for 12 months, the survival rate 
and the hazard rate for this BCP are calculated. Based on baseline survival 
and baseline hazard rates, the survival rate of this BCP comes out to be 

( ) 15410455,0120 =S    and   ( ) .8298352,1120 =h  

Thus, 

( ) ( ) ,503698,015410455,012 42665868,030719014,0430064848,0exp == ∗−∗−∗S  
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and hence the chance of the BCP to survive after a 12-month treatment is 
50,37%. The hazard rate can be calculated as below: 

( ) ( )42665868,030719014,0430064848,0exp8298352,112 ∗−∗−∗∗=h  

.671005,0=  

Hence, the chance of the BCP to die after the 12-month treatment is 67,1%. 

4. Conclusions 

Based on the above analyses, it can be concluded that to determine the 
survival rate of a BCP using the mixture model, the calculations should            
be based on BSF (baseline survival function). In the mixture model, the       
BSF could not be fully eliminated by using EM algorithm. Thus, BSF was 
estimated using the assumption of Cox’s PH from which we can obtain the 
survival rates based upon pre-determined times in accordance with the given 
characteristics of the BCPs. 
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