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Abstract. Given a graph G  consisting of vertex set V and edget set E , repectively. Assume G  

is simple, connected, and the edges  do not have direction. A function � that maps V E  into a 

set of k-integers is named a totally irregular total k-labelling if no vertices have the same weight 

and also the edges of G  get distinct weights. We call the minimum number � for which � has 

totally irregular total k-labelling as total irregularity strength of �, ts(�). In this article, we 

construct labels of vertices and edges of caterpillar graphs which have q internal vertices of 

degree 3 where q is 5,7, and 9. We obtain the exact values of ts in the following:  � + 2 if the 

caterpillars have q=5 internal vertices,  � + 3 for q=7, and � + 4 for q=9. 

1.  Introduction 

The notion of graph labelling was introduced in Alexander Rosa’s paper in 1967. The definition is as 

follows: “graph labelling is a function that has elements of  �(
, �) as its domain and  a set of positive 

integers as its co-domain. If the function assigns ( )V G  to the co-domain, then it is called  a vertex 

labelling. Meanwhile, if  the function maps ( )E G  to the set of positive integers, then it is named an edge 

labelling. Moreover, the function is mentioned as a total labelling when it has 
 ∪ � as its domain” [1]. 

Further, the definition of edge irregular total labelling was given in Baca et al. as follows: “a total 

k-labelling : {1,2, , }f V E k  L is named as an edge irregular total k-labelling when �(��) ≠ �(��) 

for each different pair of edges 1 2,e e in �(�). If e xy , then  the weight ( ) ( ) ( ) ( )w e f x f y f xy   . The 

minimum number � in such a way � has such labelling as a total edge irregularity strength of �, 

indicated by tes(G)” [2]. Whereas, the ��� of a tree �(
, �) with a maximum degree �(�) was proved 

in [3]: 

 (1) 

Note that the symbol ⌈�⌉ means the least integer greater than or equal to x. 

The definition of vertex irregular total k-labelling was also given in Baca et al. as follows: “a total 

k-labelling : {1,2, , }f V E k  L  is named as an vertex irregular total k-labelling if the weights 

�(��) ≠ �(��) whenever �� ≠ �� in 
(�), where ( ) ( ) ( )
vy E

w v f v f vy


   . We call the minimum 

positive integer � for which � has such labelling as a total vertex irregularity strength of �, symbolized 

���(�) = ���  !|�(�)| + 2
3 # , $�(�) + 1

2 &' 
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by ���(�)” [1]. The  ��� of a tree �(
, �) that consists of � pendant vertices and it does not have 

vertices of degree 2 was proved in [4]: 

���(�) = ()*�
� +    (2) 

 Furthermore, the notion of totally irregular total labelling was initiated in [5]: “the function , is 

called out as a totally irregular total k-labelling if both of the vertex-weights and the edge-weights are 

distinct. The minimum integer � such that � has totally irregular total �-labelling is named as total 

irregularity strength of �, denoted by ��(�)”. The lower bound for �� of any graph was also given in 

[5]: ��(�) ≥ ���.���(�), ���(�)/  (3) 

Some researchers have found ��� and ��� of any graph classes as in [6], [7], [8-13], and [14]. 

Whereas, several exact values of �� of any graph have also been found, such as in [14-18]. A caterpillar 

graph is a tree such that removing its pendant edges will form a path [19]. The exact values of  �� of 

some classes of caterpillars are still unknown [15]. Therefore, we investigate �� of caterpillar graphs 

where the number of internal vertices of degree 3 is odd. 

2.  Methods 

According to the method in [2],[15-18], we summarize the steps used in this paper as follows: 

a. Defining caterpillars which have 0 internal vertices of degree 3 where 0 = 5,7,9. The caterpillar is 

denoted by  4),5,5,…,57898:
;

,). 

b. Calculating ��� of the caterpillars based on eq.(1). 

c. Calculating ��� of the caterpillars based on eq.(2). 

d. Determining lower bound of ��  of � = 4),5,5,…,57898:
;

,) according to inequality (3). 

e. Setting the lower bound � = max.tes(�), tvs(�)/ where tes(�) is given in (1) and  tvs(�) is 

provided in (2), respectively. 

f. Proving that �� of the caterpillars is least than or equal to � by constructing a totally irregular total 

k- labelling f (trial and error process) on the caterpillars and the process is continued until we obtain 

a fixed pattern of the labelling; 

g. Formulating vertex and edge-labels and formulating the �� of the caterpillars.   

h. Proving the formula of the weights and showing that the weights are different.  

i. Obtaining the ts = k. 

3.  Results and Discussion 

We present the results of �� of caterpillar graphs having odd number of internal vertices of degree 3. 

3.1.  Caterpillar graphs with 5 internal vertices of degree 3 

We present the concept of the caterpillars in Definition 3.1.1. 

Definition 3.1.1. Caterpillar 4),5,5,…,57898:
C

,) is tree which is formed from double star 4),) by inserting five 

vertices (��, �5, �D, �E, �F) on the bridge that connects the centrals of the stars (�� and �G) and the five 

vertices are incident to pendant edges (��H|2 ≤ J ≤ 6/. Whereas, the vertices of the double stars are  

L�M�: 1 ≤ O ≤ � − 1Q and L�MG: 1 ≤ O ≤ � − 1Q. The caterpillar has 2� + 10 vertices, 2� + 9 edges, and 2� + 3 pendant vertices. It has maximum degree is  � = �. 

An illustration of caterpillar caterpillar with 5 internal vertices of degree 3 is presented in Figure 1.  
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Figure 1. Caterpillar graph   

 

The  �� of the caterpillars as in Definition 3.1.1 is presented in Theorem 3.1.1. 

 

Theorem 3.1.1. If 4),5,5,…,57898:
C

,), � ≥ 5 is the caterpillar as in Definition 3.1.1, then  

��(4),5,5,…,57898:
C

,)) = $2� + 4
2 & = � + 2. 

Proof. Based on eq. (1): 

���(4),5,5,…,57898:
C

,)) = ��� T(|U|*�
5 + , (V*�

� +W = ��� T(�)*X*�
5 + , ()*�

� +W = ��� T(�)*��
5 + , ()*�

� +W = (�)*��
5 +  

Further, based on eq. (2): ���(4),5,5,…,57898:
C

,)) = ()*�
� + = (�)*5*�

� + = (�)*D
� +. 

The lower bound of �� is obtained from eq. (3): 

�� Y4),5,5,…,57898:
C

,)Z ≥ ���  ��� Y4),5,5,…,57898:
C

,)Z , ��� Y4),5,5,…,57898:
C

,)Z' = ��� [$2� + 11
3 & , $2� + 4

2 &\
= $2� + 4

2 & = � + 2 , � ≥ 5. 
Let � = (�)*D

� +. We will prove that ��(4),5,5,…,57898:
C

,))  ≤ � by constructing a totally irregular total k-labelling 

: {1,2, , }h V E k  L   with � = (�)*D
� + = � + 2. Meanwhile, vertex and edges-labels are given in Table 

1. 

Table 1. Labels of elements of the caterpillars with 5 internal vertices 

Vertex-labels Edge-labels 

ℎ^�M�_   
1, O = 1 ℎ^���M�_ 

1, O = 1 

O − 1, ∀ 2 ≤ i ≤ n − 1 2, ∀ 2 ≤ i ≤ n − 1 

ℎ^�MG_  
(�)*D

� + − 3, ∀ 1 ≤ i ≤ n − 4  ℎ^�G�MG_ 
O + 1, ∀ 1 ≤ i ≤ n − 4  

O + 2, ∀ n − 3 ≤ i ≤ n − 1  (�)*D
� + − 4, ∀ n − 3 ≤ i ≤ n − 1  

ℎ(�H) 
1, J = 1,7 ℎ^�H�H*�_ 

(�)*D
� + , ∀ 1 ≤ j ≤ 5  

(�)*D
� + + (J − 6), ∀ 2 ≤ j ≤ 6  (�)*D

� + − 3, J = 6  

ℎ^��H_ (�)*D
� + , ∀ 2 ≤ j ≤ 6  ℎ^�H��H_ (�)*D

� + + (J − 6), ∀ 2 ≤ j ≤ 6  

We calculate the weights of elements of the caterpillars in Table 2. 

 

 

4�,3,3,…,37898:
5

,�  



ICMSE 2020
Journal of Physics: Conference Series 1918 (2021) 042034

IOP Publishing
doi:10.1088/1742-6596/1918/4/042034

4

 

 

 

 

 

 

Table 2. Weights of elements of the caterpillars with 5 internal vertices 

Weights of vertices Weights of edges ∀ 1 ≤ O ≤ � − 1 ∀ 1 ≤ O ≤ � − 1 

�^�H_ 

3�, for  J = 1  �^�H�H*�_ 

2� + 1, for  J = 1  4� + (2J − 4), ∀ 2 ≤ j ≤ 5  3� + (2J − 5), ∀ 2 ≤ j ≤ 5 4� + (J − 1), for  J = 6  2� + 2, for  J = 6  
)()*5)

� − 4, for  J = 7  �^�H��H_ 3� + (2J − 6), ∀ 2 ≤ j ≤ 6  

�^�MH_ 
1 + O, J = 1  

�^�H�MH_ 

2 + O, for  J = 1  � + O, J = 7  

�^��H_ 2� + (J − 2), ∀ 2 ≤ j ≤ 6  1 + � + O, for  J = 7   

It is shown that the labels of elements of the caterpillars are nor more than � = (�)*D
� +. Further, no 

vertices have a same weight and also all edges have distinct weights. It proves �� Y4),5,5,…,57898:
C

,)Z ≤ � =
(�)*D

� +. Thus, ��(4),5,5,…,57898:
C

,)) = (�)*D
� + = � + 2 for � ≥ 5. 

3.2.  Caterpillar graphs with 7 internal vertices of degree 3 

The notion of a caterpillar with 7 internal vertices of degree 3 is presented in Definition 3.2.1. 

Definition 3.2.1. Caterpillar graphs (4),5,5,…,57898:,)
g

) are obtained from double star 4),) by inserting seven 

vertices (��, �5, �D, �E, �F, �G, �h) on the bridge between the two centrals (�� and �X) and the seven 

vertices are incident to pendant edges (��H|2 ≤ J ≤ 8/. Whereas, the vertices of the double stars are 

L�M�: 1 ≤ O ≤ � − 1Q and L�MX: 1 ≤ O ≤ � − 1Q. The caterpillar has 2� + 14 vertices, 2� + 13 edges, and 2� + 5 pendant vertices. It has maximum degree is � = �. 

The  �� of the caterpillars as in Definition 3.2.1 is provided in Theorem 3.2.1. 

Theorem 3.2.1. If 4),5,5,…,57898:
g

,) , � ≥ 6 is the caterpillar as in Definition 3.2.1, then 

 

Proof.  The lower bound of ts is as follows: 

�� Y4),5,5,…,57898:
g

,)Z ≥ ���  ��� Y4),5,5,…,57898:
g

,)Z , ��� Y4),5,5,…,57898:
g

,)Z' = ��� [$2� + 15
3 & , $2� + 6

2 &\ 

=  $2� + 6
2 & = � + 3 , � ≥ 6. 

Let � = (�)*F
� +. We will prove ��(4),5,5,…,57898:

g
,)) ≤ � by constructing a totally irregular total k-labelling 

: {1,2, , }g V E k  L  with � = (�)*F
� + = � + 3. Labels of elements of the caterpillar are given in Table 

3. 

Table 3. Labels of elements of the caterpillars with 7 internal vertices 

Vertex-labels Edge-labels 

j^�M�_ 
1, O = 1 j^���M�_ 

1, O = 1 O − 1, ∀ 2 ≤ i ≤ n − 1 2, ∀ 2 ≤ i ≤ n − 1 

��(4�,3,3,…,37898:
7

,� ) = $2� + 6
2 & = � + 3. 
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j^�MX_ 
(�)*F

� + − 5, ∀ 1 ≤ i ≤ n − 5  j^�X�MX_ 
O + 2, ∀ 1 ≤ i ≤ n − 5 

O + 3, ∀ n − 4 ≤ i ≤ n − 1  (�)*F
� + − 6, ∀ n − 4 ≤ i ≤ n − 1  

j(�H) 
1, J = 1,9 j^�H�H*�_ 

(�)*F
� + , ∀ 1 ≤ j ≤ 7  

(�)*F
� + + (J − 8), ∀ 2 ≤ j ≤ 8  (�)*F

� + − 5, J = 8  

j^��H_ (�)*F
� + , ∀ 2 ≤ j ≤ 8  j^�H��H_ (�)*F

� + + (J − 8), ∀ 2 ≤ j ≤ 8  

It is obvious that the labels of elements of the caterpillar is not more than � = (�)*F
� +. Moreover, we 

evaluate the weights in Table 4. 

Table 4. Weights of elements of the caterpillars with 7 internal vertices 

Weights of vertices Weights of edges ∀ 1 ≤ O ≤ � − 1 ∀ 1 ≤ O ≤ � − 1 

�^�H_ 

3� + 1, for  J = 1  �^�H�H*�_ 

2� + 1,   for   J = 1 4� + (2J − 4), ∀ 2 ≤ j ≤ 7  3� + (2J − 6), ∀ 2 ≤ j ≤ 7  4� + (J − 1), for  J = 8  2� + 2, for  J = 8  )()*E)
� − 13, J = 9  �^�H��H_ 3� + (2J − 7), ∀ 2 ≤ j ≤ 8  

�^�MH_ 
1 + O, J = 1 

�^�H�MH_ 

2 + O, J = 1 � + O, J = 9 

�^��H_ 2� + (J − 2), ∀ 2 ≤ j ≤ 8  1 + � + O, J = 9 

Based on the above calculation, we can see that the vertices have different weights and no edges have a 

same weight. Therefore, the upper bound is obtained and ��(4),5,5,…,57898:
g

,)) = (�)*F
� + = � + 3 for � ≥ 6. 

An illustration of labelling on the caterpillar 4),5,5,…,57898:,)
g

 is shown in Figure 2. The green colors show 

vertex-labels and the blue colors denote labels of edges. 

 

 
Figure 2. The totally irregular total 9-labelling on the Caterpillar 4),5,5,…,57898:,)

g
 

3.3.  Caterpillar graphs with 9 internal vertices of degree 3 

Definition 3.3.1. Caterpillar Sl,5,5,…,57898:
m

,l is a graph which is obtained from double star 4),) by inserting 

nine vertices (��, �5, �D, �E, �F, �G, �h, �X, ��n) on the bridge connecting the two centres (�� and ���) 

and the nine vertices are incident to pendant edges (��H|2 ≤ J ≤ 10/. Meanwhile, the vertices of the 

double stars are  L�M�: 1 ≤ O ≤ � − 1Q and L�M��: 1 ≤ O ≤ � − 1Q. The caterpillar has 2� + 18 vertices, 2� + 17 edges, and 2� + 7 pendant vertices. Its maximum degree is � = �. 
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The �� of the caterpillars that contain nine internal vertices of degree 3 is proved in Theorem 3.3.1. 

Theorem 3.3.1. If 4),5,5,…,57898:
m

,) , � ≥ 7 is the caterpillar as in Definition 3.3.1, then 

 
Proof. It is similar to the proof of Theorem 3.1.1 and Theorem 3.2.1, we get a lower bound as follows: 

��(4),5,5,…,57898:
m

,)) ≥ ���  ���(4),5,5,…,57898:
m

,)), ���(4),5,5,…,57898:
m

,))' = ��� [$2� + 19
3 & , $2� + 8

2 &\ =  $2� + 8
2 &

= � + 4 , � ≥ 7. 
Let � = (�)*h

� +. We should show ��(4),5,5,…,57898:
m

,)) ≤ � by constructing a totally irregular total k-labelling  

: {1,2, , }p V E k  L   with � = (�)*h
� + = � + 4. We define labels for elements of the caterpillar to 

Table 5.   

Table 5. Labels of vertices and edges in the caterpillars with 9 internal vertices o(�) For all  p ∈ r(s) o(�) For all  t ∈ u(s) 

o^�M�_ 
1, O = 1 o^���M�_ 

1, O = 1 O − 1, ∀ 2 ≤ i ≤ n − 1  2,   ∀ 2 ≤ i ≤ n − 1 

o^�M��_ 
(�)*h

� + − 7, ∀ 1 ≤ i ≤ n − 6  o^����M��_ 
O + 3,   ∀ 1 ≤ i ≤ n − 6 

O + 4, ∀ n − 5 ≤ i ≤ n − 1  (�)*h
� + − 8, ∀ n − 5 ≤ i ≤ n − 1  

o(�H) 
1, J = 1,11 o^�H�H*�_ 

(�)*h
� + , ∀ 1 ≤ j ≤ 9  

(�)*h
� + + (J − 10), ∀ 2 ≤ j ≤ 10  (�)*h

� + − 7, J = 10  

o^��H_ (�)*h
� + , ∀ 2 ≤ j ≤ 10  o^�H��H_ (�)*h

� + + (J − 10), ∀ 2 ≤ j ≤ 10  

It is shown above that the labels of elements of the caterpillar is less than or equal to � = (�)*h
� +. 

Furthermore, we calculate the weights to Table 6. 

Table 6. Weights of vertices and edges in the caterpillars with 9 internal vertices �(�) For all  p ∈ r(s) �(�) For all  t ∈ u(s) ∀ 1 ≤ O ≤ � − 1 ∀ 1 ≤ O ≤ � − 1 

�^�H_ 

3� + 2,   J = 1 �^�H�H*�_ 

2� + 1,   J = 1 4� + (2J − 4),   ∀ 2 ≤ j ≤ 9 3� + (2J − 7),   ∀ 2 ≤ j ≤ 9 4� + (J − 1),   J = 10 2� + 2,   J = 10 )()*G)
� − 25,   J = 11  �^�H��H_ 3� + (2J − 8),   ∀ 2 ≤ j ≤ 9 

�^�MH_ 
1 + O, J = 1 

�^�H�MH_ 

2 + O,   J = 1 � + O, J = 11 

�^��H_ 2� + (J − 2),   ∀ 2 ≤ j ≤ 10 1 + � + O,   J = 11 

 

We observe that all elements of the caterpillar do not have a same weight. Therefore, we get the upper 

bound and ��(4),5,5,…,57898:
m

,)) = (�)*h
� + = � + 4 for � ≥ 7.  

Figure 3 describes labelling on the caterpillar Sl,5,5,…,57898:
m

,l. The green colors indicate labels of vertices 

and the blue colors present edge-labels. 

��(4�,3,3,…,37898:
9

,� ) = $2� + 8
2 & = � + 4. 
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Figure 3. The totally irregular total 11-labelling on the Caterpillar Sl,5,5,…,57898:

m
,l 

4.  Conclusion 

In this research, we proved that �� of (4),5,5,…,57898:
;

,)) is equal to: (�)*D
� + = � + 2 for q=5, it is equal to 

(�)*F
� + = � + 3 for q=6, and it is equal to (�)*h

� + = � + 4 for q=9. In upcoming research, we will 

investigate �� of the caterpillars which have q internal vertices of degree 3 for odd 0 v 9. 
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