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Abstract: The preparation and application of bio based plasticizers derived from vegetable oils has
gained increasing attention in the polymer industry to date due to the emerging risk shown by the
traditional petroleum-based phthalate plasticizer. Epoxy fatty acid ester is among the prospective
alternative plasticizers since it is ecofriendly, non-toxic, biodegradable, low migration, and low carbon
footprint. Epoxy plasticizer can be synthesized by the epoxidation reaction of fatty acid ester. In this
study, the preparation of fatty acid ester as a green precursor of epoxy ester plasticizer was performed
via esterification of free fatty acid (FFA) in high acidic Calophyllum inophyllum Seed Oil (CSO) using
methanol in the presence of SnCly.2H,O catalyst. The analysis of the process variables and responses
using Box-Behnken Design (BBD) of Response Surface Methodology (RSM) was also accomplished.
It was found that the quadratic model is the most appropriate model for the optimization process.
The BBD analysis demonstrated that the optimum FFA conversion and residual FFA content were
75.03% and 4.59%, respectively, achieved at the following process condition: a reaction temperature
of 59.36 °C, a reaction time of 117.80 min, and a catalyst concentration of 5.61%. The fatty acid ester
generated was an intermediate product which can undergo a further epoxidation process to produce
epoxy plasticizer in polymeric material production.

Keywords: Calophyllum inophyllum seed oil; SnCly.2H,O; fatty acid ester; response surface methodology;
epoxy plasticizer

1. Introduction

Plasticizer is an important additive in polymer, especially in the plastic industry. The
IUPAC definition of plasticizer is a substance included in a material such as plastic or
elastomer to enhance its flexibility, working ability, and distensibility. This function can be
executed by decreasing the second order transition temperature, also known as the glass
transition temperature [1]. Plasticizers are low molecular weight molecules sited between
the polymer chains that develop a secondary bond with the polymer chains. Thus, they
interrupt the hydrogen bond and spread the polymer chains apart, which improves the
polymer properties in ways such as lowering the modulus, making the mass character of
the material softer, providing better gas permeability, enhancing the degree of crystallinity,
and reducing the tension of deformation [2,3]. The demand for plasticizer has notably
increased along with the rapid growth of the plastic and polymer industry during the
last decade.

To date, the most widely used plasticizers are conventional petroleum-based ph-
thalates, i.e., diisononyl phthalate (DINP), di(2-ethylhexyl) phthalate (DEHP), dibutyl
phthalate (DBP), diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), and n-butyl benzyl
phthalate (BBP). Phthalates are applied in many polymer products, especially PVC prod-
ucts. However, utilization of phthalate plasticizers has caused problems recently, since they
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exhibit a negative effect on human health and the environment [4-7]. Besides, they do not
have biodegradable and renewable characteristic. Therefore, it is essential to develop a
non-toxic, biodegradable, and renewable plasticizer with good performance which can
be used in various polymer products, such as food packaging, consumer goods, electrical
insulation, and medical products.

Bio based plasticizers derived from vegetable oils are among the prospective alterna-
tive since they have ecofriendly, non-toxic, biodegradable, low migration, and low carbon
footprint properties. Various types of bio-plasticizers can be produced from vegetable oil
raw materials such as, for instance, epoxidized oil (triglyceride) and epoxidized fatty acid
esters [1,6,8]. Among numerous bio based plasticizers, epoxidized fatty acid methyl ester,
also known as epoxy fatty acid ester, is favorable for application as an additive material
in PVC, which is attributable to its benefits, viz., high plasticizing efficiency, renewability,
biodegradability, and cost-effectiveness [9]. Epoxy fatty acid esters have better solubil-
ity in the polymeric matrix than epoxidized oil and offer superior elasticity even at low
temperatures [10].

Vegetable oil fatty acid esters as precursor of epoxy fatty acid esters can be prepared
via two different routes, namely the transesterification of triglyceride and the esterification
of free fatty acid. Vegetable oils are mainly composed of triglycerides, which consist of fatty
acid units linked to glycerol [11]. Fatty acid esters can be synthesized by transesterification
of the triglyceride in the oil using a short chain alcohol such as methanol over an acid or
base catalyst [9,12,13]. The nonedible vegetable oils, however, generally contain high free
fatty acid (FFA) in addition to the main triglyceride compound. The high FFA content
causes the acidic character of the vegetable oil. FFA is usually unfavorable since it has bad
odor and makes the oil rancid [14]. The standard quality of commercial vegetable oil such
as crude palm oil is required to have an FFA content lower than 5% [15]. In spite of this fact,
FFA can be transformed to fatty acid ester via an esterification reaction using short chain
alcohols in the presence of an acid catalyst [13,16]. Fatty acid esters synthesized via either
triglyceride transesterification or FFA esterification can further undergo an epoxidation
reaction to produce epoxy fatty acid esters. Fatty acid esters have a low viscosity; hence
they need lower organic solvent in the epoxidation reaction [17].

The epoxidation reaction requires fatty acid ester precursors which comprise a high
content of unsaturated fatty esters [10,17]. Epoxidation is a double bond addition reaction,
in which the double bonds are transformed into oxirane [7]. Thus, it involves the formation
of oxirane (epoxy) through the reaction between the olefinic double bond compound and
the peroxyacids or peracids. Epoxides or oxiranes consist of cyclic ethers with a reactive
3-membered ring. Peroxyacids in the epoxidation reaction are generally yielded via the
reaction between acetic acid or formic acid with hydrogen peroxide using a strong inorganic
acid. It can be also conducted by directly introducing peroxyacid into the reactants mixture.
The resulting peroxyacids then convert the double bond into the epoxy. A recent inmovation
in the area of fatty acid esters conversion to epoxy is enzymatic reaction technology [18,19].

Several works related to the epoxidation of fatty acid esters sourced from various veg-
etable oils, such as soybean, linseed, rapeseed, castor, grapeseed, avocado, olive, microalgae,
RBD palm olein, and sunflower oils [9,17,18,20-22] have been extensively reported. How-
ever, the synthesis of an epoxy fatty acid ester derived from Calophyllim inophyllum Seed Oil
has not been broadly studied. Calophyllum inophyllum Seed Oil (CSO) is a prospective source
of fatty acid esters as precursors of epoxy fatty acid esters. The Calophyllum inophyllum
plant, locally known as the nyamplung or tamanu tree or beach mahogany, originally comes
from Indo-Pacific area (Africa, India, South East Asia, Australia, and Pacific islands) [23].
The Calophyllum inophyllum seed is an excellent source of vegetable oil with oil content of
65-75% [24]. Based on our previous investigation, Calophyllum inophyllum Seed Oil (CSO)
comprises high unsaturated fatty acid. The fatty acids composing CSO are predominantly
unsaturated fatty acids (40% oleic acid, 29.94% linoleic acid, and 0.6% arachidic acid) with
small portion saturated fatty acid (15.51% palmitic acid and 14.39% stearic acid). C5Ois a
nonedible oil, containing gum and high FFA content of 19.18% [25]. The undesired high
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FFA content in CSO has the potential to be converted to fatty acid esters as precursor of
epoxy fatty acid ester plasticizer through acid catalyzed esterification using methanol.

In this work, the esterification of the FFA present in CSO with methanol using
5nCl,.2H, O was carried out to produce fatty acid ester as precursor of epoxy fatty acid
ester. The heterogeneous SnCly.2H,O (tin chloride) catalyst was employed to promote
the reaction by reason of its superiority. SnCl».2H;0 is a low cost Lewis acid catalyst
which is tolerant to water, stable, minimally corrosive, and simple to handle. It is milder
than Brensted acid catalyst but capable of providing high catalytic activity. Lewis acids
are compounds with lack of electrons which can perform to activate substrate rich in
electrons [26,27]. This catalyst also possesses the general advantages of heterogeneous
catalyst, specifically easy separation from the product mixture and reusability [28].

To optimize the process condition for the esterification of FFA in CSO with methanol in
the presence on SnCl,.2H,0, a statistical model was applied. Response Surface Methodol-
ogy (RSM) is a rigorous technique that can be implemented to assess numerous parameters
with a minimum number of experiments. It involves a mathematical and statistical proce-
dure to create an experimental design which can examine the influences of the independent
process variables on the response variable, thus allowing the optimum response to be
verified [29]. In the optimization process, a suitable design should be employed. The mod-
els that are applicable for the factorial analysis are Box-Behnken Design (BBD), Doehlert
Design (DD) and Central Composite Design (CCD). These models can predict the response
function to the actual data using the quadratic function [30]. BBD is more efficient and
cost-effective than DD and CCD since it has no extreme points and needs fewer points
than the others for the analysis and optimization [31]. The purpose of this work was to
determine the proper process condition which results in the highest reaction conversion
and the lowest residual FFA by using BBD in RSM for the esterification of FFA in C50O with
methanol over SnCly.2H;O catalyst. At the optimum process condition, the highest yield
of fatty acid esters as precursor of epoxy plasticizer was also achieved.

2. Materials and Methods
2.1. Materials

Calophyllum inophyllum Seed Qil (CSO) was obtained from a local supplier in Central
Java, Indonesia. [t had an acid value and FFA content of 36.542 mg KOH /g oil and 18.39%,
respectively. The most dominant fatty acid composing the CSO was oleic acid, which
has a molecular weight of 282.52 g /mol as reported in our previous work [25]. The other
materials used were phosphoric acid, methanol (technical grade, purchased from local
chemical store), ethanol p.a. (Merck), SnCl.2H,0 or tin(Il)chloride catalyst (Merck), KOH
p-a. (Merck), oxalic acid p.a. (Merck), distilled water, and phenolphthalein solution.

2.2, Methods
2.2.1. Esterification Reaction

Prior to the esterification reaction, the C50 was degummed using phosphoric acid
to remove the phospholipids and mucilaginous gums content [32]. The acid degumming
process was performed using a similar method to the previous work [25]. The degummed
CSO was then underwent the esterification reaction. Initially, the CSO and methanol
were weighed to obtain a molar ratio of CSO and methanol of 1:30. The CSO was heated
until it reached the desired temperature (40 °C, 50 °C, and 60 °C) in a three necks flask
reactor. At the same time, a certain amount of SnCl>.2H-0O was solved and mixed with
methanol in another flask. The SnCl;.2H,0 catalyst employed for the reaction was varied
at 1%, 3%, 5%, and 7% w/w of CSO. The mixture of methanol and SnCl,.2H,0 catalyst
was separately heated up to the similar temperature. Once the targeted temperature was
attained, the methanol-5nCl; .2H, O catalyst mixture was introduced into the reactor, and
this was recorded as the initial time of the esterification reaction. The esterification reaction
was conducted for 120 min using a batch reactor which was equipped with a condenser and
magnetic stirrer. The high agitation speed of 1000 rpm was applied to enhance the mixing
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of the solid catalyzed reaction [33-35]. Samples were taken periodically every 10 min. The
samples were tested to determine the acid value using standard carboxylic-acid-titration
techniques [36,37]. According to Kurniati et al. [38], The FFA conversion (X,) at a certain
sampling time was determined based on the residual acid value at reaction time t as shown
in Equation (1).
AV, — AV,
= 7/“/,’ %
where X, is the reaction conversion (%), AV; is the initial acid value (t = 0) (mg), and AV} is
the residual acid value at reaction time (mg).
The FFA content was calculated using Equation (2) [39].

X4 100% 1)

. oy AXNx MW
FFA Content (%) = —ex1000 * 100 (2)
where FFA Content is the reaction conversion (%), A is the volume of KOH (ml), N is the
normality of KOH (N), MW is the average molecular weight of the fatty acids (g/mol), and
G is the sample weight (g).

2.2.2. Optimization Using Box—Behnken Design of Response Surface Methodology

The experimental data were used for the optimization of the operation condition
to obtain the lowest FFA content in the C50 and the highest reaction conversion using
Box-Behnken Design (BBD) of Response Surface Methodology (RSM). The simulation was
conducted using Design Expert version 13 software. BBD was chosen since it can optimize
the parameters effectively with the minimum number of experiments and allows analysis
of the interactions between the parameters. In this study, BBD was performed using a total
of 15 experimental runs, and the center point measurements were repeated three times
to accomplish an accurate calculation of the experimental error. The parameters studied
as the independent variables in this work were temperature (A), reaction time (B), and
catalyst concentration (C). Each parameter was examined at 3 levels, viz., —1 indicated the
low level, +1 represented the high level, and 0 was used as the central point to evaluate
the experimental error [40]. The independent variables and their levels are presented in
Table 1. Furthermore, the design of the randomized response model is shown in Table 2.

The average magnitude of error between the predicted value and actual value (ex-
perimental data) was calculated using Equation (3), in which MAPE is Mean Absolute
Percentage Error and # is the number of data points.

| predicted value—ex perimental data |

| experimental d |
MAPE — Z xp ifm'l;m! ata < 100% (3)

Table 1. Independent Variables Range and Level Used in BBD Experimental Design.

Coded Level

Independent Variable Factor
-1 0 1
Temperature (°C) A 40 50 60
Reaction Time {min) B a0 90 120
Catalyst Concentration (%) C 3 5 7
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Table 2. Design of the Randomized Response Model.
Factor B Factor C
Run Tem;la::::::;: €0 Reaction Time Catalyst
(min) Concentration (%)
1 40 120 5
2 40 60 5
3 60 90 3
4 40 a0 7
5 60 90 7
6 50 120 3
7 60 120 5
8 50 60 7
9 50 90 5
10 40 90 3
11 60 60 5
12 50 60 3
13 50 90 5
14 50 120 7
15 50 90 5

3. Results and Discussion
3.1. Effects of the Experimental Variables on the Reaction Conversion

The esterification of high acidic Calophyllum inophyllum seed oil (CSO) with methanol
in the presence of SnCl;.2H»O catalyst to transform free fatty acid (FFA) to fatty acid ester as
precursor of bio-based epoxy plasticizer has been conducted in this work. The esterification
reaction of FFA in C50 with methanol over SnCl;.2H;0O is illustrated in Figure 1.

(8]
‘//0 SnCl,.2H,0 Catalyst [I
. - s S
R—C\ + CH;OH -— CH;O0—C—R + H;O
OH
Free Fatty Acid Methanol Methvl Ester Water
(FFA) :

Figure 1. Esterification of FFA with Methanol in the Presence of 5SnCly.2H>O Catalyst.

Based on the stoichiometry, one mole FFA requires one mole methanol to precede the
esterification reaction [41]. However, the Fischer esterification reaction is an equilibrium
limited reaction. Thus, a great excess of methanol reactant should be introduced to shift the
equilibrium towards the product formation [42]. In this work, a fixed CS0O to methanol ratio
of 1:30 was applied for all the experiments. To intensify the mixing between the reactants
and catalyst, the agitation speed was kept at 1000 rpm. The rapid agitation is beneficial to
reduce the film thickness between the reactants and promote the mass transfer [42]. The
experimental results are demonstrated in Figures 2 and 3.

Figure 2 presents the effect of the catalyst molar ratio on the reaction conversion for
the reaction conducted at a fixed reaction temperature, molar ratio of CSO and methanol,
and reaction time of 60 °C, 1:30, and 120 min, respectively. The effect of the catalyst
concentration was studied at the range of 1-7% w/w CSO. Catalyst offers an altered reaction
route with lower activation energy. Hence, it causes a higher percentage of collisions
between the reactants’ molecules when they reach the minimum energy to react. It can be
observed that the reaction conversion was enhanced to 73.75% with an increase in catalyst
concentration from 1% to 5%. The higher reaction conversion was accomplished on account
of the increased number of active sites available for the reaction [43,44]. Thus, it accelerated
the reaction to reach the equilibrium. However, it was revealed that the employment of
7% catalyst did not further raise the reaction conversion. Instead, the conversion tended
to slightly decline to 65.85%. This means that the excessive addition of catalyst will not
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provide a comparative influence on the conversion improvement when the contact process
has already arrived at the maximum [45].

80
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Figure 2. Effect of the Catalyst Concentration on the Reaction Conversion of FFA Esterification in CSO

over SnCly .2H,O Catalyst at the Reaction Temperature of 60 °C, Molar Ratio of CSO and methanol of
1:30, and Reaction Time of 120 min.
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Figure 3. Effect of the Temperature and Reaction Time on the Reaction Conversion of FFA Esterifi-

cation in CSO over SnCly.2H,0 Catalyst at the Molar Ratio of CSO: methanol of 1:30 and Catalyst
Concentration of 5%.

Figure 3 exhibits the effects of the temperature and the reaction time on the reaction
conversion for the reaction carried out at a fixed catalyst concentration of 5% and molar
ratio of C50: methanol of 1:30. The reaction temperature was examined at 40, 50 and 60 °C
and the reaction time was inspected at 0-120 min. It was disclosed that the rising of the
temperature brought about the extensively higher reaction conversion. Esterification is an
endothermic reaction; therefore the reaction rate increased with the temperature [46]. A
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rise in the temperature will also improve the translation and the rotation of the reactants’
molecules and lower the liquid viscosity, which will enhance the diffusion rate of the
reactants to the active sites of the catalyst [45]. The effective mass transfer has a beneficial
impact on the higher total reaction rate and higher reaction conversion. The highest
conversion of 73.75% was obtained at 60 °C, which was near to the boiling point of the
methanol. A further increase in the temperature at a similar atmospheric pressure will not
promote the conversion since it will exceed the boiling point, and hence part of the methanol
in the liquid phase will change to the gas phase. The result was ina good agreement with
Handayani et al. [47]. The longer the reaction time, the higher the conversion that was
attained. However, a sharp acceleration was shown in the first 10 min of the reaction. It
was attributed to the high concentration of the reactant at the beginning of the reaction.
To determine the optimum process condition which led to the best reaction conversion,
analysis using Box-Behnken Design (BBD) in Response Surface Methodology (RSM) was
also carried out.

3.2. Model Fitting in Box—Behnken Design (BBD)

Response Surface Methodology (RSM) using Box—Behnken Design (BBD) is broadly
applied to determine the optimum condition of the variables which results in the desired
response. It is also practical for evaluating the effects of the independent variables and the
interaction between the independent variables [48]. In this work, BBD was employed to
examine the effects and interactions of the independent variables (reaction time, reaction
temperature, and catalyst concentration) to determine the optimum condition which pro-
duced the highest ester yield and the lowest FFA content in the esterification of CSO using
methanol over SnCl.2H>O catalyst.

The Box—Behnken response surface design and corresponding response values in this
work, including the comparison between the experimental data and the prediction value as
well as the errors, are revealed in Table 3. Error is the disparity between the observed and
the predictive values, and, accordingly, it can be used to evaluate the accuracy of the model.
The error values in this study were calculated in term of mean absolute percentage error
(MAPE) as conveyed in Equation (3). It was revealed that the MAPE of the FFA conversion
and the FFA content responses were 2.2704% and 3.3410%. The values of MAPE were far
less than 10%, indicating the high correctness of the prediction. Generally, values of MAPE
below 10% designate a high accuracy of prediction, whereas the values of 10-20%, 20-50%,
and higher than 50% imply good, fair, and inaccurate forecasting, respectively [49].

Table 3. The Box-Behnken Response Surface Design and Corresponding Response Values.

Temperature Reaction Catalyst FFA Conversion % Error FFA Content (%) Error

Run (R Time (min) Concentration Experiment Prediction (MAPE) Experiment Prediction (MAPE)

A B (%) C o %o

1 40 120 5 66161 65,963 0.2987 6227 6.264 0.5862
2 40 60 5 64.896 64.619 0.4267 6.460 6.511 0.7895
3 60 a0 3 46,237 44,695 3.3348 9.894 10,178 28704
4 40 a0 7 52878 54,420 29160 8672 8388 32749
5 60 a0 7 65.528 66,595 1.6289 6344 6.148 30974
] 50 120 3 44023 45.288 28735 10.301 10.068 22619
7 60 120 5 73751 74.028 0.3755 4831 4780 1.0557
& 50 60 7 62,682 61.417 20181 6.867 7.100 3.3930
9 50 a0 5 63.631 65634 20181 6.693 6.324 55132
10 40 90 3 42125 41.058 2.5339 10.650 10.847 1.8451
11 60 60 5 72170 72,368 0.2738 5122 5.086 0.7126
12 50 &0 3 41.809 43,153 32153 10.709 10.462 23111

13 50 90 5 69.640 65634 57524 5587 6.324 13.1967
14 50 120 7 63.631 62,287 21125 6.693 6.941 3.6979
15 50 a0 5 63,631 65634 3.1478 6693 6.324 5.5087
MAFE (%) 22704 3.3410

There are various models that are available for the optimization using RSM. In this
work, four polynomial models (viz., linear, 2FI or two-factor interaction, quadratic, and
cubic) were assessed to decide the most appropriate model to suit the experimental data.
The above mentioned models have been extensively studied in the field of bioresources
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processing research [25,50]. The evaluation of the models was carried out using two
different statistical testing methods, i.e., the sequential model (sum of squares) and the
model summary tests. Based on the sequential model sum of squares test (Table 4) and
the model summary test (Table 5), it was found that the suggested model to optimize the
FFA conversion and the FFA content in the case of CSO esterification over SnCl,.2H,0O
catalyst was the quadratic model. The quadratic model was designated due to the facts
that it provided the lowest p value as indicated in Table 4, and, at the same time, it shown
the highest adjusted R? and predicted R? as demonstrated in Table 5.

Table 4. Sequential Model (Sum of Squares) Test.

Component Stwm of Degree of = F-Value p-Value Remarks
Square Freedom Square
Sequential (Sum of Square) for the FFA Conversion
Mean 53,138.62 1 53,138.62
Linear 751.26 3 250.42 2.87 0.09
2F1 18.65 3 6.22 0.05 0.98
Quadratic 903.67 3 301.22 3948 0.0007 Suggested
Cubic 14.08 3 1.69 0.39 0.7758 Aliased
Residual 24.07 2 12.04
Total 54,850.36 15 3656.69
Sequential (Sum of Square) for the FFA Content
Mean 832.43 1 83243
Linear 25.44 3 848 2.87 0.09
2F1 0.63 3 0.21 0.05 0.98
Quadratic 30.60 3 10.20 39.44 0.0007 Suggested
Cubic 048 3 0.16 0.39 0.7756 Aliased
Residual 0.82 2 0.41
Total 890.40 15 59.36
Table 5. Model Summary Test.
Standard 2 Adjusted Predicted
Component Deviation R RZ R2 Press Remarks
Model Summary for the FFA Conversion
Linear 9.34 0.44 0.29 -0.12 1921.57
2F1 10.85 0.45 0.04 —1.59 4446.52
Quadratic 276 098 0.94 0.84 27943 Suggested
Cubic 347 0.99 0.90 * Aliased
Model Summary for the FFA Content
Linear 1.72 0.44 0.29 -0.12 65.07
2F1 2.00 0.45 0.04 -1.59 150.57
Quadratic 0.51 0.98 0.94 0.84 9.47 Suggested
Cubic 0.64 0.99 0.90 * Aliased

* means not defined.

The empirical correlation of the variables and the response based on the quadratic
model resulting from the BBD can be stated in the form of a second order polynomial
equation. The general equation for the second order polynomial regression model is
written in Equation (4).

k k kk
Y = po+ Yo (BiXi) + - (BiiXi) + ) Yo (BiiXixj) @)
i=1 i=1

ii=1 j=1

Y indicates the predicted response, fo is a constant, Biis a coefficient for the lin-
ear, Bii is the coefficient for the quadratic, and (ij is the interactive coefficient [29,51].
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Thus, the definitive equations for the FFA conversion and FFA content are revealed in
Equations (5) and (6), respectively.

FFA Conversion (%) = 347466 — 1.29512 A — 0.457250 B + 37.23375 C +
0.000263 AB + 0.106725 AC — 0.005271 BC + (5)
0.011331 A% + 0.002753 B? — 3.76878 C2

FFA Content (%) = 17.746 — 0.238292 A — 0.4084117 B + 6.85158 C+
0.000048 AB + 0.19650 AC — 0.000975 BC + 0.002084 A2+ (6)
0.000507 B2 — 0.693521 C2

where A, B, and C are the temperature (°C), reaction time (min), and catalyst concentration
(%), respectively.

3.3. Statistical Analysis Using ANOVA

The quadratic model as the most appropriate model was thenceforth analyzed using
analysis of variance (ANOVA). The significance of the actual data to the different models
based on their associated p-values is displayed in Tables 6 and 7. Table 6 shows the
statistical analysis using ANOVA to predict the FFA conversion in the esterification of
CSO. The significance of each constant and the intensity of interaction were proved by
the p-value. Influences lower than 0.05 are significant [50]. It can be observed that the
F value was 24.37 at the p-value < 0.05, denoting that the model was significant. In this
investigation, it was discovered that the affecting variables were two linear coefficients
(A and C) and one quadratic coefficient (C?). This implies that the temperature (A) and
catalyst concentration (C) were significant to the model, but the reaction time (B) was
insignificant. The adeq precission value is the measurement of the ratio of the signal against
the interference, in which the expected ratio is >4. Table 6 demonstrates that the adeq
precission was 14.6107, revealing that the model was significant [52]. The lack of fit was
14.08 at a p-value of 0.78, which was determined to be significant. 1t can be suggested that
the model is suitable for the prediction of the FFA conversion.

Table 6. Analysis of the Variance and Regression Coefficients of the BBD Quadratic Model to Predict
the FFA Conversion.

Source Sum of Square DF Mean Square F Value p-Value
Model 1673.58 9 185.95 2437 0.00 Significzmt
A Temperature (°C) 125.03 1 125.03 16.39 0.01
B Reaction Time (min) 4.51 1 4.51 0.59 048
C Catalyst Concentration (%) 621.72 1 621.72 B1.48 0.00
AB 0.03 1 0.03 0.003 0.96
AC 18.22 1 18.22 2.39 0.18
BC 0.40 1 0.40 0.05 0.83
A2 474 1 474 0.62 0.47
B? 22.66 1 2266 2.97 0.15
c? 839.11 1 839.11 109.97 0.00
Residual 38.15 5 7.63
Lack of Fit 14.08 3 14.08 0.39 0.78 Not Significant
Pure Error 24.08 2 12.04
Cor Tolal 1711.73 14
Adeq Precision 14.62
R? 0.98




Polymers 2023, 15, 123

100f15

Table 7. Analysis of the Variance and Regression Coefficients of the BBD Quadratic Model to Predict
the FFA Content.

Source Sum of Square DF Mean Square F Value p-Value

Model 56.67 9 6.30 24.35 0.00 Significant
X1 423 1 4.23 16.36 0.01

Xz 0.15 1 0.15 0.59 0.48

X3 21.05 1 21.05 5141 0.00

X12 0.00 1 0.00 0.00 0.96

X3 0.62 1 0.62 2.39 0.18

Xog 0.01 1 0.01 0.05 0.83

Xq2 0.16 1 0.16 0.62 0.47

X2 0.77 1 0.77 297 0.15

X32 28.41 1 28.41 109.88 0.00

Residual 1.29 5 0.26

Lack of Fit 0.48 3 0.16 0.39 0.78 Not Significant
FPure Errvor 0.82 2 0.41

Cor Total 57.96 14

R? 098

Adeq Precision 14.61

The use of the ANOVA regression model to predict the left over FFA content after
the esterification reaction of CSO can be observed in Table 7. The experimental data were
analyzed using ANOVA, and the significant regression coefficient was determined based
on the p-value, in which a p-value < (.05 denotes that the model is significant. The value of
adeq precision is the magnitude of the ratio of the signal to the disturbance, wherein the
desirable value is >4 [52,53]. This model showed the adeq precision of 14.6107, indicating
that the model is accurate.

3.4. Optimization of the Process Variables Using BBD

The optimization of the process variables to obtain the targeted response variables
was performed using a quadratic model of BBD. Primarily, the influences of the process
variables, such as temperature, reaction time, and catalyst concentration, to the response
variables, viz., the reaction conversion and the FFA content in the CSO esterification over
5nCly.2H;0O catalyst, were investigated using BBD in RSM. Based on the model selected,
analysis of the main effect and the interaction of the process variables to the response
variable using 3D RSM was carried out. The resulting 3D graphs were developed from
maintaining one constant variable (derived from the midpoint) and varying two other
variables. Therefore, the effect of each process variable on the response variable can
be identified.

Figures 4 and 5 disclose that the reaction conversion increased and the FFA content
decreased with the temperature up to 60 °C, respectively. The intensification of the catalyst
concentration from 3% to 5% enhanced the reaction conversion and diminished the FFA con-
tent considerably. This was due to the increased number of reactant molecules which were
activated by the carbonyl polarization due to the higher amount of Sn+2 catalyst. Hence, the
nucleophilic attack by methanol could occur more frequently and effectively, leading to the
higher reaction conversion. Oppositely, the leftover FFA content was reduced [54]. There
are various proposed mechanisms concerning the carbonyl group activation by tin catalyst,
yet the carbonyl polarization will be auspicious when attacked by the hydroxyl group [55].
However, the further increase of the catalyst from 5% to 7% did not provide a meaningful
effect in terms of improving the reaction conversion and lessening the FFA content. As a
matter of fact, it can be observed that the employment of 7% catalyst increased the FFA
content. Marso et al. [56] described how an excessive utilization of the catalyst beyond the
optimum concentration could form an emulsion which increased the viscosity and thus
hindered the contact between the CSO and the methanol. Consequently, it lowered the
reaction conversion. Hence, the residual FFA in the oil was higher.
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Figure 4. Three Dimensional (3D) Response Surface of the Effects of the Process Variables on the
Reaction Conversion. (a) Catalyst Concentration of 5%; (b) Reaction Time of 90 min; (c) Reaction
Temperature of 50 °C.
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Figure 5. Three Dimensional (3D) Response Surface of the Effects of Process Variables on the
FFA Content in after the Undergoing the Esterification Reaction. (a) Catalyst Concentration of 5%;
(b) Reaction Time of 90 min; (c) Reaction Temperature of 50 °C.

In this study, the Derringer method was utilized to optimize the reaction conversion
and the reduction of FFA content via CSO esterification over SnCl; 2H;O catalyst. The
Derringer method is a popular desirability function-based approach to solving a problem
comprising a simultaneous optimization of several response variables. Derringer and
Suich [57] modified the previous Harrington's procedure by converting the response into a
desirability function [58]. The values of desirability functions are between 0 and 1. Mathe-
matically, the general approach is to convert each response into an individual desirability
function (d) that varies over the range 0 < d < 1 [59]. The value of 0 implies that the factors
present unfavorable response. On the other hand, the value of 1 relates to the optimal
condition of the examined factors and indicates that the responses are at their targets. This
approach simplifies the multivariate optimization. Due to its simplicity and flexibility, the
Derringer desirability function has been broadly applied in multiple responses optimization
to find out the independent variables condition which brings about the optimal values of
the response variables [60]. Based on the optimization process, Figure 6 reveals that the
optimum reaction conversion and FFA content were 75.03% and 4.59%, respectively, which
were achieved at the following operation condition: a reaction temperature of 59.36 °C, a
reaction time of 117.8 min, and a catalyst concentration of 5.61%. The value of desirability
obtained was 1, indicating the optimal condition of the studied parameters. This result




Polymers 2023, 15, 123

12 0f15

was slightly lower than that for the similar reaction which was conducted using sulfuric
acid catalyst at the reaction temperature, catalyst loading, and reaction time of 59.09 "C,
1.98% g/¢ CSO, and 119.95 min, respectively, resulting in the reaction conversion of 78.27%
and the FFA content of 4% [25]. Despite this slight lower conversion, the application of
heterogeneous SnCl,.2H,O catalyst is greatly preferable to the sulfuric acid catalyst since
it is more environmentally friendly, reusable, less corrosive, and easier in handling and
separation. The result of this work offers a green alternative of synthesizing renewable bio
based fatty ester from CSO as precursor of epoxy ester plasticizer.

. i T

40 &0 &0 120

A Temperature = 58,5579 B: Reaction Time = 117.504

- . .

I
3 7 41809 7375

C: Catalyst Concentration = 561391 Reaction Corversion = 75.0271

Desirability = 1000

4831 10709 Solution 8 out of 100

FFA Content = 4.59612

Figure 6. Optimization of Reaction Conversion and FFA Content using BBD Quadratic Model in RSM.

4. Conclusions

The esterification of FFA in Calophyllum inophyllum Seed Oil (C50) using methanol in
the presence of SnCl,.2H, O catalyst has been conducted as an alternative way to produce
fatty acid ester as a green precursor of epoxy ester plasticizer. In this investigation, the
interactive and individual effects from three experimental variables (temperature, reac-
tion time, and catalyst concentration) on reaction conversion and residual free fatty acid
(FFA) content were studied by employing the Box—Behnken Design (BBD) of Response
Surface Methodology (RSM) technique. The quadratic model in BBD was selected for the
optimization of the reaction conversion and the decreasing of the FFA content. The BBD
analysis showed that the optimum FFA conversion and residual FFA content were 75.03%
and 4.59%, respectively, attained at the following process condition: a reaction temperature
of 59.36 °C, a reaction time of 117.80 min, and a catalyst concentration of 5.61%. The fatty
acid ester generated is subsequently ready for the further epoxidation process to produce
epoxy plasticizer in polymeric material production.
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