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Abstract. Kratzer potential is a potential for bound states in molecular bonds, while negative 

Kratzer potential is a potential for scattering states which has a barrier form, and which clearly 

has properties opposite to the bound state potential. This type of potential is the main subject of 

this paper. When a non-relativistic particle which has lower energy moving towards the potential, 

then there is a probability for the particle to break through the potential.  In this paper, we use 

the WKB (Wenztel-Kramers-Brillouin) method to analyze the physical conditions that must be 

met by the system in order for the tunneling processes to occur. We present these conditions in 

the form of the relationship among several quantum variables such as the mass of the particle, 

the energy of the particle, the maximum height of the barrier potential, equilibrium internuclear 

separation, and the enactment domain of the potential field effect on the particle when the particle 

breaks through that potential.  

1. Introduction 

The quantum tunneling effect is a phenomenon at the molecular, atomic, or subatomic level that occurs 

when a particle with a certain energy E can penetrate a potential barrier V(r) with higher energy. This 

phenomenon does not exist in classical mechanics but occurs at the quantum level [1]. This phenomenon 

opened a new perspective for scientists in the 19th century so that they were able to construct quantum 

mechanics to become more established today. With a good understanding of the effects of this tunneling, 

many of the puzzles of physical phenomena begin to be answered, such as problems with radioactive 

decay, ionization, quantum state transitions, and so on. 

The theoretical study of the tunneling effect was first carried out by Gamow in 1928 (independently 

of Condon and Gurney) in analyzing the alpha decay phenomenon of radioactive atomic nuclei ([1,2]). 

The tunneling effect plays a very important role in physical phenomena both at the molecular, atomic, 

and sub-atomic levels. By knowing this mechanism, many things in the microscopic context can be 

known. The problem of tunneling effects also plays an important role in materials developed in the world 

of science to the world of industry, from research related to materials for semiconductors, 

superconductors, to industrial-scale materials such as graphene and optical materials ([3],[4,5]). 

Based on the medium, the tunneling effect can be divided into two, namely the linear and nonlinear 

tunneling effect [6–11]. The linear tunneling effect is a mechanism of the tunneling effect that occurs in 

the air/ vacuum medium, while the nonlinear tunneling effect, for example, is in wave propagation in 

non-air/ vacuum optical materials ([6,12]). There have been many studies examining these two fields, 



ICMSE 2020
Journal of Physics: Conference Series 1918 (2021) 022026

IOP Publishing
doi:10.1088/1742-6596/1918/2/022026

2

 

 

 

 

 

 

both linear and nonlinear ([3–6,13,14]). In terms of the analytical method, it is quite different 

fundamentally, which also results in the complexity of the formulation produced and then analyzed. 

This research is focused on the phenomenon of the linear medium tunneling effect. More specifically, 

this research will focus on analyzing the quantum transmission probability (tunneling mechanism) of a 

charged particle passing through a potential barrier. The potential barrier to be examined in this study is 

a negative Kratzer potential. Kratzer potential is a type of potential that is often found in molecular 

interaction phenomena, and which was first introduced by Kratzer [15]. Currently, this potential study 

has been developed into various fields of study, for example, the quantum dot [16], statistical 

thermodynamics [17], the Stark effect for the bound state [16], and others [18]. Modifications to this 

potential can be seen in ([17,19–22]). 

The Kratzer potential is basically constructed to describe the bound state of molecular interactions. 

One thing that is interesting is that, although Kratzer potential is a bound potential, from another point 

of view, this potential can be seen as a barrier for certain particles outside the system to pass through, 

or even by other particles in the system that tend to "break away" or change its quantum state. If another 

particle moves closer to that potential, that particle has the probability to penetrate or be reflected/ 

scattered, as well as the particle which will change its quantum state (excitation), has the probability to 

"break away"/ break through the effect of the potential in its initial state. Classically, if the energy a 

particle has is lower than the interaction energy of a molecule, it is impossible for the particle to penetrate 

that potential; but quantumly, there is a probability that the particle will penetrate it. 

If the system in question is molecular interactions, then basically the Kratzer potential indicates a 

bound state interaction, which is also a state of attraction in a molecule. However, if we are considering 

the possibility of transmitting other particles through molecular interactions, then the potential under 

review must act as a barrier/ scatter potential, therefore this potential sign is made negative from the 

standard potential. The potential of this type ([15]) is further reviewed in this study. 

This research is focused on analyzing the tunneling effect of quantum particles when they are 

subjected to a negative Kratzer potential. This study uses the WKB (Wentztel-Kramer-Brillouin) method 

in finding the probability of particle transmission. This method is one of the most powerful methods that 

can be used not only for solving bound states in quantum systems, but also for such unbound cases. 

 

2. Methods 

2.1.  WKB approximation 

In general, the WKB Method is used to solve time-independent Schrodinger equation problems that are 

difficult to solve/ even cannot be solved exactly. This method can be applied to bound state problems 

(to calculate energy levels) as well as to analyze scattering phenomena (at barrier potentials) and the 

effect of quantum tunneling ([23–25]). 

 

 

 

 

 

 

 

 

 

 

 

Since this study is focused on the tunneling effect, the description of the WKB method is only focused 

on this phenomenon. Before further elaborating on the WKB method, it is necessary to briefly explain 

the tunneling effect. This phenomenon occurs when a quantum particle penetrates through a potential 

barrier that has higher energy than the particle's energy. This phenomenon was first investigated by 

 

 

 

 

 

 

 

 

Figure 1. A General form of Barrier Potential 



ICMSE 2020
Journal of Physics: Conference Series 1918 (2021) 022026

IOP Publishing
doi:10.1088/1742-6596/1918/2/022026

3

 

 

 

 

 

 

Gamow, Gurney, and Condon to analyze radioactive decay, however, recently, the tunneling effect has 

been studied in many quantum areas as previously mentioned. ����� = ��	��� exp � � 	����� + �4�
� � + ��	���  exp −� � 	����� + �4�

� � (1) 

������ = ��	���� exp − � 	�������
� � + ��	���� exp � 	�������

� � (2) 

������� = ��	��� exp � � 	����� + �4�
� � 

(3) 

where 	��� = √2!"ℏ ; 	���� = �2!�%��� − "�ℏ  (4) 

It should be remembered that the addition of the �/4  phase in equations (1) and (3) from the actual 

form is solely for the purpose of facilitating the comparison of these equations with Airy function in 

solving the limit problem (classical turning point) to find the relationship between the constants � in 

region III with constant � in the region I. 

If we pay attention to equation (2), there is a serious matter that must be considered, namely the 

amplitude part of the wave function. The factor 
'�()��� is proportional to 

'�*)���, where +���� =�2!�%��� − "� is the momentum of the particle in region II. However, what needs to be considered is 

the points (,, ") and �., "�, which are the classical turning points. At these two points, " = %���, makes 

the factor 
'�()���  go to infinity or the momentum factor is zero so that the wave function at this point 

goes to infinity. This is very contrary to experimental facts. Therefore, to solve this problem, it is 

necessary to connect the wave function from region I to region II, and also region II to region III. 

To get the connection formula, it can be done in a few steps. First, separately observing the regions 

that are very close to the connection point between regions I and II, then region II and region III; this 

area is hereinafter referred to as the patching region. Second, the patching region is seen as a new 

quantum system, where the potential form is a linear potential that has a certain gradient with respect to 

the horizontal plane. Third, perform a solution analysis of the Schrodinger equation for this system. The 

solution of the Schrodinger equation system generates a patching wave function which is a linear 

combination of the Airy type I and type II functions. Fourth, comparing the WKB wave function for 

each connection area with the patching wave function corresponding to the two regions. From this 

relationship, the relationship between the constant � in equation (3) and the constant � in equation (1) 

will be obtained. This relationship is used to calculate the transmission probability / = 01203
. The 

intended Airy functions are ���4� and ���4�, which generally have the form of integral representation, 

namely ���4� = 1� � cos 9:3 + 94� �9,<
=  (5) 

���4� = 1� � >?@A: B@C + sin 9:3 + 94�� �9.<
=  (6) 

For asymptotic condition ���4� ∼ 12√�4'H exp I− 23 4:3J    ;   4 ≫ 0, (7) 

���4� ∼ 1√��−4�'H  sin I 23 I−4:3J + �4J ;  4 ≪ 0 

 

(8) 
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���4� ∼ 1√�4'H  exp I23 4:3J      ;   4 ≫ 0 (9) 

���4� ∼ '√N�?C�OP cos Q3: Q−4ARS + NHS     ;      4 ≪ 0. (10) 

The first review is carried out on the right turning point, namely point �., "�. The wave function for 

the linearized potential (patching area) in region III can be written  ����?T�4� = U ���4� + V ���4�. (11) 

where 

4 = I�Wℏ3 J': �� − �X�, (12) 

� is a constant, �X is the turning point on �-axis, and W relates to the potential gradient. WKB  wave 

function for region III is ����?YZ[�4� = 1�−4�'H �>3:X�?C�AR +  \>?3:X�?C�AR� (13) 

Based on equation (3) and (13), WKB wave function for region III can be expressed in the form 

����?YZ[�4� = 1�?C�OP >XRA�?C�ARB]P�.  (14) 

To compare the wave functions of equations (14) and (11) which are based on Airy's function in 

equations (8) and (10), the form of equation (14) must be changed using Euler's formula into 

trigonometric form so that the form becomes ����?YZ[�4� = ��−4�'H cos I23 �−4�:3 +     �4J� + � sin I23 �−4�:3 + �4J��. (15) 

From equations (15) and (11), based on equations (8) and (10), we find  

√̂N = �� dan 
_√N = �. (16) 

Based on equation (16), it can be seen that U and V have a relationship in the form U = �V. 

 Furthermore, we consider the wave function in region II (patching region) around � = ., 

namely  ���?T��� �4� = �V���4� + V���4�, (17) 

and  WKB wave function for region II, namely ���?YZ[��� �4� = C̀OP >?RACAR + aCOP >RACAR
 .  (18) 

Then, we compare equations (17) and (18) by utilizing Airy function from equations (7) and (9), we find � = �V2√� = ��2  ;     � = V�+� = �, (19) 

then ��������� = I��2 J 1�	���� exp − � 	�������
� � −  2� exp � 	�������

� ��. (20) 

  

After reviewing the connection at the point � = ., we continue with the connection at � = ,. The 

connection at � = , can be obtained from ��������� in equation (20) by changing the form of the 

following integral b 	�������� = b 	�������� + b 	��������   = − b 	�������� + b 	��������  .  (21) 

Using the same method as when deriving equation (20) using the form in equation (21), the wave 

function ��������� can be written 
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��������� = ��	���� �2 >?c exp � 	�������
� � + >c exp − � 	�������

� �� (22) 

where d = b 	��������  . (23) 

Converting equation (22) into the form ��4�  around the point � = ,, we get  ���?YZ[��� �4� = 'COP X13 >?c>RACAR + �>c>?RACAR�.  (24) 

The patching wave function in the linearized potential region around � = , is  ���?T��� �4� = e ���4� + f ���4�. (25) 

By comparing equations (24) and (25), and utilizing Airy function in equations (7) and (9), we get g3√N = �>c ;    h√N = X1ijk3  . (26) 

 Next for region I, we use the form  ��?YZ[�4� = 1�−4�'H l�>Xm + �>?Xm n  = 1�−4�'H l�� + �� cos o + ��� − �� sin on (27) 

where o = 3: �−4�AR + NH . (28) 

Based on equation (26), patching wave function for region I can be written ��?T�4� = 2√� �>c ���4� +  X3 √� �>?c ���4� .  (29) 

Furthermore, we compare equations (27) and (29), we get � + � = 2�>c   ;    � − � = 1ijk3  .   (30) 

By solving equation (30), we get the relationship between  � and �, namely �� = >?c
1 + >?3c4  (31) 

Thus, transmission coefficient / = 01203
, becomes / = ijRk

I'BpjRkP JR .   (32) 

3. Result and Discussion 

3.1.  Tunneling Effects through Negative Kratzer Potential 
As discussed briefly in the Introduction, the Kratzer Potential is to explain the bound state of molecular 

interactions. The standard form of Kratzer potential is %�q� = −�i Q3rpr − rpRrRS; where �i is the lowest 

bond energy molecule, which can be viewed as the energy required to break molecular bonds/ separate 

molecular constituents; qi is the most ideal separation distance to produce stable and strong molecular 

bonds; and r is the separation distance between the nuclei [18]. Based on this formula, it can be seen 

that �i can be viewed as a potential "depth", which is also a point of vibrational equilibrium between 

molecules and acts as a point of bond stability. 

Based on the description above, it is clear that the Kratzer potential explains the interaction of 

attraction between molecular constituents. Of course, this potential does not allow for quantum tunneling 

effects, because this potential is not in the form of a barrier potential or scatter potential. What is 

interesting about the potentials that explain the bonding of molecules such as the Morse Potential, 

Kratzer, Kratzer modification, Hellman, etc., which are in the form of potential for the bound state, but 

from another point of view, this potential can be seen as a barrier to certain particles outside the system 
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through it, or even by other particles in the system that tend to "break away" or change their quantum 

state [15]. When it is to be viewed in this way, the potential under review must act as a potential barrier/ 

scatter, therefore this potential sign is made negative from the standard potential. When made negative, 

then this potential form will automatically act as/ become potential with repulsive force (which will act 

as scatter/ barrier particles) because it will form a curve over the horizontal axis. 

The form of negative Kratzer potential is  %�q� = 2�i Qrpr − rpRrRS.  . (33) 

From equations (4) and (33), equation (23) can be written  d = 'ℏ b �?srRBtOrBtRr�� �q . (34) 

where " > 0, �i > 0, qi > 0, q ≠ 0, and  W' = 4!�iqi  ;   W3 = −4!�iqi3  ;   W3 = −qiW'.  (35) 

From equation (35), it can be seen that W' > 0, while W3 < 0. Next, equation (34) can be written d = 'ℏ Γ , (36) 

with  Γ = b �tOr?�srRBtOrp�r�� �q , (37) 

where Γ must be real (which is determined based on the conditions), then the solution of equation (37) 

for the complex solution form is expressed in the form Γy. Therefore, equation (37) has an exact solution 

of the form Γy = �W'. − �".3+W'qi� − �W', − �",3+W'qi� +tOX3√s ln {O|√} ?3X√s�B3�tO�?�s�RBtOrp�{O|√} ?3X√s�B3�tO�?�s�RBtOrp�� +
��W'qi ln Q��S ?X√tO��?3rp�?3�rp�tO�?�s�RBtOrp�?X√tO��?3rp�?3�rp�tO�?�s�RBtOrp� � . 

(38) 

From equation (32) it can be seen that the tunneling effect phenomenon can only occur if d ∈ ℝB, which 

also means that Γ ∈ ℝB. Therefore, in order for the tunneling effect to occur, equation (38)  must fulfill 

certain conditions. To analyze these conditions further, equation (38) needs to be simplified into Γy = �' − �3 + �: + �H . (39) 

where �' = �W'. − �".3+W'qi�  (40) �3 = �W', − �",3+W'qi�  (41) 

�: = W'�2√" ln �I W'√" − 2√".J � + 2�W'. − �".3+W'qi�
I W'√" − 2√",J � + 2�W', − �",3+W'qi�� (42) 

�H = ��W'qi ln Q��S X√tO�3rp?��?3�rp�tO�?�s�RBtOrp�X√tO�3rp?��?3�rp�tO�?�s�RBtOrp� � .  (43) 

The first analysis carried out is to select the conditions for the real condition. From equation (40), 

the conditions that are met must be of the form  W'. − �".3+W'qi� ≥ 0. . (44) 

The reason for the choice of greater is equal to zero in equation (44) because this condition is not the 

only condition to produce a real positive d value, but it still depends on other conditions which of course 

can cover �' = 0. Thus, this particle did not deviate at all from the phenomenon being studied. 

Furthermore, from equation (41), the conditions that must be met are W', − �",3+W'qi� ≥ 0 . (45) 
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The choice of conditions in equation (45) also has the same reasons as choosing the conditions in 

equation (44). 

Next, we analyze equation (42). This equation can be expressed in the form  �: = tOX3√s ln Q�OXB3�O�RXB3�RS . (46) 

where �' = tO√s − 2√". ;   �3 = tO√s − 2√",.  (47) 

Using the logarithmic property, equation (46) can be written in the form  �: = tOX3√s �ln��'� + 2�'� − ln��'� + 2�'��  . (48) 

If ln��'� + 2�'� ≡ e' + f'�; and ln��3� + 2�3� ≡ e3 + f3�, so to get real �:, we have to choose f' 

and f3 is negative. The conditions that must be met so that these two values are negative are �' and �3 

must also be negative based on equation (48). Explicitly, we have two more conditions, namely tO√s < 2√". ;   tO√s < 2√",.  (49) 

So that the form used in equation (36) is in accordance with this physical state  ℜ��:� = tO3√s �f3 − f'�  (50) 

where ℜ��:� is the real part of �:. It should be noted that the conditions obtained here are still in the 

domain of requirements to meet the real conditions.  

We now proceed to review equation (43). This equation can be expressed in the form  �H = ��W'qi ln I�AX?3��rp�O�PX?3��rp�R J . (51) 

where �: = ,√W'�2qi − .� ;  �H = .√W'�2qi − ,�.  (52) 

Using the logarithmic property, equation (51) can be written as  �H = ��W'qi�lnl�:� − 2,�qi�'n − lnl�H� − 2.�qi�3n�. (53) 

If lnl�:� − 2,�qi�'n ≡ e: + f:�; and ln��H� − 2.�qi�3� ≡ eH + fH�, so to get real �H, we have to 

choose f: and fH to be negative. The conditions that must be met so that these two values are negative 

are �: and �H  must also be negative according to equation (53). Explicitly, we have two additional 

conditions for reality, namely qi < ./2 ;   qi < ,/2.  (54) 

So that the form used in equation (36) is in accordance with this physical state  ℜ��H� = �W'qi�fH − f:�  (55) 

where ℜ��H�  is the real part of �H. So the factor Γ has a form  Γ = �' − �3 + ℜ��:� + ℜ��H� .  (56) 

From the analysis carried out so far, we have obtained some necessary conditions for the real state 

of equation (39). However, it should be noted that for the tunneling effect phenomenon, not only the 

real conditions of equation (39) must be met, but also the positive conditions for this equation. Therefore, 

the positive condition is fulfilled if Γ > 0, or explicitly �' − �3 + ℜ��:� + ℜ��H� > 0 .  (57) 

From equation (57), it can be seen that the combination of operations �', �3, ℜ��:�,  and ℜ��H� with 

positive real results will allow the tunneling effect phenomenon to occur. 

Based on equation (56), equation (36) can be written  d = 'ℏ l�1 − �2 + ℜ��3� + ℜ��4�n . (58) 

Furthermore, we can express equation (32) to be  
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/ = ijRℏl�1−�2+ℜ��3�+ℜ��4�n
�'BpjRℏl�1−�2+ℜ��3�+ℜ��4�nP �R .   

(59) 

For cases where �' − �3 + ℜ��:� + ℜ��H� is very large, then equation (59) can be written in the form  / = >?Rℏl�1−�2+ℜ��3�+ℜ��4�n .  . (60) 

It can be seen from equation (60) that for this situation, the WKB transmission formulation is reduced 

to the Gamow formula. 

4. Conclusion 

We have analyzed the quantum tunneling effects of particles passing through negative Kratzer potential 

using the WKB method. What we do is analyze the conditions that must be met for this phenomenon to 

occur and also compute an explicit statement of the probability of its transmission. We have presented 

the terms in detail at the top and specifically, the calculation of the transmission probability can be seen 

in equation (59). It can be seen that, when �' − �3 + ℜ��:� + ℜ��H� is very large, then the 

transmission probability is reduced to the Gamow formula. 
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