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Abstract. We analyze the cubic Ostrovsky equation which is a modification of Ostrovsky
equation. This equation can be found in physical phenomena such as wavE}nechanism due to a
rotating media. We use the Kudryashov method to solve this equation. Since this equation is
one type of nonlinear partial differential equation, we initially transformed this equation into its
nonlinear ordinary differential equation form. Next, we compute the Laurent series of this
equation and we get two types of Laurent series with a second-order pole; the coefficients of
these series are complex numbers so that the symmetrical form is complex conjugation. Based
on these two Laurent series, we construct two types of solutions, each of which consists of elliptic
solution (doubly periodic) in the form of Weierstrass- g functions, simply periodic solutions, and
rational solution.

1. Introduction

e of the most interesting topics in mathematics and nonlinear physics is the problem of solving
nonlinear partial differential equations. Nonlinear partial differential equations play a very important
role as a language in explaining dynamics in nonlinear physics. Many important and current phenomena
require nonlinear partial differential equations to explain them [1-6]. Because this equation generally
contains differentiation terms that are spatially dispersed and nonlinear terms that have the opposite
properties, the combination of these terms in an equation will have many implications, especially in one
of the most important physical applications, namely the soliton phenomenon. Solitons are a type of
solution to nonlinear partial differential equations that most people are interested in because of their
localized and stable nature over a long time and spatial range. This is what is widely applied/ studied in
various fields such as [7,8], [9].

By looking at the brief explanation above, it is important to have a good understanding of how to
analyze the §#htions to these equations. Nowadays, many methods have been developed for analyzing
the solution of nonlinear partial differential equations such as the Exp method [10], Tanh method [11],
and Tanh-Coth Method [12]. However, these methods generally produce specific solutions in the form
of certain specific functions that correspond to the method's naming. For this reason, a more general
method is needed so that more interpretations can be obtained and analyzed. The method in question is
the Kudryashov method, which was developed in 2010 ([13],[14],[15]). This method is based on the
existence of Laurent series (which has more general properties than Taylor series) of a differential
equation which makes it possible to produce negative term expansions ([13,15,16]). Given this negative
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term, solutions with doubly periodic (which of course have more general properties) can be formed,
such as elliptic furfefions.

The Ostrovksy equation is a type of nonlinear partial differential equation [17]. This equation already
has several modifications ([5,7,17-20,20-23]), one of which is the cubic Ostrovsky equation (referring
to the existence of a cubic nonlinear term). This equation can be found in physical problems such as the
wave mechanism caused by the rotating [5]. In this paper, we analyze the meromorphic exact solution
of the Ostrovsky cubic equation based on the existence of Laurent series. Therefore, this paper generally
consists of several parts, namely first is an introduction, second on the Kudryashov method, third on the
meromorphic solutions of the cubic Ostrovksy equation, and finally the conclusion.

EBMethods

In this study, we use the method introduced by Kudryahov to solve nonlinear differential equations
([13,15]). This method is very powerful because it allows us to obtain more general solutions of a
nonlinear differential equation in three forms, namely simply periodic solutions, doubly periodic
solutions, and rational solutions. These general solutions provide the possibility for us to obtain certain
specific solutions based on the selection of certain particular circumstances. The basis on which this
method is able to produce general solutions is because before constructing an exact meromorphic
solution of a nonlinear differential equation, what must be done first is to find the existence of Laurent
series of the equation. It is well known that Laurent series provides a complex expansion from a negative
expansion to an infinite positive expansion term. Thus, it is clear that we can construct doubly periodic
solutions such as the Weierstrass functions ¢ and {. This is not found in other methods. Thus, this
method can be an excellent reference in finding meromorphic exact solutions of a nonlinear differential
equation.

This method can be broadly explained as follows: first,Ef what is being studied is a nonlinear
partial differential equation, then the equation must first be transformed into a nonlinear ordinary
differential equation, of course by using the appropriate transformation variables. Next, we find the
Laurent series of this equation. If the equation has Laurent series, then proceed by applying the theorems
in [15]. It can be seen from [ 15] that there are necessary conditions that must be met by an equation in
order to find an exact meromorphic solution, namely for Theorem 1 is a_; = 0, while for Theorem 2 it
is E(E,am + a“°) = 0, where qa; is the series coefficient. What distinguishes the application of
Theorems 1 and 2 is how many types of Laurent series a nonlinear differential equation has. If an
equation has only one type of Laurent series, then we use Theorem 1, but if the studied equation has
more than one type of Laurent series, then we use Theorem 2. The further detailed and explicit steps of
this method have been shown very clearly on paper [15].

3. Meromorphic Solutions of the Cubic Ostrovksy Equation

The Kudryashov method used in this paper refers to paper [15]. As previously explained, this paper
examines the Ostrovsky Cubic equation, which is one type of modification of the Ostrovsky equation.
The equation reviewed in this paper is

o'u +Ca2 ( ) u + ot +u*=0 (1)
axat | °ax? axﬁ ax?) Taxt T

where u = u(x, t). Itis clear that this equation is a nonlinear partial differential equation. Then, equation
(1) is transformed into a nonlinear ordinary differential equation using the form

u(x, t) = w(z) 2)
where z = x — vt. Using equation (2), equation (1) can be written
d*w 2w dw*
d4+(2w Co) gz 2(5) —wiwd=0 3)

[¥]
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Equation (3) is further expanded using equation (6) in [15], and two types of Laurent series are obtained,
namely

2(5++/5i C
wB(z) = - ( pr ) E 0\/§f + agl)zz + ail)z“ + 1‘1551)26 + (4
and
2(5 —+/5i) o
(2) - _ _ 0 (2) 2 (2)_a @) 6 o ... 5
w'?(z) PP 3_\gi+azz+a4z+aﬁz+ (5)
where
1y _ 50 +26V5i +3(+/5i — 5)c3 ©
a, = ;
‘ 180(V5 — 3i)°
ay_ Co(—19i+ 45 +3(2i +V5)CE)
a; " =-— 3 ; (7
756(+/5 — 3i)
1) —860—1388V5i + 12(115 +V5i)C§ + (7V5i — 5)Cy
1) _ .
ag " = K ; (8
583200(V/5 — 3i)
(2 50— 26v5i — 3(V5i+5)C2
a; = 2 )]
180(V5 + 3i)
@ _ Co(19i +4V5 + 3(—2i ++/5)C§)
a;” =-— 3 ; (10)
756(V/5 + 31)
2 —860+ 1388V5i + 12(115 — V5i)¢g — (7V5i + 5)C¢
(2) _
g = % : (1)
583200(V/5 + 3i)
From equations (4) to (11) it can be seen that the solution of equation (3) fulfills the relationship
w@(z) = (w(l)(z)) . (12)

For the first part, we calculate the meromorphic solutions of the first type. Based on the Laurent
series, it can be seen that the conditions for the existence of an elliptic solution (doubly periodic
solutions) are met. Based on Theorem 2, the Weierstrass—g2 elliptic solution form is

w(z) = al)(z g2,95) + ho (13)
with
a®) = —2(5 +5i). (14)
Laurent series for equation (13) around z = 0 is
a(l) a(l)g a(l)g
w(z)=—2+ho+—2222 + 222244 0(121%), 0<|z| <é,. (15)
z? 20 28
By comparing equation (15) with equation (4), we get
hy = — 0 ; 16
* 344 (1
—4 - 6iV5 + 3CF Co(—19i + 4V5 + 3(2i + V5) (¢ 7
18(/5-3i)° 216(50i + 23V5) ”n
and
2 .
£(13i +5V5)
W = 4 3 . (18)

V5 —i
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Hence, the meromorphic elliptic solution of the first type takes the form

C,
w(z) = —z(s+x/§r)ga(z;gz.gg)—rf@i (19)

with the values g, and g5 as shown in equation (17).
Next, we compute the c.imply periodic solution of the first type, namely

w(z) = —\f_a(_lz)—cot( Lz) + ho = La') (1 + cot®> (VIz)) + ho (20)
(1 )

where a_, is equal to equation (14), and
T

VI = T (21)

Laurent series of equation (20) around z = 0 is

(1 (1) (142 (1);3
a; a_; L a_;L 2 - 22
e B 2 “4+0(z1Y),  0<|zl <é,. (22)
w(z) 22+g+ 3 +152+1892+(|z|) |z| < &,

Next, we compare this series with the coefficients of the series w2 (2) (see equation (4)), we determine
the parameters of simply periodic solutions (20), namely

(—1)3 J(\Efsz)(s@lewacgs)

L=+ pj=1,2; (23)
! 2(V5 = 3i) (/6v5 — 300)
hy = 126( —27Co + 9V5Coi + 420L; + i84+/5L;). (24)

Thus, simply per'iodic solutions of the first type can be written
w(z) = {3(\/_+ 3i)Cy — 56(V5 — 5i)L;} — 2L;(5 + V/5i) cot? (JL_J,%, =12 (25

By relating the parameters in equation (23) and (24), equation (25) satisfies equation (3). Next, we
compute the rational solution of the first type. From equation (4) it can be concluded that the rational
solution of the first type has the form

2(5+V5i) G

v 22 34450

.Now we continue the analysis on calculating the meromorphic solution of the second type taking

advantage of the symmetry in equation (12). These solutions possess poles of two types at the same

type, and without losing the generality, we suppose that the point z = 0 is a pole of the first type. The
elliptic solutions have the form

(26)

w() = a0 (2 92,95) + a3 9z — v 92,93) + ho (27)
where a( ) s equal to equation (14), and
a® = —2(5 - V5i). (28)
Next, equation (27) is expanded around the point z = 0, we have
(€Y]
a = 2 2 2 _92 (2 & 92
w(z) = 2_22+ ho+a®a—a?)Bz+ (3A2a(_2) 2494 20 ) 24+ 0(|z]), (29)
0< |z| < &,
and expanded around z = y, obtained
(2)
a
W(z) = —=2+ hy + a4+ aDB(z—7) +( 34%a®) - 2o + 1252 ‘2 92 (z-7)?
(z—-y)* 4 (30)

+0(z—y», 0<lz—yl<é,.

where A = @(y); B = ,(y), and there is a relationship B2 = 44® — g, A — g;. Equation (27) can also
be expressed in the form
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W, + B\ L
w(z) = (a9 - a%) (2 g2, 92) + 42 (@2 4 ) +ho—aBa. (31)
Next, we compare the series in equations (29) and (30) with equations (4) and (5), we have
— h,; B=0 32
T a0+ aw' o 2
38i —8V5—3(11i + \B)cg
G = - (33)
36(—89i + 115)
G 5(- 115;+d‘)+3(95;+31«/‘)c2 4)
93 = 3600 (~517i + 16V5)
Therefore, we obtain an elliptic meromorphlc solution of the second type in the form
40(115 ++/51) 2
w(z) = 50 — ( L (35)

—4 .
i 2
\f_ (C, — 40p — 4iV5p)
Equation (35) can also be expressed in another form by using the relationship @2 = 443 — g, — ga,
namely

100 N1 — 020 +136% — n40°

wiz) = 15 (iCo + M6f0)? (30
where 7y, = a; + 10Cya3; 2 = ay + 400:5; 13 = 10Cyay; n4 = 40ag; 115 = @y ag; and

a = 3(1517i +493v5)C3 (37
a, = 60(3623i + 1303V5)C3 (38)
as; = —1322i 4+ 235 (39
@y = 504(—437i + 533+/5) (40)
as = —13105i + 15525 (41)
e = 216(—11885i + 7121V/5) (42)
wy = (2v5i +20)° (43)
ag = 10i + 35 (44)
16 = 4(—10i +/5) (45)

Next, we compute the simply periodic solution of the second type. Based on Theorem 2, we get
w(z) = Lal)(1+ cot?(VL2)) + La®) (1 + cot? (VE(z = 1)) ) + ho, (46)

where a(_lz) can be seen in equation (14), CIEZ) in equation (28), and vL in equation (21). Then, equation

(46) is expanded around the point z = 0 is obtained

(1) (1)
a L
w(z) = 32 +aBD(L+4%) +hy+2aB AL+ Az +0(|z]); 0< |z| < &5 (4T)
Equation (46) is expanded around the point z = y is obtained
(2) (2)
a’ S L
— (1) 2 _ 9,1 z _ _

w(z) = @ }’)2-1— 3 ta s (L+A%)+ho—2a AL+ A (z—y) + 0(lz—y]), (48)

0< |z—vy| < é.
As previously done, equations (47) and (48) are compared with equations (4) and (5). From the results

of this comparison obtained
A=0ihy=0;L=——00 9
° 28(5 +/51) %)

Thus, a meromorphic solution of the second type of period takes the form
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3¢, V3 Cy 3(5i +/5)C, V3 Co
wlZ) = ———CsC| — z |+ csc| — |———Z — . 50
@ 14 2 .‘35+7\/§s 14(—=5i +V5) 2 35+7w/§i( " 0

It can be seen from equation (50) that we can choose specific solutions in the form of other functions
such as hyperbolic functions by modifying terms that have an imaginary part, or other trigonometric
functions by utilizing the phase difference provided in the terms containing (z — y) or z — 2z, which is
the complete form of this function. It can also be seen that for this second type there is no rational
solution due to the inconsistency of the series terms when compared with Laurent series of the
differential equation (3).

4. Conclusion

We have performed an analysis to find a meromorphic solution to the cubic Ostrovksy equation using
the Kudryashov method. Since this equation has two types of Laurent series, we derive its meromorphic
solution in two types based on Theorem 2 in the method section. For the first type, we obtain a simply
periodic solution, one doubly periodic solution in the form of the Weierstrass-g2 function and one
rational solution. The constants for each solution have also been shown. For the second type of solution,
we obtained one simply periodic solution and one doubly periodic solution. The constants corresponding
to these solutions have also been shown.
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