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Abstract
ZnO thin films are deposited on glass substrate using sol–gel spin coating methods with various annealing temperatures. The
structural, morphological, and optical properties are studied by XRD, FE-SEM, UV–Vis, and photoluminescence
spectrophotometer. The photocatalytic activity was assessed by examining the decomposition of Rhodamine-B (Rh-B) dye
under UV illumination. The result shows that the ZnO films have a hexagonal wurtzite structure with highly preferred c-axis
orientation. The (101) crystallographic plane appears at higher annealing temperatures. The transmittance of ZnO films is
more than 80%, with a slight red shift in absorption and decrease in the optical band gaps as the annealing temperature
increases to some extent. The photoluminescence spectra of the ZnO films at room temperature demonstrated the ultra-violet
(UV) emission with a peak emission at 410 nm (3.03 eV). According to the photocatalytic activity examination, the presence
of (101) plane in the c-axis oriented ZnO films enhances the photocatalytic performance by a factor of 5. The result revealed
that ZnO films with multi-orientation structure possess better photocatalytic performance than that of the single-orientation
ones. In particular, the photocatalytic performance is highly contributed by the polar crystal plane and slightly improved by
the crystallinity and surface morphology.
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Graphical Abstract

Keywords ZnO thin film ● Photocatalysis ● c-axis orientation ● Photocatalytic activity

Highlights
● ZnO films with highly preferred c-axis orientation were prepared using sol–gel spin coating technique.
● The ZnO films have a transmittance more than 80% with an ultra-violet (UV) emission peak at 3.03 eV.
● The polar crystal plane gives more significant contribution on the photocatalytic performance than that of the crystallinity

and surface morphology.

1 Introduction

ZnO is a II–VI semiconductor compound that has direct
wide bandgap, similar with TiO2 [1]. This compound has
been widely used for many applications owing to its large
exciton binding energy, relatively low cost, nontoxic nature
[2, 3], and its high potential for degrading recalcitrant
organic compound in wastewaters. Many studies on ZnO
photocataysts show that their photocatalytic properties are
highly related to the shape, size, surface morphology, and
structure [4, 5]. The development of porous ZnO nano-
particles or nanostructures has been directed to increase
their photocatalysis performance [4, 6]. However, powder-
based photocatalysis have some drawbacks in water and air
treatment applications, i.e, potential health and environ-
mental risks due to their low separability, recoverability, as
well as recyclability [3, 5]. In order to solve these problems,
the utilization of ZnO compound as thin films for photo-
catalysis applications is highly preferable.

Various methods to fabricate ZnO thin films for photo-
catalysis applications such as aqueous chemical growth
(ACG) [7], sol–gel [1, 3, 8–10], sputtering [5, 11], spray
pyrolysis [12], atomic layer deposition [13], and

electrodeposition [14] have been developed. Almost all
studies show that ZnO thin film exhibits the photocatalytic
activity in the range of 40–80%. The photocatalysis per-
formance of the thin film is strongly influenced by structure,
morphology, thickness, bandgap, and doping. Cataño et al.
[14] showed that the photocatalytic activity of (0002) polar
planes are greater than that of nonpolar perpendicular
planes. Meanwhile, Ahumada-Lazo et al. [5] showed that
the presence of (100) and (101) crystallographic planes in
ZnO thin films significantly contributed to the improvement
of photocatalytic activity. It has been also indicated that the
crystallographic plane has a role in the photocatalytic per-
formance [15]. However, there are limited reports that focus
on studying the properties of (002) crystalligraphic plane in
the photocatalysis applications.

In the present study, ZnO thin films have been fabricated
by sol–gel spin coating method. The sol–gel preparation
and parameters of this research are different with previous
report by Natsume and Sakata [16], Kamaruddin et al. [17],
and Gadallah and El-Nahass [18], especially in the solvent,
stabilizer, films fabrication, and annealing treatment.
Besides that, their works mainly focus on the structural and
optical properties of the ZnO thin films prepared by sol–gel
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methods. According to the previous works, we report the
correlation of microstructures with the optical properties, as
well as with their photocatalytic activities of c-axis oriented
ZnO thin films.

2 Experimental

ZnO thin films were prepared according to our previous
report [3]. In detail, ZnO solution was prepared by mixing
zinc acetate dehydrate (Zn(CH3COO)2·2H2O), isopropanol
(C3H8O), and ethanolamine (C2H7NO) as a precursor, sol-
vent, and stabilizer, respectively. The molar ratio of iso-
propanol and zinc acetate dehydrate was 1.0. The mixed
solution was stirred at 60 °C for 90 min. The as-prepared
solution was then aged for 24 h at room temperature. While
waiting for the aging process, a corning glass substrate was
washed in an ultrasonic bath by acetone, methanol, and
deionized water respectively, followed by drying at room
temperature. Then, the aged ZnO solution was dropped onto
the rotated corning glass (the rotation of corning glass was
facilitated using VTC-100 spin coater system for 15 s at
2500 rpm). After that, the as-prepared ZnO films were
preheated at 300 °C for 30 min to remove the solvent.
Finally, the as-produced films were annealed in the air at
various temperatures (400, 500, 600, and 700 °C) for 1 h.

The XRD patterns of ZnO films were recorded using
Smartlab Rigaku X-ray diffractometer with the wavelength
of 1.5418 Å. The morphological analysis was carried out
using field emission scanning electron microscope (FE-
SEM) JEOL JIB 4610F to observe the effect of heating on
the surface of the samples. The ultra-violet (UV)–visible
transmittance spectra were collected using HITACHI
UH5300 spectrometer to observe the transparency of the
films. The photoluminescence (PL) properties were studied
using a femtosecond laser PL spectrometer (325 nm,
100 µJ). The photocatalytic activity of ZnO films were
determined by evaluating the degradation of Rhodamine-B
(Rh-B) solution under UV-light irradiation. In detail, the
experiment was carried out at room temperature using
Royalux T5 6W lamps as UV source. The as-prepared films
were immersed in 100 mL of a 10 ppm Rh-B solution and
was irradiated by eight UV lamps. The absorbance intensity
of Rh-B solution was measured for every 30 min using
visible spectrophotometer AMTAST AMV01 to calculate
degradation efficiency of Rh-B using the equation [19]:

Degradation %ð Þ ¼ C0 � Ctð Þ=C0 � 100 ¼ A0 � Atð Þ=A0 � 100;

ð1Þ

where C0, Ct, A0, and At is attributed to the initial
concentration, the concentration after t min reaction, the
initial absorbance, and the absorbance after t min reaction of

the Rh-B the characteristic absorption wavelength of
550 nm, respectively.

3 Results and discussion

3.1 Structure and morphology of ZnO thin films

The XRD patterns of ZnO thin films annealed at various
temperatures are shown in Fig. 1. The samples exhibit the
same strong peak located at 2θ= 34.43°, corresponding to
the ZnO (002) plane (PDF Card No. 00-005-0664),
regardless of different annealing temperature (shown in
Fig. 2). There are no other peaks in the samples annealed at
400, 500, and 600 °C, which indicates a highly preferred
c-axis orientation with a wurtzite structure has been formed
[20]. The c-axis orientation, especially (002) plane, may be
a common phenomenon in the ZnO film deposition by the
chemical process using organo-zinc compounds [16]. The
minimization of the surface energy and the internal stress is
believed to be the reason for the preferential orientation
[21]. In Fig. 2, the XRD peak intensity of sample at 500 °C
is much higher than those at other temperatures. Improving
the crystal quality of the ZnO films contributes to the
increasing peak intensity [21]. As the annealing temperature
was increased up to 600 °C, the peak intensity increases to
some extent, which is likely due to the increasing grain size
of the ZnO film. Interestingly, when the annealing tem-
perature was increased further to 700 °C, the (002) peak
intensity decreases and the small peak, relates to the (101)
plane, presents at 2θ= 35.12°. These phenomena may be
attributed to the insufficient supply of thermal energy for
recrystallization, grain growth and powder nature of the
films [22].
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Fig. 1 XRD patterns of ZnO thin films showing the effect of annealing
temperature
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The average crystallite size of the films is calculated
using Debye–Scherrer formula in Eq. (2) for (002) peak and
is listed in Table 1 [23]:

D ¼ 0:9 λ

β cosθ
; ð2Þ

where λ, β, and θ is the utilized X-ray wavelength, full
width at half maximum (FWHM) and Bragg diffraction of
the (002) peak, respectively. It can be seen in Table 1 that
the crystallite size of ZnO films increases from 14.15 to
19.82 nm as the annealing temperature increases to some
extent. During annealing, the defects have tendency to
merge, forming larger grains. Herein, the smaller FWHM
value and larger crystallite size imply better crystallization.
During annealing treatment, the nucleation of small grain
into the larger one occurs when the energy is enough to
facilitate the diffusion and recrystallization of the element or
compound. The crystallite size of ZnO film annealed at
600 °C is smaller than that of the ZnO film annealed at
500 °C, which is likely due to the incomplete recrystalliza-
tion at 600 C. This phenomenon also occurs owing to the
formation or crystallization of new phase with a small grain
size during annealing. As can be seen in Fig. 2, the peak

pattern of the ZnO film annealed at 600 C is not balance,
which indicates the incomplete formation of new phase.

The distribution of lattice constants, arising from crystal
imperfections of the films, can be known from the lattice
strain (ε), which was calculated using the tangent formula
[23]:

ε ¼ β

4 tan θð Þ : ð3Þ

Lattice strain is the influence on the length of dislocation
lines per unit volume of the crystals. The dislocation density
(ρ) can be expressed as [23]:

ρ ¼
ffiffiffiffiffi
12

p
ε

D d

� �
: ð4Þ

The calculated lattice strain and dislocation density are
included in Table 1. The decrease of lattice strain and
dislocation density with respect to the annealing tem-
perature indicates the decrease of the crystal imperfec-
tions. These lattice strains correspond to the stress of ZnO
film, where it can be calculated using the following
equation [24]:

σ ¼ �233GPa� ε: ð5Þ
The calculated stresses of ZnO film are shown in Table 1.
All ZnO films have negative stress values, corresponding to
the compressive stress. The lattice constant c of the
annealed samples are higher than that of the pristine ZnO
[25], which can be seen from the calculation results in Table
1 (based on PDF Card No. 00-005-0664, the lattice constant
c of ZnO is 5.205 Å).

The strain and stress in the ZnO film is likely to present
due to the extrinsic and intrinsic stresses. Herein, the lattice
and the coefficient of thermal expansion mismatch between
the glass substrate and ZnO film have significant contribu-
tion to the film stress. In addition, the lattice defects and
impurities generated during the films synthesis can induce
the film stress as well. This deduction is similar to the
previous report by Mahmood et al. [25], Hasabeldaim et al.
[26], and Chaitra et al. [21].

Figure 3 shows cross-sectional SEM images of the ZnO
films annealed at 600 °C. Herein, the ZnO films have good

Table 1 List of parameters of
ZnO thin films annealed at
various temperatures which is
calculated using (002) peak
position

Annealing temperature (°C) β D (nm) ε (%) ρ (×10−4) (line/nm2) σ (GPa) c [Å]

400 0.588 14.15 0.475 0.45 −110.58 5.211

500 0.477 17.44 0.385 0.29 −89.68 5.210

600 0.488 17.06 0.394 0.31 −91.74 5.210

700 0.420 19.82 0.338 0.23 −78.79 5.199
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Fig. 2 The predominant orientations peak obtained from XRD of ZnO
thin films as effect of annealing
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adhesion to the substrate with the average thickness of
0.25 μm. Figure 4 shows FE-SEM images of ZnO thin
films, annealed at different temperatures. It can be clearly
seen that the microstructures of the ZnO thin films vary
slightly depending the annealing temperature. The micro-
structure of the film annealed at 400 °C consists of larger
island and smaller round-shaped particles within some

clusters. In contrast, the film annealed at 500 °C exhibits
nonuniform grains in the range of nano to micron size. By
increasing the annealing temperature to 600 °C, the uniform
finer grains can be obtained, which is in agreement with the
XRD results. Herein, the progression of chemical reaction at
higher temperature contributes to the enhanced uniformity
of the film. As the result, the films become denser, while the
growth rate is highly limited [27]. In addition, the good
uniformity and homogeneity (Fig. 3b, c) of ZnO grain is
likely due to the high degree of Zn–O domains mixing at
the molecular level in a gel network during sol–gel synth-
esis. The Zn2+ ions will react with the O2− ions to form
ZnO particles. The phenomenon is also shown in the
synthesis of Fe2SiO4–SiO and Fe2O3–SiO composite using
sol–gel and solid state reaction [28]. Further increase to
700 °C induces the formation of agglomerated and com-
pacted sheet with uneven pore distribution. These results
indicate that higher annealing temperature leads to the
increase of diffusion energy. The higher particles diffusion
energy and films-substrate strain energy are likely con-
tributed to the sheet formation on the substrate surface.
Neighboring particles agglomerate to form sheets, where the
incomplete process leads to the imperfect agglomeration at

Fig. 4 FE-SEM images of ZnO thin films annealed at a 400 °C, b 500 °C, c 600 °C, and d 700 °C

Substrate  

ZnO thin film 

Fig. 3 Cross-sectional FE-SEM images of the ZnO films annealed at
600 °C
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the outer side of the grain and the formation of sharp edges
on the sheets. The observed morphology evolution of ZnO
thin film is also in a good agreement with the XRD data.

3.2 Optical properties of ZnO thin films

The transmittance spectra of ZnO thin films annealed at
various temperatures in the wavelength range of 300–900 nm
are shown in Fig. 5. All films exhibit high average trans-
mittance, with more than 80% in the entire range of
420–900 nm and the fundamental absorption region before
380 nm wavelengths. However, the transmittance decreases
as the annealing temperature increases to 700 °C. This phe-
nomenon is highly possible due to the scattering effect from
the rough surfaces [29]. The transmittance spectra of the ZnO
films annealed at 500 and 600 °C show high similarity. These
results are also in agreement with the FE-SEM and XRD
results. It indicates that the optical properties of ZnO thin
films depend on the structural homogeneity, crystallinity, and
surface morphology.

Modification of the energy band structure of ZnO films
for various annealing temperature can be found by using

absorbance spectra. Figure 6 shows the absorbance spectra
of ZnO thin films as an effect of annealing temperature in
the wavelength region of 300–900 nm. The optical absor-
bance spectra of films are calculated using Beer’ law with
the following equation [20]:

A ¼ 2� log %Tð Þ; ð6Þ
where T is the transmittance and A is absorbance. At
400 °C, the fundamental absorption edge of ZnO films can
be seen at 360 nm and clearly shifts to the red region as the
annealing temperature increases. The slight modification of
the band structure in the ZnO films can be attributed to the
change of annealing temperature.

The optical band gaps (Eg) of the films can be estimated
using the following relation [30]:

αhvð Þn¼ B hv� Eg

� �
; ð7Þ

where α is the absorption coefficient, B is a constant, hv is
the discrete photon energy, and n= 2 (for direct bandgap
semiconductors). The absorption coefficient α of the films is
calculated from the transmittance using formula [31]:

α ¼ 1
t
ln 1=Tð Þ; ð8Þ

where t is thickness of the films. The energy gaps were
estimated using extrapolation from the graph of (αhv)2

versus (hv) relationship. As shown in the Fig. 7, the optical
band gaps decreases as the annealing temperature increases.
The result shows the structural change, which is also in
agreement with the XRD data in Fig. 1. Considering the
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data in Table 1, the annealing treatment removes the defect,
improves crystal quality, and changes the intrinsic stress of
the films. Lee et al. [32] report that removal of oxygen
vacancies in the films at higher annealing temperature might
contributes to the decrease of bandgap energy. Previous
studies show that the bandgap of ZnO thin films decreases
as the grain size increases, which can be attributed to the
effect of annealing temperature [8, 25]. In this work, the
decrease of the band gaps is likely due to the increase of
the grain size, which is correlated with the annealing
temperature. It is corroborated by the FE-SEM result in
Fig. 4, in which the grain size of the films increases linearly
with the increasing annealing temperature.

The grain size of the films is strongly correlated with the
intrinsic stress, which can be expressed as [25, 33]:

σ ¼ Ef δ

1� vf
� �

G
; ð9Þ

where Ef is Young’s modulus, vf is Poisson’s ratio, δ is the
interaction potential across the grain, and G is the grain size
of the films. Equation (8) clearly shows that the intrinsic
stress decreases as the grain size increases. The deduction is
supported by the XRD and FE-SEM results, in which
increasing annealing temperature stimulates the decrease of
compressive stress and the increase of grain size. This
phenomenon can be attributed to the increase of defect
movement, which gives enough energy for atom rearrange-
ment at higher annealing temperature.

Figure 8 shows the room temperature PL spectra of ZnO
thin films at different annealing temperature, which con-
firms the XRD and FE-SEM results. The excitation wave-
length of 325 nm is used in this experiment. All of ZnO thin

films have a broad emission spectra, with the center of the
peak around 410 nm (3.03 eV), which is associated to the
UV emission. The broad UV emission on PL spectra is
likely due to the poor quality of ZnO films and wider grain
size distribution [34]. The UV emission is also attributed to
the band-to-band excitonic recombination, which is highly
related to the near-band-edge emission of ZnO [35, 36].
Previous works reported that the UV emission band is
formed due to the most preferred orientation (002) of the
ZnO [37], which is in agreement with the results of this
work. The violet emission at 410 nm can also be attributed
to the zinc interstition, which is also reported by Pathak
et al. [38]. The weak and broad bands can also be observed
at 750 nm (1.6 eV) when the annealing temperature is
500 °C. Wu et al. [39] and Kumar et al. [40] suggested that
the visible emission peaks, centered at ~600–760 nm, is
generally attributed to the higher defects such as vacancies
and oxygen interstition. The sample annealed at 500 °C
possesses the highest UV emission peak than that of the
other samples, which may contribute to the improvement of
the film crystallinity [41]. Another work by Chithira and
John [42] also reported the increase of the grain size as the
UV emission peak increases to some extent. It should be
noted that the decreasing trend of UV emission peak for
the samples annealed at 600 and 700 °C is likely due to the
decrease of packing density of the film [40]. Furthermore,
the coalescence of small crystals caused the displacement of
grain boundaries at 600 and 700 °C, leading to the forma-
tion of non-radiative recombination centers [43].

3.3 Photocatalytic activity of ZnO thin films

The photocatalytic activity evaluation of ZnO thin films was
conducted by measuring the photo-induced decolorization
of Rh-B dye under UV-light irradiation. The experimental
results for the Rh-B degradation (Ct/C0) versus time are
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Fig. 8 Photoluminescence spectra of ZnO thin films annealed at var-
ious temperatures
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displayed in Fig. 9. The result shows that the photolysis by
UV light without catalyst could not degrade Rh-B due to the
absence of UV absorbing material that stimulates the pho-
tocatalytic activity [44]. Referring to the concept of ZnO
photocatalysis in previous reports [8, 45], the UV-light irra-
diation will excite the electron from the valence band into the
conduction band, leaving holes in the valence band. Briefly,
at the conduction band, the oxygen acceptors will be reduced
to form superoxide radical anion which will produce
hydroxyl radicals. On the other hand, holes in the valence
band will react with the absorbed water, producing the highly
reactive hydroxyl radicals. Then, the resulted radicals will
directly oxidize the organic pollutants and powerfully
degrade the Rh-B. The contaminant molecules (i.e., Rh-B)
will be absorbed onto the surface of ZnO thin films.

Figure 10 shows the photocatalytic degradation of Rh-B
solution using ZnO thin film as a photocatalyst under UV
irradiation for 240 min. The presence of ZnO films in the
Rh-B dye stimulates the degradation of the dye, which was
occurred after 30 min UV irradiation. The ZnO films
annealed at 600 and 700 °C posses better photocatalytic
performance than that of the samples annealed at 400 and
500 °C. All of the samples demonstrate complete and fast
dye degradation after UV irradiation for 30 min. Herein, the
different Rh-B degradation rate of around 7% and 13% is
obtained when using ZnO films annealed at 400 and 500 °C,
respectively. Nevertheless, similar performance (i.e., Rh-B
dye degradation rate of 50%) is demonstrated when using
ZnO films annealed at 600 and 700 °C. The result indicates
that the photocatalytic performance of ZnO films can be
increased by increasing annealing temperature during ZnO
films fabrication. It should be noted from the results that
photocatalytic activity is enhanced as the annealing tem-
perature is increased to some extent, which is likely due to
the increase of ZnO film grain size as has been also reported
by the previous reports [8]. Considering the XRD results of
ZnO films annealed at 500 and 600 °C (Fig. 1), the decrease

of photocatalytic activity performance could be explained
by the increased possibility of the formation of structural
defect [46]. This argumentation is also supported by the PL
results (Fig. 8), which is shown by the presence of visible
emission peaks as an indication of the existence of structural
defect within the films. Herein, the trend of photocatalytic
performance of the films could be explained by the condi-
tion of polar crystal plane. From the photocatalytic test
results, it can be seen that the presence of (101) plane
improves the photocatalytic performance. At annealing
temperature of 600 °C, the growth transition of (101) plane
is likely to occur within the crystal structure beside (002)
plane, which is indicated by the decrease of peaks intensity
and the broadening FWHM (Fig. 2). Since the (101)
reflection is positively charged, OH− ion would be pre-
ferentially adsorbed, leading to a greater production of OH•
radicals [15], which ease the generation of H2O2 [5]. Thus,
the presence of (101) plane is likely to have significant
contribution to the photocatatlytic activity. According to
this works, the influence of (101) plane in the photocatalytic
performance is more dominant than that of the crystal
parameters and surface morphology. The photocatalytic
performance increases by a factor of 5 when (101) plane is
grown on the ZnO films. This confirms that the photo-
catalytic performance of the ZnO films with multi-
orientation is better than that of the single-orientation ones.

4 Conclusions

ZnO thin films were prepared on glass substrate using sol–gel
spin coating technique. The effect of various annealing tem-
perature on the microstructure, optical properties, and photo-
catalytic activity of ZnO thin films was investigated. The ZnO
films have a hexagonal wurtzite structure with highly preferred
c-axis orientation, which is indicated by the presence of single
peak at (002) plane. At higher temperature, ZnO films become
multi-orientation with the occurence of (101) crystallographic
plane. Different annealing temperature gives different ZnO
films morphology. The average transmission of all ZnO films is
>80% in the wavelength range of 420–900 nm. The bandgap
energy of ZnO films decreases as the annealing temperature
increases. The complete and fast degradation of the Rh-B dye
occurs after UV irradiation for 30min. The photocatalytic
performance of ZnO films can be increased by the presence of
(101) plane at higher annealing temperature. It can be con-
cluded that the photocatalytic performance of multi-orientation
ZnO films is better than that of the single-orientation ones.
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