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ARTICLE INFO ABSTRACT

In this study, a graphene oxide/zinc oxide (GO/Zn0) composite was synthesized by the one-pot hydrothermal
technique using various GO/ZnO ratio compositions. These were characterised by scanning electron microscopy
(SEM), Fourier-transform infrared (FTIR) and Raman spectroscopy. The findings reveal that the GO/Zn0O com-
posite has three different micromorphologies: ZnO-nanorods (ZnO-NRs) were embedded and agglomerated over
the GO surface; ZnO-microrods (ZnO-uRs) adhered to and separated on the GO surface; and GO was coated by
ZnO at 1:1, 1:2 and 1:8 ratios. In addition, the electrochemical performance of the synthesized GO/Zn0 com-
posites was investigated using cyclic voltammetry (CV). The results show that the embedded and agglomerate of
ZnO-NRs over the GO surface have the best performance, indicated by a larger CV curve area and higher specific
capacitance than the GO and other GO/Zn0 composites. The results indicate that the incorporation and insertion
of GO and ZnO NRs have an effective reversible nature and are promising electrode materials for supercapacitor
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applications.

1. Introduction

Over the past decade, global environmental issues, such as global
warming and the depletion of fossil energy, have inspired extensive
research into the development of various eco-friendly renewable energy
devices. Such devices are considered to be among the solutions to the
problem. Supercapacitors are becoming the candidate with the most
potential as an energy storage device. This is because of their higher
power density, long cycle lifetime, and lower maintenance cost than
batteries [1-3]|. Moreover, they have a shorter charge time and higher
specific energy density than conventional capacitors [1]. Electro-
chemical double-layer capacitance (EDLC) and pseudo-capacitance are
two supercapacitor types distinguished by the charge-storage me-
chanism. The capacitance of EDLC comes from electrostatic charge
diffusion, which accumulates at the electron-electrolyte interface [4.5].
Usually, materials with a high surface area and excellent electrical
conductivity are selected. Carbon-based materials are the most suitable
choice, which encourage the use of various forms of EDLC electrodes.
However, their low specific capacitance severely limits their subsequent
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application [4]. As an alternative, pseudo-capacitors with Faradaic
storage mechanisms and which store the charge according to rapid and
reversible redox reaction [4.6], can provide much higher capacitance
and energy density. Transition metal oxides, metal hydroxides and
polymeric materials have been explored for pseudo-capacitor applica-
tions [5]. The results indicate that the best pseudo-capacitor property is
exhibited by ruthenium oxide (RuQ.) [5.7]. However, the material is
not very attractive for large-scale production because of its high cost,
limited availability, and the fact that it is not environmentally friendly.
Zn0 is a metal oxide semiconductor with a wide band-gap, specific
energy density, excellent oxide ionic conductivity, and relatively high
power and capacity [4.8]. Moreover, it is non-toxic, low cost, eco-
friendly and has abundant availability [9]. This makes ZnO a potential
material for supercapacitors as a replacement for RuO,.

Based on the advantages and disadvantages of the two types of ca-
pacitors, many studies have considered capacitors based on a combi-
nation of carbon materials with pseudocapacitive behaviour. ZnO-
carbon material hybrids have become one of the choices. The bonding
of ZnO with the carbon materials can improve the electron chemical
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and electrical conductivities of the out-site current collectors because of
the synergistic effect produced by each another [10]. Kalpana et al. [1]
reported that ZnO/carbon aerogel composite supercapacitors have a
maximum capacitance of 500 F/g at 100 mA/cm? and that their specific
capacitance is constant up to 500 cycles at all current densities (25, 50,
75, and 100 mA/cm®). ZnO/active carbon nanocomposite super-
capacitors have been studied by Selvakumar et al. [11] and Lee et al.
[7]. Selvakumar et al. [11] argue that coating nanostructure ZnO onto
active carbon as a specific capacitance of 160 F/g, which decreases with
increased ZnO content. In comparison, Lee et al. [7] show the ZnO
nanorod coating onto an active carbon surface with a specific capaci-
tance value of 155 F/g. Another work by Fahimi and Moradlou [3]
considered a ZnO/carbon foam supercapacitor with a specific capaci-
tance of 1120 mF/cm at a current density of 4 mA/cm® A carbon na-
notube/Zn0 nanocomposite supercapacitor was also analyzed by Sinha
et al. [12] and Otun et al. [6]. Their results demonstrate that the
composite is promising for enhancing electrochemical energy storage
performance. Structural analysis of ZnO/rGO hybrids has revealed a
homogeneous distribution of ZnO nanorods inserted into the GO na-
nosheet with a high specific capacitance of 140 F/g, even at the scan
rate of 500 mV/s, and long-term cycle stability (94 % capacitance re-
tention over 2000 cycles) [4]. A ZnO/rGO nanocomposite super-
capacitor with spherical particles of ZnO embedded in the GO sheet was
also studied by Saranya et al. [2], Kalaiarasi et al. [13], Rai et al. [10],
and Prabhuraj et al. [14]. Their results show a specific capacitance of
122.4 F/g [2], 345 F/g [10], and 293.5 F/g [14], with specific capa-
citance retention of over 80 %. These studies indicate that the re-
lationship between the ZnO/GO composite microstructure and elec-
trochemical properties in supercapacitor application still need further
investigation.

This study focuses on synthesizing a GO/ZnO composites using a
one-pot hydrothermal technique and their electrochemical perfor-
mance. The various mass ratios of GO/ZnO in the synthesis process
result from their different micromorphologies. This was confirmed by
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SEM imagery and supported by FTIR and Raman spectra. The influence
of their micromorphologies on the electrochemical properties was in-
vestigated, with these shown to be closely related to the supercapacitor
application.

2. Experimental
2.1. Materials

Graphite powder (Merck, Mr = 12.01 gr/mol), sulfuric acid 96 %
(Merk, Mr = 98 gr/mol), phosphate acid 85 % (Emsure, Mr = 97.99
gr/mol), potassium permanganate (Merck, Mr = 158 gr/mol), zinc
nitrate hexahydrate (Merk, reagent grade, 98 %), hydrochloric acid
(Merck, ACS reagent, 37 %), Ks[Fe(CN)s] (Merck, Mr = 329.24 gr/
mol) and KCl (Merck, Mr = 74.55 gr/mol) were employed. All the
materials were used as received without any further purification.

2.2, Preparation of GO

Graphite oxide (GO) was prepared using a modified Hummer
method with phosphate and sulfuric acid as oxidising agents. Sulfuric
acid (90 mL) and phosphoric acid (10 mL) at a ratio of 9:1 were mixed
and stirred for several minutes. 2 g of graphite powders were then
added to the solution while stirring. Subsequently, 5 g of KMnO, was
slowly added to the solution with constant stirring for 2 h to obtain the
GO powder. 3 mL of H,0, was then added to the mixture while stirring
[15]. The GO was then washed with 10 mL of 10 % HCl with aqua-
demin added to the solution [16], and then the solution was centrifuged
for 15 min at a speed of 4500 rpm [15]. The suspension resulting from
the centrifugation was then taken, aquademin added, and then cen-
trifuged again. The washing process was repeated until the pH was
neutral [17]. The GO suspension was then baked at a temperature of
110 °C for 3 h [18].
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Fig. 1. SEM images of (a) GO, and GO/Zn0-composites with mass ratios of (b) 1:1, (¢) 1:2, and (d) 1:8.
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Table 1
Chemical composition of the GO/Zn0 composite.

GO/Zn0 mass ratio Element (wt. %)

C o Zn Total
1:1 7413 18.09 7.78 100
1:2 40.75 35.73 23.52 100
1:8 1592 40.11 43.97 100

2.3. Synthesis of GO/ZnO composite

The synthesis was performed with a mass ratio of GO:Zn{NO3).. The
mass ratio variations were 1:1 (0.2 g:0.2 g}, 1:2 (0.2 g:0.4 g), and 1:8
(0.2 1.6 g), which were synthesized by the one-pot hydrothermal
technique for 2 h. The GO solid was ultrasonicated for 1 h. The Zn
(NO3), was then added according to the ratio with 10 mL N,H,, fol-
lowed by ultrasonication for 30 min. The solution was transferred to an
autoclave and placed in an oven at 160 °C for 2 h. The resulting GO/
ZnO suspension was centrifuged at 4000 rpm for 15 min and then baked
at 110 °C for 3 h.

2.4. Material characterisation

The GO/ZnO composite microstructure morphologies were in-
vestigated using scanning electron microscopy (SEM) equipped with an
energy-dispersive X-ray spectroscopy (EDX) analyser. The Fourier-
transform infrared spectroscopy (FT-IR) spectrum in a range of 400 —
4000 cm ! was used to determine the functional group of the GO/Zn0O
composite. The material's lattice vibration was studied using a Raman
spectrometer with monochromatic light from a laser source of wave-
length 514 nm. The electrochemical properties of the GO/Zn0 com-
posite were studied by cyclic voltammetry (CV) measurement. A screen-
printed carbon electrode (SPCE) was used for the electrochemical
measurements. In the preparation of the GO/Zn0-SPCE, 1 mg of GO/
Zn0 was dissolved in 1 mL of aguademin (1:1). The suspension was
then ultrasonicated for 20 min. The sonicated suspension was then
dripped onto the working electrode on the SPCE and dried for 2 h. The
dry GO/Zn0-SPCE electrode was then scanned using a 5 mmol/L K[Fe
(CN)g] solution in 0.1 mol/L KCL

3. Results and discussion

Fig. 1 presents the SEM microstructures of the GO and GO/Zn0O
composites with the ratios of 1:1, 1:2, and 1:8, respectively. Fiz. 1{a)
shows that the GO microstructure had a crumpled and wrinkle-like
surface. This confirms that the results of the GO synthesis in this work
show a distinctive characteristic of GO, as indicated by other reports
[19,20]. The dark and wrinkled surface of the GO microstructure was
caused by the accumulation of thick graphene sheets of oxyzen func-
tional groups and defects in the peeling process [21]. Fig. 1{b-d) show
the SEM images of the 1:1, 1:2 and 1:8 ratios of GO/Zn0O respectively.
The GO/Zn0O composite morphology is highly influenced by the level of
Zn0 addition in their synthesis. The SEM morphology reveals that ZnO
nanorods (Zn0O-NRs) were embedded and agglomerated over the GO
surface at a similar ratio between GO and ZnO (1:1) (see Fig. 1(b)). The
Zn0 becomes microrods (pRs), which adhere to and separate (become
independent) on the GO surface when the GO/Zn0 composite is at a
ratio of 1:2, as shown in Fig. 1(c). The formation of pRs occurred due to
the higher concentration of Zn ions in the solution and contributed to
the increasing growth rate of ZnO to rod structure with micro size. A
very different result was produced by adding Zn(NO), eight times,
with ZnO-NRs and pRs not observed in the SEM morphology. It can be
seen that the GO/Zn0 composite has the form of a flake, which in-
dicates that ZnO has coated the GO. In addition, an agglomerate be-
tween the GO and ZnO occurred during the synthesis.
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The uniform coating of the Zn{NO;), solution over the graphene
resulted in a strong nucleation reaction between ZnO and GO. The
strong intermolecular forces allowed them to combine and grow to-
gether through physical or chemical adsorption. The results of this
study are supported by previous work on the synthesis of ZnO/active
carbon by Lee et al. [7]; the low concentration of zinc precursor solu-
tion formed a smaller ZnO nanostructure on the active carbon com-
pared to the high concentration of zine precursor solution. In addition,
elemental quantitative analysis of the GO/Zn0O composite was in-
vestigated using electron dispersive x-ray spectroscopy (EDX); the re-
sults are presented in Table 1.

The ratio of Zn and O was not equal in the GO/Zn0 composite with
compositions of 1:1 and 1:2, which indicates the presence of GO and
ZnO in the sample. The ratio of Zn and O is almost equal, and the
amount of C in the composite is lower than Zn and O, with a GO/Zn0
ratio of 1:8. This indicates that the GO is coated and agglomerated with
ZnO0. In general, the amount of Zn and O elements increases, with the C
element decreasing with the increasing level of ZnO in the GO/Zn0O
composite ratio. The results affirm that the level of ZnO increases in the
GO/Zn0O composite according to the increase in ZnO in the synthesis
process.

The FTIR spectra of the GO and GO/ZnO composite with the mass
ratios of 1:1, 1:2, and 1:8 are shown in Fig. 2. The characteristic IR
features of GO in Fig. 2(a) show peaks at 1057 and 1707 cm ! cor
responding to C-O bending and C=0 stretching. The oxidation process
of the graphite occurred in the synthesis of GO using Hummer's method,
which generated oxygen functional groups [2]. In addition, a peak lo-
cated at 1626 cm ™! contributes to the stretching vibration of the C=C
bonding. Another peak at 3404 cm ™~ ! reveals the COOH group because
of OH and water molecules [13]. The GO/Zn0O composite with different
ratios is shown in Fig. 2(b-c). The oxygen functional groups at 1057,
1707 and —~3000cm ™' were found to decrease, which indicates the
reduction of GO (rGO) during the hydrothermal process [2,10]. The
peak around 1384 cm ' represent a stretching vibration of the C=0
bond, which was attributed to vibration modes of the nitrate group

22,23 used as a precursor. In addition, the peaks corresponding to the
vibration of the Zn-O bond at 420 and 568 cm ~! were also observed in
the GO/Zn0 composite with mass ratios of 1:2 and 1:8 (Fig. 2(c-d)).

The peak at 420 cm ! in the 1:2 ratio came from ZnO-uRs, which
adheres to and separates (becomes independent) on the GO surface.
Unlike the 1:8 ratio, the appearance of the 568 cm ~* peaks confirms the
incorporation of ZnO in the reduction of GO, as demonstrated by Rai
et al. [10]. The results are also supported by previous reports on ZnO
nanoparticles (NPs), in which the characteristic stretching mode of the
Zn-0 bond is in the range of 400 cm ™! to 500 cm ™! [24]. Another work
by Handore et al. [25] shows the peak at 545 cm ~! as a stretching mode

Transmittance (a.u.)
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Fig. 2. FTIR spectra of (a) GO, and GO/Zn0O-composites with mass ratios of (b)
1:1, (e) 1:2, and (d) 1:8.
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Fig. 3. Raman spectra of (a) GO, and GO/ZnO-composites at ratios of (b) 1:1,
(e) 1:2, and (d) 1:8.

of the Zn-0 bond. However, ZnO-NRs or -pRs were not observed on the
GO surface or embedded within it. This confirms that neither ZnO-NRs
or -uRs are formed during the hydrothermal process with higher con-
centrations of Zn{NO3). but that ZnO is evenly dispersed in GO and
reacts with each other. The finding is confirmed by SEM images in
Fig. 1{d). However, the peak of the Zn-O bond is not clearly seen in the
FTIR spectra of the GO/Zn0 composite with a 1:1 ratio (see Fig. 2(b)).
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The formation of ZnO-NRs embedded in the GO caused the peak of the
Zn-0 bond to decrease and is not clearly seen in the FTIR spectra.

The crystallisation, structural defects and disorders of GO and GO/
ZnO-composite products were investigated by Raman spectroscopy,
whose results as shown in Fig. 3. All the GO and GO/Zn0O composite
samples revealed the p-band and G-band at around 1347 and
1590 cm ™~ ! respectively. The two characteristic bands of graphene-
based material, i.e., the D and G bands, correspond to the sp® defect or
disorder and sp® hybridised orbitals of the C-C bond [4,10,20,26]. A
low intensity p-band and high intensity G-band (with an [,/1;; intensity
ratio of 0.26) were observed in the Raman spectra of GO, as shown in
Fig. 3(a), which demonstrates the characteristic of graphene-base ma-
terial. The results indicate that the C-C bond is more ordered and has a
small mean size of the sp®-domain in GO materials based on the
synthesis of this study. The position and intensity of the D and G bands
depend on many factors, such as defect, doping level etc.

Many previous reports show that defects in graphene can be seen
depending on the ratio [10,26]. The findings of this research show that
the Iy/I; ratio for the GO/ZnO-composite with 1:1, 1:2, and 1:8 ratios
are 1.06, 0.37 and 1.09 respectively. It is revealed that the defect in the
GO materials was smaller than in the other samples when the GO/Zn0O
composite was at the 1:2 ratio. The few ZnO particle concentrations
embedded in the GO may contribute in this case. In general, the for-
mation of ZnO pRs during hydrothermal processes is separated or not
embedded in GO. This is supported by higher and sharp G-band peaks
on the Raman spectra, which corroborate the SEM results (Fig. 1{c)).
Decoration of ZnO on GO during the hydrothermal process causes a
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Fig. 4. CV curves of (a) GO, and GO/ZnO-composites with compositions of (b) 1:1, (¢) 1:2, and (d) 1:8 at different scan rates (10, 20, 40, 60 and 100 mV/s) with

5 mmol/L K;[Fe(CN)g] solution in 0.1 mol/L KCl as electrolyte.
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Fig. 5. (a) CV curve at 100 mV/s and (b) specific capacitance vs scan rate plot of GO and GO/ZnO-composite with 5 mmol/L K;[Fe(CN)s] solution in 0.1 mo/L 10 mL

KCl as electrolyte.

decreasing sp® carbon domain, which is indicated by the higher In/Ig
ratio of the ZnO/GO composite, as shown in the 1:1 and 1:8 ratios. The
insertion of Zn0 in the GO caused the increasing defect in the GO/Zn0O
composite. As shown in Figs. 3(b) and 3(d), the peaks of the D and G
bands shift and are broad, followed by an increase in the D band in-
tensity. The broadening in the D band can be due to a disorder or defect
in the samples [27]. In addition to the D and G bands, a peak corre-
sponding to the 2D band was also observed in all the samples. The flat
2D region was observed in the ZnO/GO composite with the 1:2 and 1:8
ratios, but a sharp peak was seen in the GO and Zn0/GO composite
with the 1:2 ratio. The detailed observation shown in Fig. 3(c) indicates
the broadening of the 2D band and also shifts to the lower frequency
region. The presence of the 2D band indicates the conversion of rGO in
the GO. The results strengthen the FTIR characterisation (see Fig. 2,
and the GO reduction indicates the peak at ~3000em .

The GO/ZnO composite's electrochemical properties with various
composition ratios were tested using cyclic voltammetry (CV) with a
5 mmol/L K;[Fe(CN)g] solution in 0.1 mol/L KCl as electrolyte at dif-
ferent potential scan rates (10, 20, 40, 60, and 100 mV/s) within a
potential range of —1.2 to + 1.2V (see Fig. 4). KCl is the inert sup-
porting electrolyte which ensures that the ionic strength of the solution
is high and is not perturbed by the oxidation or reduction of the analyte
concerned. K3[Fe{CN)s] acts as the redox species that present the re-
duction peak in cyclic voltammogram [28]. The CV curves from GO and
GO/Zn0 with the 1:1, 1,2 and 1:8 ratios, as shown in Fig. 4(a-d), have a
similar shape to the presence of a peak. The CV curves of composite
don’t change with scan rate, indicating excellent electrochemical sta-
bility and reversibility of the electrode. A peak was indicated an ex-
istence of redox reaction. It can be assumed as pseudo-capacitance
behaviour. It is corroborated by nearly a parallelogram shape and the
presence of peaks due to the influence of the pseudo-capacitance other
than the faradic peak. Deviation from parallelogram shape is due to a
delay while reversing the potential, ultimately coming from kinetic
charging processes. It is because the charging process of the capacitor is
strongly dependent on the potential. The redox peaks is attributed to
formation of [Fe(CN),]* or [Fe(CN),]* in the charge route, and thus a
reversible redox consequence happens. The redox process in the elec-
trolyte-electrode interface is shown as follow [29],

[Fe(CN)e]* + & < [Fe(CN)e]* (1

The reaction kinetics was studied by reviewing the effect of scan
rate on the electrocatalytic response of the GO and GO/Zn0 composites
in the tested K3[Fe(CN)s] and the results are shown in Fig. 4(a-d). It is

clear that the peak oxidation current increases, while the peak oxida-
tion potential shifts positively as the scanning rate increases from
mVs ™' to 100 mVs !, accompanied by an increase in peak separation.
In addition, the increase in scanning rate from 10 mVs ! t6100 mVs !
indicates that the electro-redox of the ferrocyanide ions in the GO and
GO/Zn0 composites is a diffusion-controlled process [30].

Detailed observation for a comparison of the CV curve area of the GO
and GO/ZnO composite with the compositions of 1:1, 1:2 and 1:8 at a
scan rate of 100 mV /s is shown in Fig. 5(a). The GO/Zn0 with a 1:1 ratio
shows the highest peak current compared to GO and the other GO/Zn0O
composites, which can be attributed to the synergistic effect of GO and
Zn0, promoting the electron transfer between the redox probe and the
electrode surface. The presence of ZnO-NRs, which were embedded in
and agglomerated over the GO surface, contributes to a significant in-
crease in peak current. The presence of ZnO-NRs acts as a defect, such as a
larger plane-like edge on the ZnO-NR over the GO surface, which can be
exposed for the electrolyte to provide a peak current response [31]. This
result suggests that the GO/Zn0O composite with a 1:1 ratio has better
electrical conductivity than GO and other the CO/Zn0O composites.

The GO/ZnO composite with the 1:1 ratio also exhibits a larger
integrated area than the other samples. This finding reveals its superior
electrochemical performance [4]. The CV curve area describes the
ability to store energy in the electroactive site [32]. A larger area can
store more energy compared to a smaller one. The voltammogram
shows the results of the scan rate variation; the greater the scan rate,
the wider the peak of the voltammogram, which shows good rate and
capacitance properties |2 |. Based on the voltammogram, a greater scan
rate followed by a larger area of the voltammogram, shows good rate
and capacitance properties.

The specific capacitance (C;) values were calculated using the fol-
lowing equation [33]:

[ v
mvAV (2)

C =

where AVis the potential window (V), m is the mass of the electroactive
material (g), v is the scan rate (mV/s), while [ IdV is the area of the
curve on the voltammogram. The specific capacitance is proportional to
the area under the CV curve. The calculated values of C, for all samples
are presented in the plot of scan rate versus specific capacitance, as
shown in Fig. 5(b). The graph shows that the specific capacitance of all
samples decreases with an increasing scan rate. This is because the
electrolyte diffuses deep into the electrode material and interacts with
the inner active sites at slow scan rates. At high scan rates, the limited
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movement of the electrolytes results in just the utilisation of the outer
active surface designed for charge storage [10]. Another reason is the
presence of inner active sites which cannot sustain the redox reaction at
low scan rates [2]. The number of sites available for the charge storage
strongly influences the C; value. The highest specific capacitance value
is obtained at a scan rate of 10 mV/s, that is, 8.21, 42.23, 20.44 and
5.76 F/g for GO, and the GO/ZnO composites with compositions at
ratios of 1:1, 1:2, and 1:8 respectively.

This study provides evidence that the electrochemical properties of
GO/Zn0O composites are strongly influenced by their microstructure.
The GO/ZnO composite with a composition at the 1:1 ratio shows the
best performance. This is indicated by the larger CV curve area and the
higher specific capacitance than GO and the other GO/Zn0 composites.
The results confirm that the GO/ZnO composite with the microstructure
of Zn0 NRs embedded or incorporated in the GO has good electro-
chemical properties compared to the separated ZnO pRs or GO-ZnO or
GO coated with ZnO or agglomerate GO-ZnO. The incorporation of ZnO
NEs in the GO acts as electrically conductive pathways that can facil-
itate electron transport during the charging and discharging process
[7]. Moreover, the number of mobile transport defects absorbed within
the medium will affect ion mobility, which supports the charge storage
capacitive behavior. A lower defect concentration obstructs ion mi-
gration within the electrolyte and increases the charge accumulation at
the electrolyte-electrode interface. In the GO/Zn0 composite with the
microstructure separated between ZnO pRs and GO-ZnO or GO coated
with Zn0, or the GO-ZnO, their microstructure causes the electrolyte
contact with the material surface to decrease. This affects agglomerate
the discharge and charging currents, which become less than optimal
[34]. These findings suggest that GO/ZnO with the microstructure of
Zn0O NERs embedded or incorporated in the GO could be used for high-
performance supercapacitor applications.

4. Conclusion

GO/ZnO composite was successfully synthesized using the one-pot
hydrothermal technique. The results indicate that different micro-
morphologies of GO/Zn0O composite had been produced, that is, ZnO-
NEs embedded in and agglomerated over the GO surface; ZnO-uRs
adhering to and separated on the GO surface; and coated ZnO on GO.
The larger area of the voltammogram is shown by the GO/Zn0O com-
posite with the micromorphology of ZnO-NRs embedded in and ag-
glomerated over the GO surface. The larger CV curve area of the vol-
tammogram reveals the best capacitance properties.
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