
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 157 (2019) 699–706

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Computer Science and Computational 
Intelligence 2019.
10.1016/j.procs.2019.09.152

10.1016/j.procs.2019.09.152 1877-0509

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Computer Science and 
Computational Intelligence 2019.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

4th International Conference on Computer Science and Computational Intelligence 2019
(ICCSCI), 12-13 September 2019

Determining Total Vertex Irregularity Strength of Tr(4, 1) Tadpole
Chain Graph and its Computation
Isnaini Rosyidaa,∗, Mulyonoa, Diari Indriatib

aMathematics Department, Universitas Negeri Semarang, Indonesia.
bMathematics Department, Universitas Sebelas Maret, Surakarta, Indonesia.

Abstract

In this research, we examine total vertex irregularity strength (tvs) of tadpole chain graph Tr(4, 1) with length r. We obtain that

tvs (Tr(4, 1)) =
⌈4r + 2

5

⌉
. Further, we construct algorithm to determine label of vertices, label of edges, weight of vertices, and the

exact value of tvs of Tr(4, 1).
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1. Introduction

Let G(V, E) be a simple, finite, and undirected graph. A function f is named total labeling if it is map V ∪ E into a
set of integers1 which are called labels. A function f : V∪E → {1, 2, . . . , k} is called a vertex irregular total k-labeling
of G if the vertex weights wt f (u) � wt f (v) for all diverse vertices in G with wf (u) = f (u)+

∑
ux∈E(G) f (ux). The concept

of total vertex irregularity strength of graph G was introduced by Baca et al. 2 that is the minimum number ksuch that
G has a vertex irregular total k-labeling, denoted as tvs(G).

Further, the function f is named an edge irregular total k-labeling of G if the weights wt f (uv) � wt f (xy) for every
two different edges uv and xy in E(G), with wt f (uv) = f (u) + f (v) + f (uv). The minimum number k is called a total
edge irregularity strength of G, denoted by tes(G)2.

The bounds for tvs of graphs are as follows3:
⌈

(p+δ)
(∆+1)

⌉
≤ tvs(G) ≤ p + ∆ − 2δ + 1,
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where p is the number of vertices of G, δ and ∆ are minimum and maximum degree of all vertices of G, respectively.
Another bound was given by Anholcer, et al. 4. Meanwhile, Nurdin et al. 5 gave a lower bound of tvs for any connected
graph G having ni vertices of degree i with i = δ, δ + 1, δ + 2, . . . ,∆ as follows:

tvs(G) ≥ max
{⌈δ(G) + nδ(G)

δ(G) + 1

⌉
,
⌈δ(G) + nδ(G) + nδ(G)+1

δ(G) + 2

⌉
, . . . ,

⌈δ(G) +
∑∆(G)

i=δ(G) ni

∆(G) + 1

⌉}
(1)

Some exact values of total vertex irregularity strength of any class graphs have been found by researchers. Readers
are referred to2,6, 7, 8, 9, 10, 11, 3, etc. This research is motivated by the result in12. In this paper, we continue the result
in12 and13 that is investigating tvs of tadpole chain graph Tr(4, 1) and construct a related algorithm.

Nomenclature

tvs total vertex irregularity strength
T (4, 1) tadpole graph which is formed of cycle C4 and path P1 connected by a bridge
Tr(4, 1) tadpole cactus chain graph of length r

2. Main Results

In subsection 1, the result of tvs of tadpole chain graph Tr(4, 1) is presented. Further, computational result in
determining tvs of Tr(4, 1) is given in subsection 2.

2.1. Formula for tvs of tadpole chain graph Tr(4, 1)

Firstly, a concept of tadpole graph14 and tadpole chain graph are given as follows.

Definition 1. A tadpole graph T (m, n) is graph consisting of a cycle graph of m vertices and a path graph of n vertices
connected with a bridge. Therefore, a tadpole graph consists of m + n vertices and m + n edges.

In this article, we use a tadpole graph T (4, 1).

Definition 2. The block cut vertex graph of a connected graph G is the graph whose vertices are the blocks and cut
vertices of G. A chain graph is a connected graph which contains some blocks B1, B2, . . . , Br such that every two
blocks Bi, Bi+1 have at most one common cut vertex in such away that the block cut vertex is a path12. The tadpole
chain graph is a chain graph with all blocks are tadpole graphs.

In this article, we focus on tadpole chain graph which all blocks are tadpole T (4, 1). The length of tadpole chain
graph is indicated by the number of blocks in the chain. Tadpole chain graph with length r is denoted as Tr(4, 1). A
formula for tvs of Tr(4, 1) is presented in Theorem 1.

Theorem 1. Let Tr(4, 1) be a tadpole chain graph with length r (r ≥ 3). The total vertex irregularity strength of
Tr(4, 1) is

tvs(Tr(4, 1)) =
⌈4r + 2

5

⌉
.

.
Proof . Tadpole cactus chain graphs Tr(4, 1) with length r contain r vertices which have degrees 1, r+2 vertices which
have degrees 2, r vertices with degrees 3, and r − 1 vertices with degrees 4. We denote that y1, y2, . . . , yr are vertices
of degree 1; u1, u2, . . . , ur, ur+1, ur+2 are vertices of degree 2; x1, x2, . . . , xr are vertices of degree 3; and v1, v2, . . . , vr−1
are vertices of degree 4. According to inequality (1), we obtain
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tvs(Tr(4, 1)) ≥ max
{⌈ r + 1

2

⌉
,
⌈2r + 3

3

⌉
,
⌈3r + 3

4

⌉
,
⌈4r + 2

5

⌉}
=

⌈4r + 2
5

⌉
(2)

To obtain an upper bound for tvs(Tr(4, 1)), we verify the existence of a vertex iregular total k-labeling of Tr(4, 1).

Therefore, we construct a function f from V ∪ E to {1, 2, . . . , k} with k =
⌈4r + 2

5

⌉
in the following three cases.

Case 1. For r ≡ 0 mod
⌈

4r+2
5

⌉
(3 ≤ r ≤ 6).

Label of vertices are defined as:

f (ui) = 1, 1 ≤ i ≤ r,
f (ur+1) = 2,
f (ur+2) = 3,

f (vi) = 3, 1 ≤ i ≤ r − 1,
f (xi) = 3, 1 ≤ i ≤ r,
f (yi) = 1, 1 ≤ i ≤ r.

Meanwhile, label of edges are:

f (u1ur+1) =
⌈

4r+2
5

⌉
,

f (urur+2) =
⌈

4r+2
5

⌉
,

f (uivi) = i, 1 ≤ i ≤ r − 1,

f (ui+1vi) =
⌈

4r+2
5

⌉
, 1 ≤ i ≤ r − 1,

f (vixi) =
⌈

4r+2
5

⌉
, 1 ≤ i ≤ r − 1,

f (vixi+1) =
⌈

4r+2
5

⌉
, 1 ≤ i ≤ r − 1,

f (ur+1x1) =
⌈

4r+2
5

⌉
,

f (ur+2xr) =
⌈

4r+2
5

⌉
,

f (xiyi) = i, 1 ≤ i ≤ r.

The weight of vertices are:

wt f (yi) = i + 1, 1 ≤ i ≤ r,

wt f (ui) =
⌈

4r+2
5

⌉
+ (i + 1), 1 ≤ i ≤ r,

wt f (ur+1) = 2
⌈

4r+2
5

⌉
+ 2,

wt f (ur+2) = 2
⌈

4r+2
5

⌉
+ 3,

wt f (vi) = 3
⌈

4r+2
5

⌉
+ (i + 3), 1 ≤ i ≤ r − 1,

wt f (xi) = 2
⌈

4r+2
5

⌉
+ (i + 3), 1 ≤ i ≤ r.

In Case 1, the weight of vertices are all distinct. The minimum weight is 2 and the maximum weight is 3
⌈

4r+2
5

⌉
+

3 + (r − 1). We get upper bound tvs(Tr(4, 1)) ≤
⌈

4r+2
5

⌉
. Combining with the lower bound (2) and the upper bound, we

obtain tvs(Tr(4, 1)) =
⌈

4r+2
5

⌉
.
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Case 2. For r ≡ 1 mod
⌈

4r+2
5

⌉
(7 ≤ r ≤ 11).

In Case 2, we construct label of vertices in the following way:

f (ui) = 1, 1 ≤ i ≤ r − 2,
f (ur−1) = 2,

f (ur) = 3,
f (ur+1) = 4,
f (ur+2) = 5,

f (vi) = 5, 1 ≤ i ≤ r − 2,

f (vr−1) =
⌈

4r+2
5

⌉
,

f (xi) = 3, 1 ≤ i ≤ r − 1,

f (xr) =
⌈

4r+2
5

⌉
,

f (yi) = 1, 1 ≤ i ≤ r − 1,
f (yr) = 2,

Further, label of edges are defined as follows:

f (u1ur+1) =
⌈

4r+2
5

⌉
,

f (urur+1) =
⌈

4r+2
5

⌉
,

f (uivi) = i + 1, 1 ≤ i ≤ r − 2,

f (ur−1vr−1) =
⌈

4r+2
5

⌉
,

f (ui+1vi) =
⌈

4r+2
5

⌉
, 1 ≤ i ≤ r − 1,

f (vixi) =
⌈

4r+2
5

⌉
, i ≤ r − 1,

f (vixi+1) =
⌈

4r+2
5

⌉
, 1 ≤ i ≤ r − 1,

f (ur+1x1) = f (ur+2xr) =
⌈

4r+2
5

⌉
,

f (xiyi) = i, 1 ≤ i ≤ r − 1,

f (xryr) =
⌈

4r+2
5

⌉
.

Under the labeling f , we get:

wt f (yi) = i + 1, 1 ≤ i ≤ r − 1,

wt f (yr) = 2 +
⌈

4r+2
5

⌉
,

wt f (ui) =
⌈

4r+2
5

⌉
+ (i + 1), 1 ≤ i ≤ r − 2

wt f (ur−1) = 2 +
⌈

4r+2
5

⌉
,

wt f (ur) = 3 +
⌈

4r+2
5

⌉
,

wt f (ur+1) = 2
⌈

4r+2
5

⌉
+ 4,

wt f (ur+2) = 2
⌈

4r+2
5

⌉
+ 5,

wt f (vi) = 3
⌈

4r+2
5

⌉
+ (i + 6), 1 ≤ i ≤ r − 2,

wt f (vr−1) = 5
⌈

4r+2
5

⌉
,

wt f (xi) = 2
⌈

4r+2
5

⌉
+ (i + 5), 1 ≤ i ≤ r − 1,

wt f (xr) = 4
⌈

4r+2
5

⌉
.
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In Case 2, it is obvious that the weight of vertices are different. Thus, tvs(Tr(4, 1)) ≤
⌈

4r+2
5

⌉
. Combining with (2), we

get tvs(Tr(4, 1)) =
⌈

4r+2
5

⌉
.

Case 3. For r ≡ s mod
⌈

4r+2
5

⌉
with s ≥ 2.

We construct label of vertices as follows:

f (ui) = 1, 1 ≤ i ≤ r − 2s,
f (uj) = f (u j−1) + 1, r − 2s + 1 ≤ j ≤ r − 1,

f (ur) = 2s + 1,
f (ur+1) = 2s + 2,
f (ur+2) = 2s + 3,

f (vi) = 2s + 3, 1 ≤ i ≤ r − 2s,
f (vr−2s+1) = 2s + 4,

f (vr−2s+2) = 2s + 5, . . . ,
f (vr−1) = 2s + f (ur+1),

f (vr) = 2s + 3,
f (xi) = 2s + 3, 1 ≤ i ≤ r − s,

f (xr−s+1) = 2s + 4,
f (xr−s+2) = 2s + 5, . . . ,

f (xr) = 3s + 3,
f (yi) = 1, 1 ≤ i ≤ r − s,

f (yr−s+1) = 2,
f (yr−s+2) = 3, . . . ,

f (yr) = s + 1,

Meanwhile, label of edges are:

f (u1ur+1) =
⌈

4r+2
5

⌉
,

f (urur+1) =
⌈

4r+2
5

⌉
,

f (uivi) = i + s, 1 ≤ i ≤ r − 2s,

f (uivi) =
⌈

4r+2
5

⌉
, r − 2s + 1 ≤ i ≤ r − 1,

f (ui+1vi) =
⌈

4r+2
5

⌉
, 1 ≤ i ≤ r − 1,

f (xivi) = f (xi+1vi) =
⌈

4r+2
5

⌉
, 1 ≤ i ≤ r − 1,

f (ur+1x1) =
⌈

4r+2
5

⌉
,

f (ur+2xr) =
⌈

4r+2
5

⌉
,

f (xiyi) = i, 1 ≤ i ≤ r − s,

f (xiyi) =
⌈

4r+2
5

⌉
, r − s + 1 ≤ i ≤ r.



704 Isnaini Rosyida  et al. / Procedia Computer Science 157 (2019) 699–706
6 I. Rosyida et al. / Procedia Computer Science 00 (2019) 000–000

In Case 3, we obtain the weight of edges:

wt f (yi) = i + 1, 1 ≤ i ≤ r − s;
wt f (yr−s+i) = r − s + i + 1, 1 ≤ i ≤ s.

wt f (ui) =
⌈4r + 2

5

⌉
+ (i + s + 1), 1 ≤ i ≤ r − 2s;

wt f (u2−2s+i) = 2
⌈4r + 2

5

⌉
+ (i + 1), 1 ≤ i ≤ 2s;

wt f (ur+1) = 2
⌈4r + 2

5

⌉
+ (2s + 2);

wt f (ur+2) = 2
⌈4r + 2

5

⌉
+ (2s + 3).

wt f (vi) = 3
⌈4r + 2

5

⌉
+ (3s + i + 3), 1 ≤ i ≤ r − 2s;

wt f (vr−2s+i) = 4
⌈4r + 2

5

⌉
+ (3s + i), 1 ≤ i ≤ 2s − 1.

wt f (xi) = 2
⌈4r + 2

5

⌉
+ (2s + i + 3), 1 ≤ i ≤ r − s;

wt f (xr−s+i) = 3
⌈4r + 2

5

⌉
+ (3s + i), 1 ≤ i ≤ s.

It is also clear that we get different weights of vertices, i.e., {2, 3, . . . , 4
⌈

4r+2
5

⌉
+ (5s − 1)}. This shows the upper bound

tvs(Tr(4, 1)) ≤
⌈

4r+2
5

⌉
. According to (2), the exact value is tvs(Tr(4, 1)) =

⌈
4r+2

5

⌉
and the proof is complete.

2.2. Computational result

In this part, computational result of determination of tvs of tadpole chain graph Tr(4, 1) is proposed. We construct
computer program by using Matlab R2016a with an algorithm displayed in Algorithm 1.
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Algorithm 1: Algorithm to determine tvs of tadpole cactus chain graph Tr(4, 1).
Input: length of chain r
Output: Weights of ui; ur+1; ur+2; vi; xi; yi and tvs of Tr(4, 1)

1 for i = 1 to r do
2 label uu(i) = 1
3 label x(i) = 3;label y(i) = 1 (% Labeling vertices of Tr(4, 1))
4 end
5 Set label ur = 2; label ur+1 = 2;Label u=[(label uu)’;label ur ;label ur+1]
6 for i = 1 to r − 1 do
7 label v(i) = 3
8 end
9 Set u1 = 1; ur+1 = 2; e1 = [u1ur+1]; label e1 = ceil((4 ∗ r + 2)/5); ur = 1; ur+2 = 3; e2 = [urur+2]; label

e2 = ceil((4 ∗ r + 2)/5) (% Labeling edges of T(4, 1))
10 for i = 1 to r − 1 do
11 u j(i) = 1; v j(i) = 3; e3 = [uj; v j]; label e3 = i
12 u j+1(i) = 1; v j(i) = 3; e4 = [uj+1; v j]; label e4 = ceil((4 ∗ r + 2)/5)
13 v j(i) = 3; x j(i) = 3; e5 = [v j; x j];label e5 = ceil((4 ∗ r + 2)/5); x j+1(i) = 3; e6 = [v j; x j+1];

label e6 = ceil((4 ∗ r + 2)/5)
14 end
15 Set ur+1 = 2; x1 = 3; e61 = [ur+1; x1]; label e61 = ceil((4 ∗ r + 2)/5); ur+2 = 3; xr = 3; e62 = [ur+2; xr];label

e62 = ceil((4 ∗ r + 2)/5)
16 for i = 1 to r do
17 x j(i) = 3; y j(i) = 3; e7 = [x j; y j]; label e7(i) = i
18 end
19 for i = 1 to r do
20 Wy(i) = i + 1; Wx(i) = 2 ∗ ceil((4 ∗ r + 2)/5) + i + 3 ;Wu(i) = ceil((4 ∗ r + 2)/5) + i + 1

( Determining weight of vertices of T(4, 1))
21 end
22 Set Wur+1 = 2 ∗ ceil((4 ∗ r + 2)/5) + 2; Wur+2 = 2 ∗ ceil((4 ∗ r + 2)/5) + 3
23 for i = 1 to r − 1 do
24 Wv(i) = 3 ∗ ceil((4 ∗ r + 2)/5) + i + 3
25 end

As a simulation, labeling of T6(4, 1) is illustrated in Fig.1. By using the algorithm, the output of computer program
for labeling and tvs of T6(4, 1) is given in Fig. 2.

Fig. 1: Vertex irregular total 6-labeling of T6(4, 1)
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Fig. 2: Output of the algoritm in determining weight of vertices and tvs of tadpole chain graph T6(4, 1)

3. Conclusions

In this article, we have investigated tvs of tadpole chain graph and have proved tvs(Tr(4, 1)) =
⌈

4r+2
5

⌉
. Moreover,

we have verified the formulas of label of vertices, label of edges, weight of vertices, and exact value of tvs by using
an algorithm. In upcoming work, we will determine tvs of generalized tadpole chain graph and related chain graphs.
Also, we will construct a related algorithm.
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11. Indriati D, Widodo, Wijayanti, I., Sugeng KA, Bača M, Semaničová-Fenovcikova, A.. The total vertex irregularity strength of generalized
helm graphs and prisms with outer pendant edges. Australas J Combin 2016;65:14–26.

12. Arockiamary, S.T.. Total edge irregularity strength of diamond snake and dove. Int J Pure Appl Math 2016;109:125–132.
13. Rosyida I, Indriati, D.. On total edge irregularity strength of some cactus chain graphs with pendant vertices. J Phys Conf Ser 2019;

1211:012016.
14. Maheswari S, Meenakshi, S.. Split domination number of some special graphs. Int J Pure Appl Math 2017;116:103–117.


