On totally irregular total labeling of caterpillars having even number of internal vertices with degree three

Cite as: AIP Conference Proceedings 2326, 020024 (2021); https://doi.org/10.1063/5.0039314 Published Online: 08 February 2021

Isnaini Rosyida, Mulyono, and Diari Indriati

ARTICLES YOU MAY BE INTERESTED IN

Edge irregular reflexive labeling on banana tree graphs $B_{2, n}$ and $B_{3, n}$ AIP Conference Proceedings 2326, 020016 (2021); https://doi.org/10.1063/5.0039316

Edge irregular reflexive labeling on umbrella graphs $\mathrm{U}_{3, \mathrm{n}}$ and $\mathrm{U}_{4, \mathrm{n}}$
AIP Conference Proceedings 2326, 020021 (2021); https://doi.org/10.1063/5.0039336
The modeling of human development index (HDI) in Papua-Indonesia using geographically weighted ridge regression (GWRR)
AIP Conference Proceedings 2326, 020025 (2021); https://doi.org/10.1063/5.0040329

On Totally Irregular Total Labeling of Caterpillars Having Even Number of Internal Vertices with Degree Three

Isnaini Rosyida, ${ }^{1, a)}$ Mulyono, ${ }^{1, b)}$ and Diari Indriati ${ }^{2}$, ${ }^{\text {c }}$
1)Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Indonesia.
2)Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret,Surakarta, Indonesia
a)Corresponding author: iisisnaini@gmail.com
b)mulyono.mat@mail.unnes.ac.id
c)diari_indri@yahoo.co.id.

Abstract

We presume that $G(V, E)$ is a simple, undirected, and connected graph. A function λ from $V \cup E$ to $\{1,2, \ldots, k\}$ is named a totally irregular total k-labeling if the set of vertex-weights and the set of edge-weights of G consist of different values. The minimum integer k in such a way that G has a totally irregular total k-labeling is mentioned as total irregularity strength of G, denoted by $t s(G)$. We investigate the total irregularity strength of the caterpillars that have an even number of internal vertices with degree three. The results are as follows: $t s(S_{n}, \underbrace{3,3, \ldots, 3}_{t}, S_{n})=\frac{2 n+(t-1)}{2}$ and $t s(S_{m-1}, \underbrace{3,3, \ldots, 3}_{t}, S_{m})=\frac{2 m+(t-2)}{2}$ for even number t.

INTRODUCTION

The concept of graph labeling had been developed rapidly. Many results have been found related to various types of labelings [5]. "A mapping from a set of elements (vertex, edge or both of them) of $G(V, E)$ into a set of integers is named as labeling. When the domain is $V \cup E$, the mapping is mentioned as a total labeling" [13].

Let f be a total labeling. The weights of a vertex or an edge are as follows: $w t(u)=f(u)+\sum_{u v \in E} f(u v)$ and $w t(x y)=f(x)+f(y)+f(x y)$. The concepts of edge (vertex) irregular total labelings were initiated by Bača et al. [4]: "a total k-labeling $f: V \cup E \rightarrow\{1,2, \ldots, k\}$ is defined to be an edge irregular total k-labeling of G if every two different edges $e_{1}, e_{2} \in E$ have the weights $w t\left(e_{1}\right) \neq w t\left(e_{2}\right)$ and to be a vertex irregular total k-labeling if for every two distinct vertices u and v have weights $w t(u) \neq w t(v)$. The minimum number k for which G has an edge irregular total k-labeling is called the total edge irregularity strength of G, tes (G). Analogously, the total vertex irregularity strength of G is the minimum k for which G has a vertex irregular total k-labeling" [4]. Moreover, " f is a totally irregular total k-labeling of G if the weights of any two distinct vertices are distinct and any two different edges have different weights. The total irregularity strength of $G, t s(G)$, is the minimum number k for which G has a totally irregular total k-labeling" [14].

Bača et al. gave the bounds for tvs of any graph which contains p vertices, has minimum degree δ and maximum degree \triangle [4]:

$$
\left\lceil\frac{p+\delta}{\triangle+1}\right\rceil \leq t v s(G) \leq p+\triangle-2 \delta+1
$$

The bounds was updated by Anholcer et al. [3] in the following way:

$$
\operatorname{tvs}(G) \leq 3\left\lceil\frac{p}{\delta}\right\rceil+1
$$

Nurdin [17] provided the tvs of any tree which has n pendant vertices and there are no 2 -degree vertices:

$$
\begin{equation*}
t v s(T)=\left\lceil\frac{n+1}{2}\right\rceil \text {. } \tag{1}
\end{equation*}
$$

Further, Nurdin [17] provided the tvs of a Caterpillar $T_{n, m}$ which contains n pendant vertices and there are m vertices on the main path, i.e.: $\operatorname{tvs}\left(T_{n, m}\right)=\left\lceil\frac{n+1}{2}\right\rceil$. Ivanco and Jendrol et al. [12] proposed the exact value of tes of a tree T as follows:

$$
\begin{equation*}
\operatorname{tes}(T)=\max \left\{\left\lceil\frac{|E(T)|+2}{3}\right\rceil,\left\lceil\frac{\triangle(T)+1}{2}\right\rceil\right\} \tag{2}
\end{equation*}
$$

Meanwhile, Marzuki, et al. [14] observed the ts of any graph in the following

$$
\begin{equation*}
t s(G) \geq \max \text { of }\{\operatorname{tes}(G), t v s(G)\} \tag{3}
\end{equation*}
$$

Many results related to exact values of tvs, tes, and ts of any graph classes have been found. Readers may refer to $[1,5,6,7,8,9,10,11,15,17,18,19,20,21,22,23,24,25]$. "A caterpillar is a tree in which all the vertices are within distance 1 of a central path" [16]. It is also a chain graph, that is "a graph consisting of r blocks, i.e., $B_{1}, B_{2}, \ldots, B_{r}$ in which for each index i, B_{i} and B_{i+1} have a unique cut vertex in such a way that the block cut vertex graph is a path" [2]. The chain of length r is notated by $C\left[B_{1}, B_{2}, \ldots, B_{r}\right]$. The caterpillars having t internal vertices with degree three $S_{n, 3,3, \ldots, 3, n}$ can also be called as the star chain graphs $C\left[B_{1}, B_{2}, \ldots, B_{r}\right]$ where $B_{1}=B_{r}=S_{n}$ and $B_{2}=B_{3}=\ldots=B_{r-1}=\stackrel{t}{S}_{4}$.

An open problem of determining the ts of caterpillars $S_{n, 3,3, \ldots, 3, n}$ for t-times of 3 's was stated in [11]. To solve the problem, we investigate the ts of caterpillars $S_{n, 3,3, \ldots, 3, n}$ and caterpillars $S_{m, ~} \underbrace{3,3, \ldots, 3, m-1}$ where t is even.

MAIN RESULTS

The results of ts of caterpillars having an even number of internal vertices of degree three are presented in this section.

A caterpillar $S_{n, \underbrace{3,3, \ldots, 3}_{t}, n}$ is a graph that is created from a double-star $S_{n, n}$ by subdividing the bridge which connects the centers of two stars such that there are t inserted vertices with degree three. The inserted vertex is also mentioned as an internal vertex [11]. We assume that t is an even number. The vertex set is

$$
V=\left\{u_{i} \mid 1 \leq i \leq n\right\} \cup\left\{v_{i} \mid 1 \leq i \leq n\right\} \cup\left\{x_{i} \mid i=1,2, \ldots, t\right\} \cup\left\{x_{i}^{\prime} \mid i=1,2, \ldots, t\right\} .
$$

Meanwhile, the edge set is

$$
E=\left\{u_{i} u_{n} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{n} \mid 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i+1} \mid i=1,2, \ldots, t-1\right\} \cup\left\{x_{i} x_{i}^{\prime} \mid i=1,2, \ldots, t\right\} \cup\left\{u_{n} x_{1}\right\} \cup\left\{v_{n} x_{t}\right\} .
$$

An illustration of the caterpillar is given in Figure 1.

FIGURE 1. The caterpillar $S_{n, \underbrace{3,3, \ldots, 3}, n}$.

Theorem 1 Let t be an even number. Given the caterpillars $S_{n,} \underbrace{3,3, \ldots, 3}_{t}, n$ where

$$
n \geq \begin{cases}7+\frac{t+2}{3}, & \text { if } t=4 \quad \bmod 6,4 \leq t \leq 16 \tag{4}\\ 7+\frac{t-6}{3}, & \text { if } t=0 \quad \bmod 6,6 \leq t \leq 18 \\ 7+\frac{t-2}{3}, & \text { if } t=2 \quad \bmod 6,8 \leq t \leq 20 \\ \frac{1}{2} t+1, & \text { if } t \geq 22\end{cases}
$$

Then, the ts of the caterpillars is as follows:

$$
t s(S_{n, 3} \underbrace{3,3, \ldots, 3}_{t}, n)=\left\lceil\frac{2 n+(t-1)}{2}\right\rceil .
$$

Proof. The graphs $S_{n, \underbrace{3,3, \ldots, 3}_{t}, n}$ consist of $2 n+2 t$ vertices and $2(n+t)-1$ edges. According to (1):

$$
\operatorname{tvs}(S_{n,} \underbrace{3,3, \ldots, 3}_{t}, n)=\left\lceil\frac{2(n-1)+(t+1)}{2}\right\rceil=\left\lceil\frac{2 n+(t-1)}{2}\right\rceil .
$$

Meanwhile, the tes can be obtained through (2) as follows:

$$
\operatorname{tes}(S_{n, \underbrace{}_{t}, 3, \ldots, 3}, n)=\max \left\{\left\lceil\frac{2 n+2 t+1}{3}\right\rceil,\left\lceil\frac{n+1}{2}\right\rceil\right\}=\left\lceil\frac{2 n+2 t+1}{3}\right\rceil .
$$

Based on observation from Marzuki et al. [14], we have the lower bound:

$$
t s(S_{n, \underbrace{3,3, \ldots, 3, n}_{t}}) \geq \max \{t v s(S_{n, \underbrace{3,3, \ldots, 3}_{t}, n}), \operatorname{tes}(S_{n, \underbrace{3,3, \ldots, 3, n}_{t}})\}=\left\lceil\frac{2 n+(t-1)}{2}\right\rceil
$$

for even number t which satisfies (4).
Let $k=\left\lceil\frac{2 n+(t-1)}{2}\right\rceil$. Next, we prove that k is the upper bound. To achieve this goal, we construct a total labeling ϕ from each vertex and edge $v, e \in V \cup E$ to $\{1,2, \ldots, k\}$ in the following tables.

TABLE I. Label of each vertex in the caterpillars

v	$\phi(v)$	cases for i
u_{i}	$\left\lceil\frac{2 n+(t-1)}{2}\right\rceil-\left(\frac{t}{2}+2\right)$	$1 \leq i \leq n$
v_{i}	1	$1 \leq i \leq n-1$
v_{n}	$\left\lceil\frac{2 n+(t-1)}{2}\right\rceil$	$1 \leq i \leq t$
x_{i}^{\prime}	$\left\lceil\frac{2 n+(t-1)}{2}\right\rceil+(i-t)$	$i=1,2, \ldots, t$.
x_{i}		

TABLE II. Label of each edge in the caterpillars

v	$\phi(e)$	cases for i
$u_{i} u_{n}$	i	$1 \leq i \leq n-1$
$v_{i} v_{n}$	$i+2$	$1 \leq i \leq n-1$
$x_{i} x_{i}^{\prime}$	$\left\lceil\frac{2 n+(t-1)}{2}\right\rceil+(i-t)$	$1 \leq i \leq t$
$x_{i} x_{i+1}$	$\left[\frac{2 n+(t-1)}{2}\right\rceil$	$1 \leq i \leq t-1$
$u_{n} x_{1}$	$\left[\frac{2 n+(t-1)}{2}\right\rceil-1$	
$v_{n} x_{t}$	$\left\lceil\frac{2 n+(t-1)}{2}\right\rceil-(t-1)$	

According to the above labels, we evaluate the weights of elements $v, e \in V \cup E$ to $\{1,2, \ldots, k\}$ as follows:

TABLE III. Weights of all vertices in $S_{n, 3,3, \ldots, 3, n}$

v	$w t(v)$	cases for i
u_{i}	$\mathrm{i}+1$	
u_{n}	$\left\lceil\frac{n^{2}+n+(t-1)}{2}\right\rceil$	$1 \leq i \leq n-1$
v_{i}	$\left\lceil\left\lceil\frac{n^{2}+5 n-n}{2}(t+1)\right\rceil\right.$	
v_{n}	$4\left\lceil\frac{2 n+(t-1)}{2}\right\rceil+1-2 t$	$1 \leq i \leq n-1$
x_{1}	$4\left\lceil\frac{2 n+(t-1)}{2}\right\rceil-(t-1)$	
x_{t}	$4\left\lceil\frac{2 n+(t-1)}{2}\right\rceil+2(i-t)$	
x_{i}	$2\left\lceil\frac{2 n+(t-1)}{2}\right\rceil+(i-t)$	$2 \leq i \leq t-1$
x_{i}^{\prime}		$i=1,2, \ldots, t$.

TABLE IV. Weights of all edges in $S_{n, \underbrace{3,3, \ldots, 3}_{t}, n}^{n}$

e	$w t(e)$	Cases for i
$u_{i} u_{n}$	$i+2$	$1 \leq i \leq n-1$
$v_{i} v_{n}$	$i+\left\lceil\frac{2 n+(t-1)}{2}\right\rceil-\frac{t}{2}+1$	$1 \leq i \leq n-1$
$x_{i} x_{i}^{\prime}$	$3\left\lceil\frac{2 n+(t-1)}{2}\right\rceil+2(i-t)$	$1 \leq i \leq t$
$x_{i} x_{i+1}$	$3\left\lceil\frac{2 n+(t-1)}{2}\right\rceil+(2 i-2 t+1)$	$i=1,2, \ldots, t-1$
$u_{n} x_{1}$	$2\left\lceil\frac{2 n+(t-1)}{2}\right\rceil+(1-t)$	
$v_{n} x_{t}$	$2\left\lceil\frac{2 n+(t-1)}{2}\right\rceil-t+2$.	

We observe that vertex-labels and edge-labels are at most $\left\lceil\frac{2 n+(t-1)}{2}\right\rceil$. Further, all edges have distinct weights and also no vertices have a same weight under the the labeling ϕ. It shows that

$$
t s(S_{n,} \underbrace{3,3, \ldots, 3}_{t}, n)=\left\lceil\frac{2 n+(t-1)}{2}\right\rceil \text {. }
$$

Example 1 Figure 2 demonstrates totally irregular 12-total labeling of $S_{9,} \underbrace{3,3, \ldots, 3}_{6}, 9$. The red color numbers indicate the weights of vertices or edges. Whereas, the numbers with black colors show the labels of vertices or edges.

FIGURE 2. The figure that indicates $t s(S_{9,} \underbrace{3,3, \ldots, 3}_{6}, 9)=12$.

Ts of caterpillars $S_{m-1}, \underbrace{3,3, \ldots, 3}_{t}, m$

Let t be an even number. The caterpillars $S_{m-1}, \underbrace{3,3, \ldots, 3}_{t}, m$ are formed from double stars $S_{m-1, m}$ by subdividing the bridge which is connected the stars S_{m-1} and S_{m} such that there are t inserted internal vertices of degree three. The vertex set is

$$
V=\left\{u_{i} \mid 1 \leq i \leq m\right\} \cup\left\{v_{i} \mid 1 \leq i \leq m-1\right\} \cup\left\{x_{i} \mid 1 \leq i \leq t\right\} \cup\left\{x_{i}^{\prime} \mid 1 \leq i \leq t\right\}
$$

and the edge set is

$$
E=\left\{u_{i} u_{m} \mid 1 \leq i \leq m-1\right\} \cup\left\{v_{i} v_{m-1} \mid 1 \leq i \leq m-2\right\} \cup\left\{x_{i} x_{i+1} \mid 1 \leq i \leq t-1\right\} \cup\left\{x_{i} x_{i}^{\prime} \mid 1 \leq i \leq t\right\} \cup\left\{u_{m} x_{1}\right\} \cup\left\{v_{m-1} x_{t}\right\} .
$$

Theorem 2 Let $S_{m-1}, \underbrace{3,3, \ldots, 3, m}_{t}$ be the caterpillars where

$$
m \geq \begin{cases}8, & \text { if } t=4,6 \tag{5}\\ t+1, & \text { if } 8 \leq t \leq 14 \\ \frac{t}{2}+4, & \text { if } t \geq 16\end{cases}
$$

Then, $t s(S_{m-1}, \underbrace{3,3, \ldots, 3}_{t}, m)=\left\lceil\frac{2 m+(t-2)}{2}\right\rceil$.
Proof. The caterpillars $S_{m-1}, \underbrace{3,3, \ldots, 3}, m$ consist of $2 m+2 t-1$ vertices and $2 m+2 t-2$ edges. According to (1):

$$
\operatorname{tvs}(S_{m-1}, \underbrace{3,3, \ldots, 3}_{t}, m)=\left\lceil\frac{2 m+(t-2)}{2}\right\rceil .
$$

Meanwhile, the tes can be obtained through (2) as follows:

$$
\operatorname{tes}(S_{m-1}, \underbrace{3,3, \ldots, 3}_{t}, m)=\max \left\{\left\lceil\frac{2 m+2 t}{3}\right\rceil,\left\lceil\frac{m+1}{2}\right\rceil\right\}=\left\lceil\frac{2 m+2 t+1}{3}\right\rceil .
$$

According to evaluation from Marzuki et al. [14], we get the lower bound:

$$
t s(S_{m-1, \underbrace{3,3, \ldots, 3}_{t}, m}) \geq\left\lceil\frac{2 m+(t-2)}{2}\right\rceil
$$

for the value t which satisfies (5). Let $k=\left\lceil\frac{2 m+(t-2)}{2}\right\rceil$. Further, we verify that k is the upper bound. To realize, we construct a total labeling ϕ from the union of V and E into $\{1,2, \ldots, k\}$ in tables below.

TABLE V. Label of all vertices in the caterpillars.

v	$\phi(v)$	cases for i
u_{i}	1	$1 \leq i \leq m$
v_{i}	$\left\lceil\frac{2 m+(t-2)}{2}\right\rceil-\left(\frac{t}{2}+1\right)$	$1 \leq i \leq m-2$
v_{m-1}	1	
x_{i}^{\prime}	$\left\lceil\frac{2 m+(t-2)}{2}\right\rceil$	$1 \leq i \leq t$
x_{i}	$\left\lceil\frac{2 m+(t-2)}{2}\right\rceil+(i-t)$	$i=1,2, \ldots, t$.

TABLE VI. Label of all edges in the caterpillars.

e	$\phi(e)$	cases for i
$u_{i} u_{m}$	i	$1 \leq i \leq m-1$
$v_{i} v_{m-1}$	$i+2$	$1 \leq i \leq m-2$
$x_{i} x_{i}^{\prime}$	$\left\lceil\frac{2 m+(t-2)}{2}\right\rceil+(i-t)$	$1 \leq i \leq t$
$x_{i} x_{i+1}$	$\left[\frac{2 m+(t-2)}{2}\right\rceil$	$1 \leq i \leq t-1$
$u_{m} x_{1}$	$\left.\frac{2 m+(t-2)}{2}\right\rceil$	
$v_{m-1} x_{t}$	$\left\lceil\frac{2 m+(t-2)}{2}\right\rceil-(t-3)$.	

In pursuance of the above labeling, we calculate the weights of each vertex and each edge $v, e \in V \cup E$ as in Table VII and Table VIII.

TABLE VII. Vertex-weights.

v	$w t(v)$	cases for i
u_{i}	i+1	$1 \leq i \leq m-1$
u_{m}	$\left\lceil\frac{m^{2}+m+t}{2}\right\rceil$	
v_{i}	$\left\lceil\frac{m^{2}+3 m-t}{2}\right\rceil$	$1 \leq i \leq m-2$
v_{m-1}	$4 m-2$	
x_{1}	$4 m+t-1$	
x_{t}	$4 m+2 i-4$	$2 \leq i \leq t-1$
x_{i}	$2 m+i-2$	$1 \leq i \leq t$
x_{i}^{\prime}		

TABLE VIII. Weights of edges.

e	$w t(e)$	Cases for i
$u_{i} u_{m}$	$i+2$	$1 \leq i \leq m-1$
$v_{i} v_{m-1}$	$m+i+1$	$1 \leq i \leq m-2$
$x_{i} x_{i}^{\prime}$	$3 m+2 i-\left(\frac{t}{2}+3\right)$	$1 \leq i \leq t$
$x_{i} x_{i+1}$	$3 m+2 i-\left(\frac{t}{2}+2\right)$	$1 \leq i \leq t-1$
$u_{m} x_{1}$	$2 m$	
$v_{m-1} x_{t}$	$2 m+1$	$t=4$
	$2 m+2$	$t \geq 6$.

It is clear that the elements of the caterpillars have labels which are at most $\left\lceil\frac{2 m+(t-2)}{2}\right\rceil$ and no elements have the same weight under the the labeling ϕ. It proves

$$
t s(S_{m-1}, \underbrace{3,3, \ldots, 3}_{t}, m)=\left\lceil\frac{2 m+(t-2)}{2}\right\rceil
$$

Example 2 Figure 3 illustrates the value $\operatorname{ts}(\underbrace{S_{9}, \underbrace{3,3, \ldots, 3}_{8}, 10}_{8})=13$.

FIGURE 3. Totally irregular total 13-labeling of $S_{9, \underbrace{3,3, \ldots, 3,10}_{8}}$.

CONCLUSION

In this paper, we have proved the ts of caterpillars that have an even number of internal vertices of degree 3. We got the results: $t s(S_{n, \underbrace{}_{t}, 3, \ldots, 3, n})=\left\lceil\frac{2 n+(t-1)}{2}\right\rceil$ and $t s(S_{m-1}, \underbrace{3,3, \ldots, 3}_{t}, m)=\left\lceil\frac{2 m+(t-2)}{2}\right\rceil$. The labels of vertices and edges of the caterpillars under the totally irregular total k-labelings were constructed in the theorems.

In upcoming research, we are interested to investigate: ts of caterpillars that have an odd number of internal vertices of degree three and ts of the caterpillars having odd (even) number of internal vertices of degree $q \geq 4$.

ACKNOWLEDGMENTS

We wish to acknowledge to RISTEK-BRIN who gave a Research Grant under contract number 056/SP2H/LT/DRPM/2020.

REFERENCES

1. A. Ahmad, M. Bača, Y. Bashir, and M.K. Siddiqui, "Total edge irregularity strength of strong product of two paths," Ars Combin. 106, 449-459 (2012).
2. A. Ahmad, A. Gupta, and R. Simanjuntak, "Computing the edge irregularity strengths of chain graphs and the join of two graphs," Electron. J. Graph Theory Appl. 6(1), 201-07 (2018).
3. M. Anholcer, M. Kalkowski, and J. Przybyło, "A new upper bound for the total vertex irregularity strength of graphs," Discrete Math. 309, 6316-6317 (2009).
4. M. Bača, S. Jendrol', M. Miller, and J. Ryan, "On irregular total labelling," Discrete Math. 307, 1378-1388 (2007).
5. M. Bača, S. Jendrol', K. Kathiresan, K. Muthugurupackiam, and A. Semanicová-Fenovcikova, "A survey of irregularity strength," Electron. Notes Discret. Math. 48, 19-26 (2015).
6. N. Hinding, N. Suardi, and H. Basir, "Total edge irregularity strength of subdivision of star," J. Discrete Math. Sci. Cryptogr. 18(6), 869-875 (2015).
7. D. Indriati, Widodo, I. E. Wijayanti, and K.A. Sugeng, "On the total edge irregularity strength of generalized helm," AKCE Int. J. Graphs Combin. 10(2), 147-155 (2013).
8. D. Indriati, Widodo, I. E. Wijayanti, and K.A. Sugeng, "The total vertex irregularity strength of generalized helm graphs and prisms with outer pendant edges," Australas. J. Combin. 65(1), 14-26 (2016).
9. D. Indriati, Widodo, I. E. Wijayanti, and K.A. Sugeng, "On total irregularity strength of star graphs, double-stars and caterpillar," AIP: Conf. Proc. 1707, 1-6 (2016).
10. D. Indriati, Widodo, I. E. Wijayanti, and K.A. Sugeng, "The construction of labeling and total irregularity strength of specified caterpillar graph," J. Phys. Conf. Ser. 855, 1-7 (2017).
11. D. Indriati, I. Rosyida, Widodo, "On the total irregularity strength of caterpillar with each internal vertex has degree three," J. Phys. Conf. Ser. 1008, 012042 (2018).
12. J. Ivančo and S. Jendrol', "Total edge irregularity strength of trees," Discuss. Math. Graph Theory. 26, 449-456 (2006).
13. A. M. Marr and W.D. Wallis, Magic graphs (Birkhauser-Springer, New York, 2013).
14. C.C. Marzuki, A.N.M. Salman, and M. Miller, "On the total irregularity strength of cycles and paths," Far East J. Math. Sci. 82(1), 1-21 (2013).
15. J. Miskuf and S. Jendrol', "On total edge irregularity strength of the grids," Tatra Mt. Math. Publ. 36, 147-151 (2007).
16. K. Masoud, Searching for optimal caterpillars in general and bounded treewidth graphs, Ph.D. thesis, University of Auckland (2011).
17. Nurdin, E.T. Baskoro, A.N.M. Salman, and N.N. Gaos, "On the total vertex irregularity strength of trees," Discrete Math. 310, 3043-3048 (2010).
18. R. Ramdani and A.N.M. Salman, "On the total irregularity strength of some cartesian product graphs," AKCE Int. J. Graphs Combin. 10(2), 199-209 (2013).
19. R. Ramdani, A.N.M. Salman, H. Assiyatun, A. Semanicová-Fenovcikova, and M. Bača, "On the total irregularity strength of three families of graphs," Math. Comput. Sci. 9(2), 229-237 (2015).
20. I. Rosyida, Widodo, D Indriati, "On total irregularity strength of caterpillar graphs with two leaves on each internal vertex," J. Phys. Conf. Ser., 1008(1), 12046 (2018).
21. I. Rosyida and D. Indriati, "On total edge irregularity strength of some cactus chain graphs with pendant vertices," J. Phys. Conf. Ser. 1211, 012016 (2019).
22. I. Rosyida, Mulyono, and D. Indriati, "Determining total vertex irregularity strength of $T_{r}(4,1)$ tadpole chain graph and its computation," Procedia Comput. Sci. 157, 699-706 (2019).
23. I. Rosyida, E. Ningrum, A. Setyaningrum, Mulyono, "On total edge and total vertex irregularity strength of pentagon cactus chain graph with pendant vertices," J. Phys. Conf. Ser. 1567, 022073 (2020).
24. I. Rosyida and D. Indriati, "Computing total edge irregularity strength of some n-uniform cactus chain graphs and related chain graphs," Indonesian J. Comb. 4(1), 53-57 (2020).
25. M.K. Siddiqui, "On tes of subdivision of star," Int. J. of Math and Soft Comput. 2(1), 75-82 (2012).
