The total irregularity strength of caterpillars with odd number of internal vertices of degree three

To cite this article: M R Maulana et al 2021 J. Phys.: Conf. Ser. 1918042034

View the article online for updates and enhancements.

IOP ebooks"

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

The total irregularity strength of caterpillars with odd number of internal vertices of degree three

M R Maulana, I Rosyida* and Mulyono
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Indonesia.
*Corresponding author: isnaini@mail.unnes.ac.id

Abstract

Given a graph G consisting of vertex set V and edget set E, repectively. Assume G is simple, connected, and the edges do not have direction. A function λ that maps $V \cup E$ into a set of k-integers is named a totally irregular total k -labelling if no vertices have the same weight and also the edges of G get distinct weights. We call the minimum number k for which G has totally irregular total k-labelling as total irregularity strength of $G, \operatorname{ts}(G)$. In this article, we construct labels of vertices and edges of caterpillar graphs which have q internal vertices of degree 3 where q is 5,7, and 9 . We obtain the exact values of ts in following: $n+2$ if the caterpillars have $q=5$ internal vertices, $n+3$ for $q=7$, and $n+4$ for $q=9$.

1. Introduction

The notion of graph labelling was introduced in Alexander Rosa's paper in 1967. The definition is as follows: "graph labelling is a function that has elements of $G(V, E)$ as its domain and a set of positive integers as its co-domain. If the function assigns $V(G)$ to the co-domain, then it is called a vertex labelling. Meanwhile, if the function maps $E(G)$ to the set of positive integers, then it is named an edge labelling. Moreover, the function is mentioned as a total labelling when it has $V \cup E$ as its domain" [1].

Further, the definition of edge irregular total labelling was given in Baca et al. as follows: "a total k-labelling $f: V \cup E \rightarrow\{1,2, \cdots, k\}$ is named as an edge irregular total k-labelling when $w\left(e_{1}\right) \neq w\left(e_{2}\right)$ for each different pair of edges e_{1}, e_{2} in $E(G)$. If $e=x y$, then the weight $w(e)=f(x)+f(y)+f(x y)$. The minimum number k in such a way G has such labelling as a total edge irregularity strength of G, indicated by tes $(G) "$ " [2]. Whereas, the tes of a tree $T(V, E)$ with a maximum degree $\Delta(T)$ was proved in [3]:

$$
\begin{equation*}
\left.\operatorname{tes}(T)=\max \left\{\left\lvert\, \frac{|E(T)|+2}{3}\right.\right\rceil,\left\lceil\frac{\Delta(T)+1}{2}\right]\right\} \tag{1}
\end{equation*}
$$

Note that the symbol $\lceil x\rceil$ means the least integer greater than or equal to x.
The definition of vertex irregular total k-labelling was also given in Baca et al. as follows: "a total k-labelling $f: V \cup E \rightarrow\{1,2, \cdots, k\}$ is named as an vertex irregular total k-labelling if the weights $w\left(v_{1}\right) \neq w\left(v_{2}\right)$ whenever $v_{1} \neq v_{2}$ in $V(G)$, where $w(v)=f(v)+\sum_{v y \in E} f(v y)$. We call the minimum positive integer k for which G has such labelling as a total vertex irregularity strength of G, symbolized

[^0]by $\operatorname{tvs}(G)$ " $[1]$. The tvs of a tree $T(V, E)$ that consists of n pendant vertices and it does not have vertices of degree 2 was proved in [4]:
\[

$$
\begin{equation*}
\operatorname{tvs}(T)=\left\lceil\frac{n+1}{2}\right\rceil \tag{2}
\end{equation*}
$$

\]

Furthermore, the notion of totally irregular total labelling was initiated in [5]: "the function f is called out as a totally irregular total k-labelling if both of the vertex-weights and the edge-weights are distinct. The minimum integer k such that G has totally irregular total k-labelling is named as total irregularity strength of G, denoted by $t s(G)$ ". The lower bound for $t s$ of any graph was also given in [5]:

$$
\begin{equation*}
t s(G) \geq \max \{\operatorname{tes}(G), \operatorname{tvs}(G)\} \tag{3}
\end{equation*}
$$

Some researchers have found tes and tvs of any graph classes as in [6], [7], [8-13], and [14]. Whereas, several exact values of $t s$ of any graph have also been found, such as in [14-18]. A caterpillar graph is a tree such that removing its pendant edges will form a path [19]. The exact values of $t s$ of some classes of caterpillars are still unknown [15]. Therefore, we investigate $t s$ of caterpillar graphs where the number of internal vertices of degree 3 is odd.

2. Methods

According to the method in [2],[15-18], we summarize the steps used in this paper as follows:
a. Defining caterpillars which have q internal vertices of degree 3 where $q=5,7,9$. The caterpillar is denoted by $S_{\frac{n, 3,3, \ldots, n, n}{q}}$.
b. Calculating tes of the caterpillars based on eq.(1).
c. Calculating tvs of the caterpillars based on eq.(2).
d. Determining lower bound of $t s$ of $G=S_{n, \frac{3,3, \ldots, 3, n}{q}}$ according to inequality (3).
e. Setting the lower bound $k=\max \{\operatorname{tes}(G), \operatorname{tvs}(G)\}$ where $\operatorname{tes}(G)$ is given in (1) and $\operatorname{tvs}(G)$ is provided in (2), respectively.
f. Proving that $t s$ of the caterpillars is least than or equal to k by constructing a totally irregular total k - labelling f (trial and error process) on the caterpillars and the process is continued until we obtain a fixed pattern of the labelling;
g. Formulating vertex and edge-labels and formulating the $t s$ of the caterpillars.
h. Proving the formula of the weights and showing that the weights are different.
i. Obtaining the $t s=k$.

3. Results and Discussion

We present the results of $t s$ of caterpillar graphs having odd number of internal vertices of degree 3 .

3.1. Caterpillar graphs with 5 internal vertices of degree 3

We present the concept of the caterpillars in Definition 3.1.1.
Definition 3.1.1. Caterpillar $S_{n, \frac{3,3, \ldots, 3, n}{5}}$ is tree which is formed from double star $S_{n, n}$ by inserting five vertices $\left(v^{2}, v^{3}, v^{4}, v^{5}, v^{6}\right)$ on the bridge that connects the centrals of the stars (v^{1} and v^{7}) and the five vertices are incident to pendant edges $\left(v_{1}^{j} \mid 2 \leq j \leq 6\right\}$. Whereas, the vertices of the double stars are $\left\{v_{i}^{1}: 1 \leq i \leq n-1\right\}$ and $\left\{v_{i}^{7}: 1 \leq i \leq n-1\right\}$. The caterpillar has $2 n+10$ vertices, $2 n+9$ edges, and $2 n+3$ pendant vertices. It has maximum degree is $\Delta=n$.
An illustration of caterpillar caterpillar with 5 internal vertices of degree 3 is presented in Figure 1.

Figure 1. Caterpillar graph

$$
S_{n, \underbrace{3,3, \ldots, 3, n}_{5}}
$$

The $t s$ of the caterpillars as in Definition 3.1.1 is presented in Theorem 3.1.1.
Theorem 3.1.1. If $S_{n, \underbrace{3,3, \ldots, 3, n}_{5}}, n \geq 5$ is the caterpillar as in Definition 3.1.1, then

$$
\operatorname{ts}\left(S_{n, 3,3, \ldots, 3, n}\right)=\left\lceil\frac{2 n+4}{2}\right\rceil=n+2
$$

Proof. Based on eq. (1):
$\operatorname{tes}(S_{n, \underbrace{3,3, \ldots, 3, n}_{5}})=\max \left\{\left\lceil\frac{|E|+2}{3}\right\rceil,\left\lceil\frac{\Delta+1}{2}\right\rceil\right\}=\max \left\{\left\lceil\frac{2 n+9+2}{3}\right\rceil,\left\lceil\frac{n+1}{2}\right\rceil\right\}=\max \left\{\left\lceil\frac{2 n+11}{3}\right\rceil,\left\lceil\frac{n+1}{2}\right\rceil\right\}=\left\lceil\frac{2 n+11}{3}\right\rceil$
Further, based on eq. (2): $\operatorname{tvs}\left(S_{n, 3,3, \ldots, 3, n}^{5}\right)=\left\lceil\frac{n+1}{2}\right\rceil=\left\lceil\frac{2 n+3+1}{2}\right\rceil=\left\lceil\frac{2 n+4}{2}\right\rceil$.
The lower bound of $t s$ is obtained from eq. (3):

$$
\begin{aligned}
\operatorname{ts}\left(S_{n, 3,3, \ldots, 3, n}\right) & \geq \max \{\operatorname{tes}(S_{n, \underbrace{3,3, \ldots, 3, n}_{5}}), \operatorname{tvs}(S_{\underbrace{}_{5,3,3, \ldots, 3, n}})\}=\max \left\{\left\lceil\frac{2 n+11}{3}\right\rceil,\left\lceil\frac{2 n+4}{2}\right\rceil\right\} \\
& =\left\lceil\frac{2 n+4}{2}\right\rceil=n+2, n \geq 5 .
\end{aligned}
$$

Let $k=\left\lceil\frac{2 n+4}{2}\right\rceil$. We will prove that $t s\left(S_{n, 3,3, \ldots, 3, n}\right) \leq k$ by constructing a totally irregular total k-labelling $h: V \cup E \rightarrow\{1,2, \cdots, k\}$ with $k=\left\lceil\frac{2 n+4}{2}\right\rceil=n+2$. Meanwhile, vertex and edges-labels are given in Table 1.

Table 1. Labels of elements of the caterpillars with 5 internal vertices

Vertex-labels	Edge-labels
$h\left(v_{i}^{1}\right) \quad l \quad i=1$	$\begin{array}{lll} \hline h\left(v^{1} v_{i}^{1}\right) & 1, & i=1 \\ 2, & \forall 2 \leq \mathrm{i} \leq \mathrm{n}-1 \end{array}$
$h\left(v_{i}^{7}\right) \quad \begin{aligned} & {\left[\frac{2 n+4}{2}\right]-3, \forall 1 \leq \mathrm{i} \leq \mathrm{n}-4} \\ & i+2, \forall \mathrm{n}-3 \leq \mathrm{i} \leq \mathrm{n}-1 \end{aligned}$	$h\left(v^{7} v_{i}^{7}\right) \quad \begin{aligned} & i+1, \forall 1 \leq \mathrm{i} \leq \mathrm{n}-4 \\ & \left\lceil\frac{2 n+4}{2}\right\rceil-4, \forall \mathrm{n}-3 \leq \mathrm{i} \leq \mathrm{n}-1 \end{aligned}$
$h\left(v^{j}\right) \begin{aligned} & 1, \quad j=1,7 \\ & \\ & \left\lceil\frac{2 n+4}{2}\right]+(j-6), \forall 2 \leq \mathrm{j} \leq 6 \end{aligned}$	$h\left(v^{j} v^{j+1}\right)\left[\begin{array}{l} {\left[\frac{2 n+4}{2}\right\rceil, \forall 1 \leq \mathrm{j} \leq 5} \\ \left\lceil\frac{2 n+4}{2}\right\rceil-3, j=6 \end{array}\right.$
$h\left(v_{1}^{j}\right) \quad\left\lceil\frac{2 n+4}{2}\right\rceil, \forall 2 \leq \mathrm{j} \leq 6$	$h\left(v^{j} v_{1}^{j}\right) \quad\left\lceil\frac{2 n+4}{2}\right\rceil+(j-6), \forall 2 \leq \mathrm{j} \leq 6$

We calculate the weights of elements of the caterpillars in Table 2.

Table 2. Weights of elements of the caterpillars with 5 internal vertices

	Weights of vertices		Weights of edges
	$\forall 1 \leq i \leq n-1$		$\forall 1 \leq i \leq n-1$
$w\left(v^{j}\right)$	$3 n$, for $j=1$		$2 n+1$, for $j=1$
	$4 n+(2 j-4), \forall 2 \leq j \leq 5$	$w\left(v^{j} v^{j+1}\right)$	$3 n+(2 j-5), \forall 2 \leq \mathrm{j} \leq 5$
	$4 n+(j-1)$, for $j=6$		$2 n+2$, for $j=6$
	$\frac{n(n+3)}{2}-4$, for $j=7$	$w\left(v^{j} v_{1}^{j}\right)$	$3 n+(2 j-6), \forall 2 \leq j \leq 6$
$\begin{gathered} w\left(v_{i}^{j}\right) \\ w\left(v_{1}^{j}\right) \end{gathered}$	$\begin{aligned} & 1+i, j=1 \\ & n+i, j=7 \end{aligned}$	$w\left(v^{j} v_{i}^{j}\right)$	$2+i$, for $j=1$
	$2 n+(j-2), \forall 2 \leq j \leq 6$		$1+n+i$, for $j=7$

It is shown that the labels of elements of the caterpillars are nor more than $k=\left\lceil\frac{2 n+4}{2}\right\rceil$. Further, no vertices have a same weight and also all edges have distinct weights. It proves $t s(\underbrace{}_{\substack{3,3, \ldots, 3, n}}) \leq k=$ $\left\lceil\frac{2 n+4}{2}\right\rceil$. Thus, $t s\left(S_{n, 3,3, \ldots, 3, n}^{5}\right)=\left\lceil\frac{2 n+4}{2}\right\rceil=n+2$ for $n \geq 5$.

3.2. Caterpillar graphs with 7 internal vertices of degree 3

The notion of a caterpillar with 7 internal vertices of degree 3 is presented in Definition 3.2.1.
Definition 3.2.1. Caterpillar graphs $\left(S_{n, \frac{3,3, \ldots, 3, n}{7}}\right)$ are obtained from double star $S_{n, n}$ by inserting seven vertices $\left(v^{2}, v^{3}, v^{4}, v^{5}, v^{6}, v^{7}, v^{8}\right)$ on the bridge between the two centrals (v^{1} and v^{9}) and the seven vertices are incident to pendant edges $\left(v_{1}^{j} \mid 2 \leq j \leq 8\right\}$. Whereas, the vertices of the double stars are $\left\{v_{i}^{1}: 1 \leq i \leq n-1\right\}$ and $\left\{v_{i}^{9}: 1 \leq i \leq n-1\right\}$. The caterpillar has $2 n+14$ vertices, $2 n+13$ edges, and $2 n+5$ pendant vertices. It has maximum degree is $\Delta=n$.

The $t s$ of the caterpillars as in Definition 3.2.1 is provided in Theorem 3.2.1.
Theorem 3.2.1. If $S_{n, \underset{7}{3,3, \ldots, 3, n}}, n \geq 6$ is the caterpillar as in Definition 3.2.1, then

Proof. The lower bound of $t s$ is as follows:

$$
\begin{aligned}
\operatorname{ts}(S_{n, \underbrace{3,3, \ldots, 3, n}_{7}}) \geq \max \{\operatorname{tes}(S_{n, \underbrace{3,3, \ldots, 3, n}_{7}}), \operatorname{tvs}(S_{\underbrace{n, 3,3, \ldots, 3, n}_{n}})\} & =\max \left\{\left\lceil\frac{2 n+15}{3}\right\rceil,\left\lceil\frac{2 n+6}{2}\right\rceil\right\} \\
& =\left\lceil\frac{2 n+6}{2}\right\rceil=n+3, n \geq 6 .
\end{aligned}
$$

Let $k=\left\lceil\frac{2 n+6}{2}\right\rceil$. We will prove $t s\left(S_{\frac{n, 3,3, \ldots, 3, n}{7}}\right) \leq k$ by constructing a totally irregular total k-labelling $g: V \cup E \rightarrow\{1,2, \cdots, k\}$ with $k=\left\lceil\frac{2 n+6}{2}\right\rceil=n+3$. Labels of elements of the caterpillar are given in Table 3.

Table 3. Labels of elements of the caterpillars with 7 internal vertices

	Vertex-labels	Edge-labels		
$g\left(v_{i}^{1}\right)$	$1, \quad i=1$			
	$i-1, \forall 2 \leq \mathrm{i} \leq \mathrm{n}-1$	$g\left(v^{1} v_{i}^{1}\right)$	1,	$i=1$
			$\forall 2 \leq \mathrm{i} \leq \mathrm{n}-1$	

$$
\begin{aligned}
& g\left(v_{i}^{9}\right) \begin{array}{l}
{\left[\frac{2 n+6}{2}\right]-5, \forall 1 \leq \mathrm{i} \leq \mathrm{n}-5} \\
i+3, \forall \mathrm{n}-4 \leq \mathrm{i} \leq \mathrm{n}-1
\end{array} \quad g\left(v^{9} v_{i}^{9}\right) \quad \begin{array}{l}
i+2, \quad \forall 1 \leq \mathrm{i} \leq \mathrm{n}-5 \\
{\left[\frac{2 n+6}{2}\right]-6, \forall \mathrm{n}-4 \leq \mathrm{i} \leq \mathrm{n}-1}
\end{array} \\
& g\left(v^{j}\right) \quad \begin{array}{l}
1, \quad j=1,9 \\
{\left[\frac{2 n+6}{2}\right]+(j-8), \forall 2 \leq \mathrm{j} \leq 8}
\end{array} \quad g\left(v^{j} v^{j+1}\right) \quad \begin{array}{l}
{\left[\frac{2 n+6}{2}\right], \forall 1 \leq \mathrm{j} \leq 7} \\
{\left[\frac{2 n+6}{2}\right]-5, j=8}
\end{array} \\
& g\left(v_{1}^{j}\right) \quad\left[\frac{2 n+6}{2}\right], \forall 2 \leq \mathrm{j} \leq 8 \quad g\left(v^{j} v_{1}^{j}\right) \quad\left[\frac{2 n+6}{2}\right]+(j-8), \forall 2 \leq \mathrm{j} \leq 8
\end{aligned}
$$

It is obvious that the labels of elements of the caterpillar is not more than $k=\left\lceil\frac{2 n+6}{2}\right\rceil$. Moreover, we evaluate the weights in Table 4.

Table 4. Weights of elements of the caterpillars with 7 internal vertices

	Weights of vertices	Weights of edges	
$w\left(v^{j}\right)$	$\forall 1 \leq i \leq n-1$		$\forall 1 \leq i \leq n-1$
	$3 n+1$, for $j=1$		$2 n+1$, for $j=1$
	$4 n+(2 j-4), \forall 2 \leq j \leq 7$	$w\left(v^{j} v^{j+1}\right)$	$3 n+(2 j-6), \forall 2 \leq j \leq 7$
	$4 n+(j-1)$, for $j=8$		$2 n+2$, for $j=8$
	$\frac{n(n+5)}{2}-13, j=9$	$w\left(v^{j} v_{1}^{j}\right)$	$3 n+(2 j-7), \forall 2 \leq j \leq 8$
$w\left(v_{i}^{j}\right)$	$\begin{array}{ll} 1+i, & j=1 \\ n+i, & j=9 \end{array}$	$w\left(v^{j} v_{i}^{j}\right)$	$2+i, \quad j=1$
$w\left(v_{1}^{j}\right)$	$2 n+(j-2), \forall 2 \leq j \leq 8$		$1+n+i, j=9$

Based on the above calculation, we can see that the vertices have different weights and no edges have a same weight. Therefore, the upper bound is obtained and $\operatorname{ts}\left(\frac{S_{n, 3,3, \ldots, 3, n}}{}\right)=\left\lceil\frac{2 n+6}{2}\right\rceil=n+3$ for $n \geq 6$. An illustration of labelling on the caterpillar $S_{n, \frac{3,3, \ldots, 3, n}{7}}$ is shown in Figure 2. The green colors show vertex-labels and the blue colors denote labels of edges.

Figure 2. The totally irregular total 9-labelling on the Caterpillar $S_{n, 3,3, \ldots, 3, n}^{7}$

3.3. Caterpillar graphs with 9 internal vertices of degree 3

Definition 3.3.1. Caterpillar $S_{\mathrm{n}, 3,3, \ldots, 3, \mathrm{n}}$ is a graph which is obtained from double star $S_{n, n}$ by inserting nine vertices $\left(v^{2}, v^{3}, v^{4}, v^{5}, v^{6}, v^{7}, v^{8}, v^{9}, v^{10}\right)$ on the bridge connecting the two centres (v^{1} and v^{11}) and the nine vertices are incident to pendant edges $\left(v_{1}^{j} \mid 2 \leq j \leq 10\right\}$. Meanwhile, the vertices of the double stars are $\left\{v_{i}^{1}: 1 \leq i \leq n-1\right\}$ and $\left\{v_{i}^{11}: 1 \leq i \leq n-1\right\}$. The caterpillar has $2 n+18$ vertices, $2 n+17$ edges, and $2 n+7$ pendant vertices. Its maximum degree is $\Delta=n$.

The $t s$ of the caterpillars that contain nine internal vertices of degree 3 is proved in Theorem 3.3.1.
Theorem 3.3.1. If $S_{n, \frac{3,3, \ldots, 3, n}{9}}, n \geq 7$ is the caterpillar as in Definition 3.3.1, then

$$
t s\left(S_{\left.n, \frac{3,3, \ldots, 3, n}{9}\right)}=\left\lceil\frac{2 n+8}{2}\right\rceil=n+4 .\right.
$$

Proof. It is similar to the proof of Theorem 3.1.1 and Theorem 3.2.1, we get a lower bound as follows:
$\operatorname{ts}\left(S_{n, 3,3, \ldots, 3, n}\right) \geq \max \left\{\operatorname{tes}\left(S_{n, 3,3, \ldots, 3, n}^{9}\right), \operatorname{tvs}\left(S_{n, 3,3, \ldots, 3, n}\right)\right\}=\max \left\{\left[\frac{2 n+19}{3}\right\rceil,\left\lceil\frac{2 n+8}{2}\right\rceil\right\}=\left\lceil\frac{2 n+8}{2}\right\rceil$

$$
=n+4, n \geq 7
$$

Let $k=\left\lceil\frac{2 n+8}{2}\right\rceil$. We should show $\operatorname{ts}\left(S_{n, \frac{3,3, \ldots, 3, n}{9}}\right) \leq k$ by constructing a totally irregular total k-labelling $p: V \cup E \rightarrow\{1,2, \cdots, k\}$ with $k=\left\lceil\frac{2 n+8}{2}\right\rceil=n+4$. We define labels for elements of the caterpillar to Table 5.

Table 5. Labels of vertices and edges in the caterpillars with 9 internal vertices

It is shown above that the labels of elements of the caterpillar is less than or equal to $k=\left\lceil\frac{2 n+8}{2}\right\rceil$. Furthermore, we calculate the weights to Table 6.

Table 6. Weights of vertices and edges in the caterpillars with 9 internal vertices

	$w(v)$ For all $\boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{G})$		$w(e)$ For all $\boldsymbol{e} \in \boldsymbol{E}(\boldsymbol{G})$
$w\left(v^{j}\right)$	$\forall 1 \leq i \leq n-1$	$\forall 1 \leq i \leq n-1$	
	$3 n+2, j=1$		$2 n+1, j=1$
	$4 n+(2 j-4), \quad \forall 2 \leq \mathrm{j} \leq 9$	$w\left(v^{j} v^{j+1}\right)$	$3 n+(2 j-7), \forall 2 \leq j \leq 9$
	$4 n+(j-1), j=10$		$2 n+2, j=10$
	$\frac{n(n+7)}{2}-25, j=11$	$w\left(v^{j} v_{1}^{j}\right)$	$3 n+(2 j-8), \forall 2 \leq j \leq 9$
$w\left(v_{i}^{j}\right)$	$\begin{array}{ll} 1+i, & j=1 \\ n+i, & j=11 \end{array}$	$w\left(v^{j} v_{i}^{j}\right)$	$2+i, j=1$
$w\left(v_{1}^{j}\right)$	$2 n+(j-2), \forall 2 \leq \mathrm{j} \leq 10$		$1+n+i, j=11$

We observe that all elements of the caterpillar do not have a same weight. Therefore, we get the upper bound and $t s\left(S_{n, 3,3, \ldots, 3, n}\right)=\left\lceil\frac{2 n+8}{2}\right\rceil=n+4$ for $n \geq 7$.
Figure 3 describes labelling on the caterpillar $\mathrm{S}_{\mathrm{n}, \frac{3,3, \ldots, \ldots, n}{9}}$. The green colors indicate labels of vertices and the blue colors present edge-labels.

Figure 3. The totally irregular total 11-labelling on the Caterpillar $S_{n, \underbrace{3,3, \ldots, 3, n}_{9}}$

4. Conclusion

In this research, we proved that $t s$ of $(S_{n, \underbrace{3,3, \ldots, 3, n}_{q}})$ is equal to: $\left\lceil\frac{2 n+4}{2}\right\rceil=n+2$ for $q=5$, it is equal to $\left\lceil\frac{2 n+6}{2}\right\rceil=n+3$ for $q=6$, and it is equal to $\left\lceil\frac{2 n+8}{2}\right\rceil=n+4$ for $q=9$. In upcoming research, we will investigate $t s$ of the caterpillars which have q internal vertices of degree 3 for odd $q>9$.

References

[1] Wallis W D and Marr A M 2013 Magic Graphs (New York: Birkhauser-Springer)
[2] Bača M, Jendrol' S, Kathiresan K, Muthugurupackiam K, Semaničová-Fenovcikova A 2015 Electron. Notes Discrete Math. 4819
[3] Ivanĉo J and Jendrol' S 2006 Discussiones Math. Graph Theory 26449
[4] Nurdin, Baskoro E T, Salman A N M, and Gaos N N 2010 Discrete Math. 3103043
[5] Marzuki C C, Salman A N M and Miller M 2013 Far East J. Math. Sci 82(1) 1
[6] Indriati D, Widodo, Wijayanti I E, Sugeng K A, Bača M 2015 Math. Comput. Sci 9161
[7] Indriati D, Widodo, Wijayanti I E, Sugeng K A, Bača M, Semaničová-Fenovcikova A 2016 Australas. J. Combin. 6514
[8] Rosyida I and Indriati D 2020 Indonesian J. Comb. 4(1) 53
[9] Rosyida I and Indriati D 2019 J. Phys Conf Ser. 1211012016
[10] Rosyida I, Mulyono, Indriati D 2020 J. Discret. Math. Sci. Cryptogr. 23(6) 1369
[11] Rosyida I, Mulyono, Indriati D 2019 Procedia Comput. Sci. 157699
[12] Rosyida I, Ningrum E, Mulyono, and Indriati D 2020 J. Discret. Math. Sci. Cryptogr. 23(6) 1335
[13] Rosyida I, Ningrum E, Setyaningrum A, and Mulyono 2020 J. Phys Conf Ser. 1567022073
[14] Gallian JA 2018 Electron. J. Combin 1
[15] Indriati D, Rosyida I, Widodo 2018 J. Phys Conf Ser. 1008012042
[16] Indriati D, Widodo, Rosyida I, Sugeng K A 2017 J. Phys Conf Ser. 855012018
[17] Rosyida I, Widodo, and Indriati D 2018 J. Phys Conf Ser. 1008012046
[18] Indriati D, Widodo, Wijayanti I E, Sugeng K A, Rosyida I 2020 Electron. J. Graph Theory Appl. 8(2) 247
[19] Weisstein E W 2009 Caterpillar graph MathWorld--a Wolfram Web Resource: https://mathworld.wolfram.com/CaterpillarGraph.html.

[^0]: Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution

