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On Totally Irregular Total Labeling of Caterpillars
Having Even Number of Internal Vertices with Degree Three

Isnaini Rosyida,1, a) Mulyono,1, b) and Diari Indriati2, c)
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Universitas Negeri Semarang, Semarang Indonesia.

2)Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret,Surakarta Indonesia

Abstract. We presume that G(V,E) is a simple, undirected, and connected graph. A function λ from V ∪ E to {1,2, . . . ,k} is named
a totally irregular total k-labeling if the set of vertex-weights and the set of edge-weights of G consist of different values. The
minimum integer k in such a way that G has a totally irregular total k-labeling is mentioned as total irregularity strength of G,
denoted by ts(G). We investigate the total irregularity strength of t e caterpi ars that have an even number of nternal ve ices with

degree three. The results are as follows: ts(Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,Sn) =
2n+(t−1)

2 and ts(Sm−1,3,3, . . . ,3︸ ︷︷ ︸
t

,Sm) =
2m+(t−2)

2 for even

number t.

INTRODUCTION

The concept of graph labeling had been developed rapidly. Many results have been found related to various types of
labelings [5]. "A mapping from a set of elements (vertex, edge or both of them) of G(V,E) into a set of integers is
named as labeling. When the domain is V ∪E, the mapping is mentioned as a total labeling" [13].

Let f be a total labeling. The weights of a vertex or an edge are as follows: wt(u) = f (u) +∑uv∈E f (uv) and
wt(xy) = f (x)+ f (y)+ f (xy). The concepts of edge (vertex) irregular total labelings were initiated by Bača et al.
[4]: "a total k-labeling f : V ∪E → {1,2, . . . ,k} is defined to be an edge irregular total k-labeling of G if every two
different edges e1,e2 ∈ E have the weights wt(e1) �= wt(e2) and to be a vertex irregular total k-labeling if for every two
distinct vertices u and v have weights wt(u) �= wt(v). The minimum number k for which G has an edge irregular total
k-labeling is called the total edge irregularity strength of G, tes(G). Analogously, the total vertex irregularity strength
of G is the minimum k for which G has a vertex irregular total k-labeling" [4]. Moreover, " f is a totally irregular
total k-labeling of G if the weights of any two distinct vertices are distinct and any two different edges have different
weights. The total irregularity strength of G, ts(G), is the minimum number k for which G has a totally irregular total
k-labeling" [14].

Bača et al. gave the bounds for tvs of any graph which contains p vertices, has minimum degree δ and maximum
degree � [4]: ⌈

p+δ
�+1

⌉
≤ tvs(G)≤ p+�−2δ +1.

The bounds was updated by Anholcer et al. [3] in the following way:

tvs(G)≤ 3
⌈ p

δ

⌉
+1.

Nurdin [17] provided the tvs of any tree which has n pendant vertices and there are no 2−degree vertices:

tvs(T ) =
⌈

n+1

2

⌉
. (1)
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Further, Nurdin [17] provided the tvs of a Caterpillar Tn,m which contains n pendant vertices and there are m vertices

on the main path, i.e.: tvs(Tn,m) =
⌈ n+1

2

⌉
. Ivanco and Jendrol et al. [12] proposed the exact value of tes of a tree T as

follows:

tes(T ) = max

{⌈ |E(T )|+2

3

⌉
,

⌈�(T )+1

2

⌉}
. (2)

Meanwhile, Marzuki, et al. [14] observed the ts of any graph in the following

ts(G)≥ max of {tes(G), tvs(G)}. (3)

Many results related to exact values of tvs, tes, and ts of any graph classes have been found. Readers may refer
to [1, 5, 6, 7, 8, 9, 10, 11, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25]. "A caterpillar is a tree in which all the vertices
are within distance 1 of a central path" [16]. It is also a chain graph, that is "a graph consisting of r blocks, i.e.,
B1,B2, . . . ,Br in which for each index i, Bi and Bi+1 have a unique cut vertex in such a way that the block cut vertex
graph is a path" [2]. The chain of length r is notated by C[B1,B2, . . . ,Br]. The caterpillars having t internal vertices
with degree three Sn,3,3, . . . ,3︸ ︷︷ ︸

t

,n can also be called as the star chain graphs C[B1,B2, . . . ,Br] where B1 = Br = Sn and

B2 = B3 = . . .= Br−1 = S4.
An open problem of determining the ts of caterpillars Sn,3,3,...,3,n for t-times of 3’s was stated in [11]. To solve the

problem, we investigate the ts of caterpillars Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n and caterpillars Sm,3,3, . . . ,3︸ ︷︷ ︸
t

,m−1 where t is even.

MAIN RESULTS

The results of ts of caterpillars having an even number of internal vertices of degree three are presented in this section.

Ts of caterpillars Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n

A caterpillar Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n is a graph that is created from a double-star Sn,n by subdividing the bridge which connects

the centers of two stars such that there are t inserted vertices with degree three. The inserted vertex is also mentioned
as an internal vertex [11]. We assume that t is an even number. The vertex set is

V = {ui|1 ≤ i ≤ n}∪{vi|1 ≤ i ≤ n}∪{xi|i = 1,2, . . . , t}∪{x′i|i = 1,2, . . . , t}.
Meanwhile, the edge set is

E = {uiun|1 ≤ i ≤ n−1}∪{vivn|1 ≤ i ≤ n−1}∪{xixi+1|i = 1,2, . . . , t −1}∪{xix′i|i = 1,2, . . . , t}∪{unx1}∪{vnxt}.

An illustration of the caterpillar is given in Figure 1.
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FIGURE 1. The caterpillar Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n.

Theorem 1 Let t be an even number. Given the caterpillars Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n where

n ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

7+ t+2
3 , if t = 4 mod 6,4 ≤ t ≤ 16,

7+ t−6
3 , if t = 0 mod 6,6 ≤ t ≤ 18,

7+ t−2
3 , if t = 2 mod 6,8 ≤ t ≤ 20,

1
2 t +1, if t ≥ 22.

(4)

Then, the ts of the caterpillars is as follows:

ts(Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n) =

⌈
2n+(t −1)

2

⌉
.

Proof. The graphs Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n consist of 2n+2t vertices and 2(n+ t)−1 edges. According to (1):

tvs(Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n) =

⌈
2(n−1)+(t +1)

2

⌉
=

⌈
2n+(t −1)

2

⌉
.

Meanwhile, the tes can be obtained through (2) as follows:

tes(Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n) = max

{⌈
2n+2t +1

3

⌉
,

⌈
n+1

2

⌉}
=

⌈
2n+2t +1

3

⌉
.

Based on observation from Marzuki et al. [14], we have the lower bound:

ts(Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n)≥ max{tvs(Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n), tes(Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n)}=
⌈

2n+(t −1)

2

⌉

for even number t which satisfies (4).

Let k =
⌈

2n+(t−1)
2

⌉
. Next, we prove that k is the upper bound. To achieve this goal, we construct a total labeling φ

from each vertex and edge v,e ∈V ∪E to {1,2, . . . ,k} in the following tables.
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v φ(v) cases for i
ui 1 1 ≤ i ≤ n

vi

⌈
2n+(t−1)

2

⌉
− ( t

2 +2) 1 ≤ i ≤ n−1

vn 1

x′i
⌈

2n+(t−1)
2

⌉
1 ≤ i ≤ t

xi

⌈
2n+(t−1)

2

⌉
+(i− t) i = 1,2, . . . , t.

v φ(e) cases for i
uiun i 1 ≤ i ≤ n−1
vivn i+2 1 ≤ i ≤ n−1

xix′i
⌈

2n+(t−1)
2

⌉
+(i− t) 1 ≤ i ≤ t

xixi+1

⌈
2n+(t−1)

2

⌉
1 ≤ i ≤ t −1

unx1

⌈
2n+(t−1)

2

⌉
−1

vnxt

⌈
2n+(t−1)

2

⌉
− (t −1)

According to the above labels, we evaluate the weights of elements v,e ∈V ∪E to {1,2, . . . ,k} as follows:

TABLE III. Weights of all vertices in Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n

v wt(v) cases for i
ui i+1 1 ≤ i ≤ n−1

un

⌈
n2+n+(t−1)

2

⌉
vi i+n 1 ≤ i ≤ n−1

vn

⌈
n2+5n−(t+1)

2

⌉
x1 4

⌈
2n+(t−1)

2

⌉
+1−2t

xt 4
⌈

2n+(t−1)
2

⌉
− (t −1)

xi 4
⌈

2n+(t−1)
2

⌉
+2(i− t) 2 ≤ i ≤ t −1

x′i 2
⌈

2n+(t−1)
2

⌉
+(i− t) i = 1,2, . . . , t.
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TABLE IV. Weights of all edges in Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n

e wt(e) Cases for i
uiun i+2 1 ≤ i ≤ n−1

vivn i+
⌈

2n+(t−1)
2

⌉
− t

2 +1 1 ≤ i ≤ n−1

xix′i 3
⌈

2n+(t−1)
2

⌉
+2(i− t) 1 ≤ i ≤ t

xixi+1 3
⌈

2n+(t−1)
2

⌉
+(2i−2t +1) i = 1,2, . . . , t −1

unx1 2
⌈

2n+(t−1)
2

⌉
+(1− t)

vnxt 2
⌈

2n+(t−1)
2

⌉
− t +2.

We observe that vertex-labels and edge-labels are at most
⌈

2n+(t−1)
2

⌉
. Further, all edges have distinct weights and

also no vertices have a same weight under the the labeling φ . It shows that

ts(Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n) =

⌈
2n+(t −1)

2

⌉
.

Example 1 Figure 2 demonstrates totally irregular 12-total labeling of S9,3,3, . . . ,3︸ ︷︷ ︸
6

,9. The red color numbers indicate

the weights of vertices or edges. Whereas, the numbers with black colors show the labels of vertices or edges.

FIGURE 2. The figure that indicates ts(S9,3,3, . . . ,3︸ ︷︷ ︸
6

,9) = 12.

Ts of caterpillars Sm−1,3,3, . . . ,3︸ ︷︷ ︸
t

,m

Let t be an even number. The caterpillars Sm−1,3,3, . . . ,3︸ ︷︷ ︸
t

,m are formed from double stars Sm−1,m by subdividing the

bridge which is connected the stars Sm−1 and Sm such that there are t inserted internal vertices of degree three. The
vertex set is

V = {ui|1 ≤ i ≤ m}∪{vi|1 ≤ i ≤ m−1}∪{xi|1 ≤ i ≤ t}∪{x′i|1 ≤ i ≤ t}
and the edge set is

E = {uium|1 ≤ i ≤ m−1}∪{vivm−1|1 ≤ i ≤ m−2}∪{xixi+1|1 ≤ i ≤ t −1}∪{xix′i|1 ≤ i ≤ t}∪{umx1}∪{vm−1xt}.
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Theorem 2 Let Sm−1,3,3, . . . ,3︸ ︷︷ ︸
t

,m be the caterpillars where

m ≥

⎧⎪⎨
⎪⎩

8, if t = 4,6,

t +1, if 8 ≤ t ≤ 14,
t
2 +4, if t ≥ 16.

(5)

Then, ts(Sm−1,3,3, . . . ,3︸ ︷︷ ︸
t

,m) =
⌈

2m+(t−2)
2

⌉
.

Proof. The caterpillars Sm−1,3,3, . . . ,3︸ ︷︷ ︸
t

,m consist of 2m+2t −1 vertices and 2m+2t −2 edges. According to (1):

tvs(Sm−1,3,3, . . . ,3︸ ︷︷ ︸
t

,m) =

⌈
2m+(t −2)

2

⌉
.

Meanwhile, the tes can be obtained through (2) as follows:

tes(Sm−1,3,3, . . . ,3︸ ︷︷ ︸
t

,m) = max

{⌈
2m+2t

3

⌉
,

⌈
m+1

2

⌉}
=

⌈
2m+2t +1

3

⌉
.

According to evaluation from Marzuki et al. [14], we get the lower bound:

ts(Sm−1,3,3, . . . ,3︸ ︷︷ ︸
t

,m)≥
⌈

2m+(t −2)

2

⌉

for the value t which satisfies (5). Let k =
⌈

2m+(t−2)
2

⌉
. Further, we verify that k is the upper bound. To realize, we

construct a total labeling φ from the union of V and E into {1,2, . . . ,k} in tables below.

TABLE V. Label of all vertices in the caterpillars.

v φ(v) cases for i
ui 1 1 ≤ i ≤ m

vi

⌈
2m+(t−2)

2

⌉
− ( t

2 +1) 1 ≤ i ≤ m−2

vm−1 1

x′i
⌈

2m+(t−2)
2

⌉
1 ≤ i ≤ t

xi

⌈
2m+(t−2)

2

⌉
+(i− t) i = 1,2, . . . , t.
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TABLE VI. Label of all edges in the caterpillars.

e φ(e) cases for i
uium i 1 ≤ i ≤ m−1
vivm−1 i+2 1 ≤ i ≤ m−2

xix′i
⌈

2m+(t−2)
2

⌉
+(i− t) 1 ≤ i ≤ t

xixi+1

⌈
2m+(t−2)

2

⌉
1 ≤ i ≤ t −1

umx1

⌈
2m+(t−2)

2

⌉
vm−1xt

⌈
2m+(t−2)

2

⌉
− (t −3).

In pursuance of the above labeling, we calculate the weights of each vertex and each edge v,e ∈ V ∪E as in Table
VII and Table VIII.

TABLE VII. Vertex-weights.

v wt(v) cases for i
ui i+1 1 ≤ i ≤ m−1

um

⌈
m2+m+t

2

⌉
vi i+m 1 ≤ i ≤ m−2

vm−1

⌈
m2+3m−t

2

⌉
x1 4m−2
xt 4m+ t −1
xi 4m+2i−4 2 ≤ i ≤ t −1
x′i 2m+ i−2 1 ≤ i ≤ t

TABLE VIII. Weights of edges.

e wt(e) Cases for i
uium i+2 1 ≤ i ≤ m−1
vivm−1 m+ i+1 1 ≤ i ≤ m−2
xix′i 3m+2i− ( t

2 +3) 1 ≤ i ≤ t
xixi+1 3m+2i− ( t

2 +2) 1 ≤ i ≤ t −1
umx1 2m
vm−1xt 2m+1 t = 4

2m+2 t ≥ 6.

It is clear that the elements of the caterpillars have labels which are at most
⌈

2m+(t−2)
2

⌉
and no elements have the

same weight under the the labeling φ . It proves

ts(Sm−1,3,3, . . . ,3︸ ︷︷ ︸
t

,m) =

⌈
2m+(t −2)

2

⌉
.

Example 2 Figure 3 illustrates the value ts(S9,3,3, . . . ,3︸ ︷︷ ︸
8

,10) = 13.
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FIGURE 3. Totally irregular total 13-labeling of S9,3,3, . . . ,3︸ ︷︷ ︸
8

,10.

CONCLUSION

In this paper, we have proved the ts of caterpillars that have an even number of internal vertices of degree 3. We got

the results: ts(Sn,3,3, . . . ,3︸ ︷︷ ︸
t

,n) =
⌈

2n+(t−1)
2

⌉
and ts(Sm−1,3,3, . . . ,3︸ ︷︷ ︸

t

,m) =
⌈

2m+(t−2)
2

⌉
. The labels of vertices and edges

of the caterpillars under the totally irregular total k-labelings were constructed in the theorems.

In upcoming research, we are interested to investigate: ts of caterpillars that have an odd number of internal vertices
of degree three and ts of the caterpillars having odd (even) number of internal vertices of degree q ≥ 4.
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