

Journal of Discrete Mathematical Sciences and Cryptography

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tdmc20

On the total edge irregularity strength of general uniform cactus chain graphs with pendant vertices

Isnaini Rosyida , Eka Ningrum , Mulyono & Diari Indriati

To cite this article: Isnaini Rosyida, Eka Ningrum, Mulyono & Diari Indriati (2020) On the total edge irregularity strength of general uniform cactus chain graphs with pendant vertices, Journal of Discrete Mathematical Sciences and Cryptography, 23:6, 1335-1358, DOI: 10.1080/09720529.2020.1820704

To link to this article: https://doi.org/10.1080/09720529.2020.1820704

4	1	(1
			Г

Published online: 27 Oct 2020.

🕼 Submit your article to this journal 🕑

Article views: 1

View related articles 🗹

View Crossmark data 🗹

Journal of Discrete Mathematical Sciences & Cryptography ISSN 0972-0529 (Print), ISSN 2169-0065 (Online) Vol. 23 (2020), No. 6, pp. 1335–1358 DOI : 10.1080/09720529.2020.1820704

On the total edge irregularity strength of general uniform cactus chain graphs with pendant vertices

Isnaini Rosyida * Eka Ningrum[†] Mulyono[§] Department of Mathematics Faculty of Mathematics and Natural Sciences Universitas Negeri Semarang Semarang Indonesia

Diari Indriati ‡

Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia

Abstract

Let G(V, E) be a graph. Throughout this paper, we use the notions of edge irregular total *k*-labeling and total edge irregularity strength of G (tes (G)). We verify tes of general uniform cactus chain graphs $C_r(C_n^{n-2})$ having (n-2)r pendant vertices and length r. The result obtained is as follows: $tes(C_r(C_n^{n-2}) = \left\lceil \frac{(2n-2)r+2}{3} \right\rceil$ for $n \ge 6$.

Subject Classification: 05C78.

Keywords: Edge irregular total k-labeling, Tes, Uniform, Cactus chain.

[‡]E-mail: diari_indri@yahoo.co.id

^{*}E-mail: iisisnaini@gmail.com; isnaini@mail.unnes.ac.id (corresponding author)

^tE-mail: ekaningrum5@gmail.com

[§]E-mail: mulyono.mat@mail.unnes.ac.id

1. Introduction

We consider a graph G(V, E) where V = V(G) is a vertex set and E = E(G) is an edge set. Suppose that graph *G* is simple, finite, and also undirected. A mapping λ from $V \cup E$ into a set {1, 2, ..., *k*} is called a total *k*-labeling of *G* [9,13,17,18]. The function λ is mentioned as an edge irregular total *k*-labeling if the edge-weights $wt_{\lambda}(pq) \neq wt_{\lambda}(rs)$ for all distinct edges $pq \neq rs \in E$ with $wt_{\lambda}(pq) = \lambda(p) + \lambda(pq) + \lambda(q)$. A total edge irregularity strength of *G*, tes (*G*), is a minimum number *k* so that there is an edge irregular total *k*-labeling of *G*. The bounds for tes of any graph are as follows [4]:

$$\left\lceil \frac{|E(G)|+2}{3} \right\rceil \le tes(G) \le |E|.$$
(1)

Some results of tes of various graph classes have been invented, such as in [1,3,5,7,10,11], etc. The readers may refer to [5] and [7] for more results on tes of any graphs.

The notion of cactus graph and several results related to the cactus can be seen in [2,6,8,12,19,20], etc. Some inventions of tes of cactus chains have been proposed in [14,15,16]. In this paper, we investigate tes of general uniform cactus chains $C_r(C_n^{n-2})$ having (n - 2)r pendant vertices and length r.

2. Main Result and Discussion

In this paper, we present definition and formula for tes of general uniform cactus chain graphs $C_r(C_n^{n-2})$.

2.1 General uniform cactus chain graphs with pendant vertices

The concept of cactus graph can be found in [6,12]. Meanwhile, the general uniform cactus chain graphs are defined as follows. "An *n*-uniform cactus graph is a cactus graph in which each block is a cycle with the same size *n* for any positive integer *n*. If each cycle of the *n* -uniform cactus has at most two cut-vertices and each cut-vertex is shared by exactly two cycles, then it is called an *n* -uniform cactus chain graph. The number of cycles indicates the length of the cactus chain graph" [15]. Furthermore, the general uniform cactus chain graphs with length *r*, $C_r(C_n^{n-2})$, are defined as the *n*-uniform cactus chains having *r* blocks where each block is in form of a cycle C_n connected with n - 2 pendant vertices. The vertices and edges of $C_r(C_n^{n-2})$ are as follows:

$$V(C_{r}(C_{n}^{n-2})) = \{a_{i}, b_{1i}, b_{2i}, b_{3i}, b_{4i}, \dots, b_{pi}, c_{1i}, c_{2i}, c_{3i}, c_{4i}, \dots, c_{qi}, a_{i+1}\}$$
$$\cup \{b_{1i}', b_{2i}', b_{3i}', b_{4i}', \dots, b_{pi}', c_{1i}', c_{2i}', c_{3i}', c_{4i}', \dots, c_{qi}'\}$$

and

$$E(C_{r}(C_{n}^{n-2})) = \begin{cases} a_{i}b_{1i}, b_{1i}b_{2i}, b_{2i}b_{3i}, b_{3i}b_{4i}, \dots, b_{p}a_{i+1}, a_{i}c_{1i}, c_{1i}c_{2i}, c_{2i}c_{3i}, c_{3i}c_{4i}, \dots, c_{q}a_{i+1}, \\ b_{1i}b_{1i}', b_{2i}b_{2i}', b_{3i}b_{3i}', b_{4i}b_{4i}', \dots, b_{p}b_{p}', c_{1i}c_{1i}', c_{2i}c_{2i}', c_{3i}c_{3i}', c_{4i}c_{4i}', \dots, c_{q}c_{q}' \end{cases}$$

 $\forall i = 1, 2, 3, ..., r$, where *r* is the length of the chain graphs (the number of blocks in the chain) and the indexes *p* and *q* are defined as:

$$p = \begin{cases} \frac{n-2}{2}, & n \text{ is even} \\ \left\lceil \frac{n-2}{2} \right\rceil, & n \text{ is odd} \end{cases} \text{ and } q = \begin{cases} \frac{n-2}{2}, & n \text{ is even} \\ \left\lfloor \frac{n-2}{2} \right\rfloor, & n \text{ is odd} \end{cases}$$

2.2 Tes of general uniform cactus chain graphs with pendant vertices

We prove the tes of general uniform cactus chains in this section.

Theorem 2.2.1 : Let $C_r(C_n^{n-2})$ be general uniform cactus chain graphs having (n-2)r pendant vertices, $n \ge 6$, and the length $r \ge 2$. Then, the tes is

$$tes(C_r(C_n^{n-2})) = \left\lceil \frac{2(n-2)r+2}{3} \right\rceil.$$
 (2)

Proof : Let b'_{ji} and c'_{li} be vertices of the general uniform cactus chains with degree 1 for i = 1, 2, ..., r. The indexes of j and l are $j = 1, 2, ..., \frac{(n-2)}{2}; l = 1, 2, ..., \frac{(n-2)}{2}$ for even number n. Further, $j = 1, 2, ..., \left\lceil \frac{(n-2)}{2} \right\rceil; l = 1, 2, ..., \left\lfloor \frac{(n-2)}{2} \right\rfloor$ for odd number n. Meanwhile, b_{ji}, c_{li} are the vertices of degree 3. Further, vertices a_1, a_{r+1} have degree 2; and a_{i+1} have degree 4 for i = 1, 2, ..., r-1.

Based on lower bound (1), we have

$$tes(C_r(C_n^{n-2})) \geq \left| \frac{\left| E(C_r(C_n^{n-2})) \right| + 2}{3} \right| = \left\lceil \frac{2(n-2)r+2}{3} \right\rceil.$$

We verify the upper bound through 3 cases.

Case 1 : $n \equiv 1 \mod 3$, $n \ge 7$.

In the first case, we give labels to vertices and edges as follows:

$$f(a_i) = \frac{1}{3} \{ (2n-2)i - (2n-5) \}; \ f(b_i) = \frac{1}{3} \{ (2n-2)i - (2n-5) \}, i = 1, 2, \dots, r$$
$$f(b_{ji}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(5+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right] \right\}, \ j \equiv 1 \mod 3, \ j \equiv 2 \mod 3, \ 2 \le j \le t-1$$

where
$$i = 1, 2, ..., r$$
; $t = \left\lceil \frac{n-2}{2} \right\rceil$ if n is odd and $t = \frac{n-2}{2}$ if n is even
 $f(b_{ji}) = \frac{1}{3} \{(2n-2)i - (2n-(2+4j))\}, j \equiv 0 \mod 3, 3 \le j \le t-1, i = 1, 2, ..., r$
 $f(b_{ji}) = \frac{1}{3} \{(2n-2)i\}, n$ is even or odd, $i = 1, 2, ..., r$
 $f(a_{i+1}) = \left\lceil \frac{(2n-2)i+2}{3} \right\rceil; f(b_{1i}') = \frac{1}{3} \{(2n-2)r - [2n-8]\}, i = 1, 2, ..., r$
 $f(b_{jj}') = \frac{1}{3} \{(2n-2)i - \left[2n - \left(2+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right] \}, j \equiv 1 \mod 3, 4 \le j \le t-1$
 $f(b_{jj}') = \frac{1}{3} \{(2n-2)i - \left[2n - \left(2+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right] \}, j \equiv 2 \mod 3, 2 \le j \le t-1$
 $f(b_{jj}') = \frac{1}{3} \{(2n-2)i - [2n - (2+4j)]\}, j \equiv 0 \mod 3, 3 \le j \le t-1, i = 1, 2, ..., r$
 $f(b_{ji}) = \frac{1}{3} \{(2n-2)i - [2n - (2+4j)]\}, j \equiv 0 \mod 3, 3 \le j \le t-1, i = 1, 2, ..., r$
 $f(b_{ji}) = \frac{1}{3} \{(2n-2)i - [2n - (5+4j)]\}, j \equiv 0 \mod 3, 3 \le j \le q-1, i = 1, 2, ..., r$
where $q = \lfloor \frac{n-2}{2} \rfloor$ if n is odd and $q = \frac{n-2}{2}$ if n is even.
 $f(c_{ji}) = \frac{1}{3} \{(2n-2)i - \left[2n - (5+4j)\right]\}, j \equiv 1 \mod 3, 1 \le j \le q-1, i = 1, 2, ..., r$
 $f(c_{jj}) = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, j \equiv 1 \mod 3, 2 \le j \le q-1, i = 1, 2, ..., r$
 $f(c_{jj}) = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, j \equiv 1 \mod 3, 2 \le j \le q-1, i = 1, 2, ..., r$
 $f(c_{jj}) = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, j \equiv 1 \mod 3, 2 \le j \le q-1, i = 1, 2, ..., r$
 $f(c_{jj}) = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, j \equiv 1 \mod 3, 2 \le j \le q-1, i = 1, 2, ..., r$
 $f(c_{jj}) = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, j \equiv 1 \mod 3, j \ge 2 \mod 3, 1 \le j \le q-1$
 $f(c_{jj}') = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, j \equiv 1 \mod 3, j \le 2 \mod 3, 1 \le j \le q-1$
 $f(c_{jj}') = \frac{1}{3} \{(2n-2)i - \left[2n - (5+4j)\right]\}, j \equiv 0 \mod 3, 3 \le j \le q-1$
 $f(c_{jj}') = \frac{1}{3} \{(2n-2)i - (2n - (5+4j))\}, j \equiv 0 \mod 3, 3 \le j \le q-1$
 $f(c_{ij}') = \frac{1}{3} \{(2n-2)i - (2n - (5+4j))\}, j \equiv 0 \mod 3, 3 \le j \le t-1, i = 1, 2, ..., r$

$$f(a_i b_{1i}) = \frac{1}{3} \{ (2n-2)i - (2n-5) \} f(b_{ti} a_{i+1}) = \left\lceil \frac{(2n-2)i+2}{3} \right\rceil, n \text{ is even or odd,}$$
$$i = 1, 2, \dots, r$$

$$f(b_{ji}b_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(2+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right] \right\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3; \ 1 \le j \le t-1, \\ i = 1, 2, \dots, r$$

$$\begin{split} &f(b_{ji}b_{ji}') = \frac{1}{3}\{(2n-2)i - [2n-(2+4j)]\}, j \equiv 0 \mod 3; 3 \le j \le t-1, i = 1, 2, \dots, r\\ &f(b_{ii}b_{ii}') = \frac{1}{3}\{(2n-2)i\}(n \text{ is odd}); f(b_{ii}b_{ii}') = \frac{1}{3}\{(2n-2)i\} - 1 \ (n \text{ is even}), i = 1, 2, \dots, r\\ &f(a_ic_{1i}) = \frac{1}{3}\{(2n-2)i - (2n-8)\}, i = 1, 2, \dots, r; f(c_{qi}a_{i+1}) = \frac{(2n-2)i}{3} \ (n \text{ is odd or even})\\ &f(c_{ji}c_{(j+1)i}) = \frac{1}{3}\left\{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor\frac{j}{3}\right\rfloor\right)\right]\right\}, j \equiv 1 \mod 3; j \equiv 2 \mod 3; 1 \le j \le q-1, \\ &f(c_{qi}c_{qi}) = \frac{1}{3}\{(2n-2)i - [2n - (8+4j)]\}, j \equiv 0 \mod 3; 3 \le j \le q-1, i = 1, 2, \dots, r\\ &f(c_{qi}c_{qi}') = \frac{1}{3}\left\{(2n-2)i\right\} - 1(n \text{ is odd}); f(c_{qi}c_{qi}') = \frac{1}{3}\{(2n-2)i\}(n \text{ is even}). \end{split}$$

Case 2 : For $n \equiv 5 \mod 6$ and $n \ge 11$.

This case is divided into three subcases as follows.

Subcase 2.1 : For length $i \equiv 1 \mod 3$.

In this subcase, we provide labels of vertices and edges below.

$$f(a_{i}) = \frac{1}{3}\{(2n-2)i - (2n-5)\}; f(a_{i+1}) = \left\lceil \frac{(2n-2)i+2}{3} \right\rceil; f(b_{1i}) = \frac{1}{3}\{(2n-2)i - (2n-5)\}\}$$

$$f(b_{ji}) = \frac{1}{3}\left\{(2n-2)i - \left\lfloor 2n - \left(5+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right\rfloor\right\}, j \equiv 1 \mod 3, j \equiv 2 \mod 3, 2 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(b_{ji}) = \frac{1}{3}\left\{(2n-2)i - \left\lfloor 2n - (2+4j) \right\rfloor\right\}, j \equiv 0 \mod 3; 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil,$$

$$f(b_{ji}') = \frac{1}{3}\left\{(2n-2)i - \left\lfloor 2n - (2+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right\rfloor\right\}, j \equiv 1 \mod 3; 4 \le j \le \left\lceil \frac{n-2}{2} \right\rceil,$$

$$f(b_{ji}') = \frac{1}{3}\left\{(2n-2)i - \left\lfloor 2n - \left(2+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right\rfloor\right\}, j \equiv 1 \mod 3; 4 \le j \le \left\lceil \frac{n-2}{2} \right\rceil,$$

$$f(b_{ji}') = \frac{1}{3}\left\{(2n-2)i - \left\lfloor 2n - \left(2+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right\rfloor\right\}, j \equiv 2 \mod 3,$$

$$f(b_{ji}') = \frac{1}{3}\left\{(2n-2)i - \left\lfloor 2n - \left(2+4j\right) \right\rfloor\right\}, j \equiv 0 \mod 3,$$

$$\begin{split} &f(c_{\mu}) = \frac{1}{3} \{(2n-2)i - [2n - (5+4j)]\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor, \\ &f(c_{\mu}) = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, \ j \equiv 1 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(c_{\mu}) = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(c_{\mu}') = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor, \\ &f(c_{\mu}') = \frac{1}{3} \{(2n-2)i - (2n-(5+4j))\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor, \\ &f(a_{\mu}b_{\mu}) = \frac{1}{3} \{(2n-2)i - (2n-(5+4j))\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor, \\ &f(b_{\mu}b_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - (2n-(5+4j))\}, \ j \equiv 1 \mod 3; \ 4 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ &f(b_{\mu}b_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, \ j \equiv 1 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ &f(b_{\mu}b_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - \left[2n - (5+4j)\right\}\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ &f(b_{\mu}b_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - \left[2n - (5+4j)\right\}\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ &f(b_{\mu}b_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - \left[2n - (5+4j)\right\}\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ &f(b_{\mu}b_{\mu}^{(j)}) = \frac{1}{3} \{(2n-2)i - \left[2n - (2+4j)\right\}\}, \ j \equiv 1 \mod 3, \ j \equiv 2 \mod 3, \ 1 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ &f(b_{\mu}b_{\mu}^{(j)}) = \frac{1}{3} \{(2n-2)i - \left[2n - (2+4j)\right\}\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ &f(b_{\mu}b_{\mu}^{(j)}) = \frac{1}{3} \{(2n-2)i - \left[2n - (2+4j)\right\}\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil, \\ &f(c_{\mu}c_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - \left[2n - (2+4j)\right\}\}, \ j \equiv 1 \mod 3, \ j \equiv 2 \mod 3, \ 1 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ &f(c_{\mu}c_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - \left[2n - (2+4j)\right\}\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ &f(c_{\mu}c_{\mu}c_{\mu}) = \frac{1}{3} \{(2n-2)i - \left[2n - (5+3j+3\left\lceil \frac{j}{3} \right\rceil)\right]\}, \ j \equiv 1 \mod 3, \ j \equiv 2 \mod 3, \ 1 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ &f(c_{\mu}c_{\mu}c_{\mu}) = \frac{1}{3} \{(2n-2)i - \left[2n - (5+3j+3\left\lceil \frac{j}{3} \right\rceil)\right]\}, \ j \equiv 1 \mod 3, \ j \leq 2 \mod 3, \ 1 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ &f(c_{\mu}c_{\mu}c_{\mu}) = \frac{1}{3} \{(2n-2)i - \left[2n - (5+3j+3\left\lceil \frac{j}{3} \right\rceil)\right]\}, \ j \equiv 1 \mod 3,$$

Subcase 2.2 : For length $i \equiv 2 \mod 3$.

We construct labels of elements of
$$C_i(C_n^{n-2})$$
 as follows:

$$f(a_i) = \frac{1}{3} \{(2n-2)i - (2n-6)\}; f(a_{i+1}) = \left\lceil \frac{(2n-2)i+2}{3} \right\rceil$$

$$f(b_{ji}) = \frac{1}{3} \{(2n-2)i - \left[2n - \left(2+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, j \equiv 1 \mod 3, 1 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(b_{ji}) = \frac{1}{3} \{(2n-2)i - \left[2n - \left(2+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, j \equiv 0 \mod 3, 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(b_{ji}) = \frac{1}{3} \{(2n-2)i - \left[2n - (2+4j)\right]\}, j \equiv 0 \mod 3, 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(b_{ji}') = \frac{1}{3} \{(2n-2)i - \left[2n - (2+4j)\right]\}, j \equiv 0 \mod 3; 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(b_{ji}') = \frac{1}{3} \{(2n-2)i - \left[2n - (2+4j)\right]\}, j \equiv 0 \mod 3; 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(c_{ji}) = \frac{1}{3} \{(2n-2)i - \left[2n - (2+4j)\right]\}, j \equiv 0 \mod 3; 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(c_{ji}') = \frac{1}{3} \{(2n-2)i - \left[2n - (5+4j)\right]\}, j \equiv 1 \mod 3, j \equiv 2 \mod 3, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(c_{ji}') = \frac{1}{3} \{(2n-2)i - \left[2n - (5+4j)\right]\}, j \equiv 1 \mod 3, j \equiv 2 \mod 3, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(c_{ji}') = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, j \equiv 1 \mod 3, j \equiv 2 \mod 3, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(c_{ji}') = \frac{1}{3} \{(2n-2)i - \left[2n - \left(5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right]\}, j \equiv 1 \mod 3, j \equiv 2 \mod 3, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(a_ib_{1i}) = \frac{1}{3} \{(2n-2)i - (2n - (2+4j))\}, j \equiv 0 \mod 3; 3 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(b_{ji}b_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - (2n - (2+4j))\}, j \equiv 0 \mod 3; 3 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(b_{ji}b_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - \left[2n - (5+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right\}, j \equiv 1 \mod 3;$$

$$j \equiv 2 \mod 3, 1 \le j \le \left\lceil \frac{n-2}{2} \right\rceil -1$$

$$f(b_{ji}b_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - \left[2n - (5+4j)\right], j \equiv 0 \mod 3; 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil -1$$

$$f(b_{ji}b_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - \left[2n - (5+4j)\right], j \equiv 0 \mod 3; 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil -1$$

$$f(b_{ji}b_{(j+1)i}) = \frac{1}{3} \{(2n-2)i - \left[2n - (2+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right\}, j \equiv 2 \mod 3; 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil -1$$

$$f(b_{ji}b_{ji}') = \frac{1}{3} \{(2n-2)i - \left[2n - (2+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right\}, j \equiv 2 \mod 3; 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil -1$$

$$f(b_{ji}b_{ji}') = \frac{1}{3} \{(2n-2)i - \left[2n - (2+3j+3\left\lfloor \frac{j}{3} \right\rfloor\right)\right\}, j \equiv 2 \mod 3; 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil -1$$

$$\begin{split} f(a_i c_{1i}) &= \frac{1}{3} \{ (2n-2)r - (2n-6) \}; f\left(c_{\left\lfloor \frac{n-2}{2} \right\rfloor i} a_{i+1}\right) = \left\lceil \frac{(2n-2)i+2}{3} \right\rceil \\ f(c_{ji} c_{(j+1)i}) &= \frac{1}{3} \{ (2n-2)i - [2n - (5+3j+3\lceil j/3\rceil)] \}, j \equiv 1 \mod 3; j \equiv 2 \mod 3, \\ &1 \leq j \leq \lceil (n-2)/2 \rceil - 1 \\ f(c_{ji} c_{(j+1)i}) &= \frac{1}{3} \{ (2n-2)i - [2n - (5+4j)] \}, j \equiv 0 \mod 3; 3 \leq j \leq \left\lfloor \frac{(n-2)}{2} \right\rfloor - 1 \\ f(c_{ji} c_{ji}') &= \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(2+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right] \right\}, j \equiv 1 \mod 3; 1 \leq j < \left\lfloor \frac{n-2}{2} \right\rfloor \\ f(c_{ji} c_{ji}') &= \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(5+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right] \right\}, j \equiv 2 \mod 3; 2 \leq j < \left\lfloor \frac{n-2}{2} \right\rfloor \\ f(c_{ji} c_{ji}') &= \frac{1}{3} \{ (2n-2)i - \left[2n - \left(2n - \left(2+4j \right) \right) \right\}, j \equiv 0 \mod 3; 3 \leq j < \left\lfloor \frac{n-2}{2} \right\rfloor \\ f(c_{ji} c_{ji}') &= \frac{1}{3} \{ (2n-2)i - \left(2n - (2+4j) \right) \}, j \equiv 0 \mod 3; 3 \leq j < \left\lfloor \frac{n-2}{2} \right\rfloor \end{split}$$

Subcase 2.3 : For length $i \equiv 0 \mod 3$.

We define labels of vertices and edges as shown below.

$$f(a_{i}) = \frac{1}{3} \left\{ (2n-2)i - (2n-4) \right\}; \quad f(a_{i+1}) = \left\lceil \frac{(2n-2)i+2}{3} \right\rceil$$

$$f(b_{ji}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(4+3j+3 \right\lfloor \frac{j}{3} \right\rfloor \right] \right\}, \quad j \equiv 1 \mod 3; \quad j \equiv 2 \mod 3; \quad 1 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(b_{ji}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (4+4j) \right] \right\}, \quad j \equiv 0 \mod 3; \quad 1 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(b_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (4+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right] \right\}, \quad j \equiv 1 \mod 3; \quad j \equiv 2 \mod 3; \quad 1 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(b_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (1+4j) \right] \right\}, \quad j \equiv 0 \mod 3; \quad 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$$

$$f(c_{ji}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (4+4j) \right] \right\}, \quad j \equiv 0 \mod 3; \quad 3 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(c_{ji}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (4+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right] \right\}, \quad j \equiv 1 \mod 3; \quad j \equiv 2 \mod 3, \quad 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(4+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right] \right\}, \quad j \equiv 1 \mod 3; \quad j \le 2 \mod 3, \quad 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(4+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right] \right\}, \quad j \equiv 1 \mod 3; \quad 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(4+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right] \right\}, \quad j \equiv 1 \mod 3; \quad 2 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f(c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(4+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right] \right\}, \quad j \equiv 1 \mod 3; \quad 2 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$\begin{split} f(b_{ji}b_{(j+1)i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(4+4j)] \Big\}, j \equiv 0 \mod 3; \ 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ f(b_{ji}b_{(j+1)i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(4+3j+3\left\lceil \frac{j}{3} \right\rceil)] \Big\}, \ j \equiv 1 \mod 3, j \equiv 2 \mod 3. \ 1 \le j \le \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ f(a_ib_{1i}) &= \frac{1}{3} \Big\{ (2n-2)i - (2n-4) \Big\}; \ f\left(b_{\lfloor \lfloor \frac{(2n-2)i+2}{3} \right\rceil} \right] \\ f(b_{ji}b_{ji}') &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(1+3j+3\left\lfloor \frac{j}{3} \right\rfloor)] \Big\}, \ j \equiv 1 \mod 3; \ 1 \le j \le \left\lceil \frac{n-2}{2} \right\rceil \\ f(b_{ji}b_{ji}') &= \frac{1}{3} \Big\{ (2n-2)i - \left[2n-(1+3j+3\left\lfloor \frac{j}{3} \right\rfloor) \right] \Big\}, \ j \equiv 2 \mod 3; \ 2 \le j \le \left\lceil \frac{n-2}{2} \right\rceil \\ f(b_{ji}b_{ji}') &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(1+4j)] \Big\}, \ j \equiv 0 \mod 3; \ 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil \\ f(a_ic_{1i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(1+4j)] \Big\}, \ j \equiv 0 \mod 3; \ 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil \\ f(a_ic_{1i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(1+4j)] \Big\}, \ j \equiv 1 \mod 3; \ 1 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(1+4j)] \Big\}, \ j \equiv 1 \mod 3; \ 1 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(7+3j+3\left\lceil \frac{j}{3} \right\rceil)] \Big\}, \ j \equiv 1 \mod 3; \ 1 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(7+4j)] \Big\}, \ j \equiv 0 \mod 3; \ 3 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(7+4j)] \Big\}, \ j \equiv 1 \mod 3; \ 1 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(7+4j)] \Big\}, \ j \equiv 1 \mod 3; \ 3 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(7+4j)] \Big\}, \ j \equiv 1 \mod 3; \ 3 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(7+4j)] \Big\}, \ j \equiv 1 \mod 3; \ 3 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(7+4j)] \Big\}, \ j \equiv 1 \mod 3; \ 3 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{ji}') &= \frac{1}{3} \Big\{ (2n-2)i - [2n-(4+3j+3\left\lfloor \frac{j}{3} \right\rfloor) \Big] \Big\}, \ j \equiv 1 \mod 3; \ 3 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{ji}') &= \frac{1}{3} \Big\{ (2n-2)i - (2n-(4+4j)i) \Big\}, \ j \equiv 0 \mod 3; \ 3 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{ji}') &= \frac{1}{3} \Big\{ (2n-2)i - (2n-(4+4j)i) \Big\}, \ j \equiv 0 \mod 3; \ 3 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{ji}') &= \frac{$$

Case 3 : For $n \equiv 3 \mod 6$ and $n \ge 9$.

We deal with three subcases.

Subcase 3.1 : For $n \equiv 3 \mod 6$ and length $i \equiv 1 \mod 3$. In this subcase, we define labels for elements of $C_r(C_n^{n-2})$ as follows. $f(a_i) = \frac{1}{3}\{(2n-2)i - (2n-5)\}; \ f(b_{1i}) = \frac{1}{3}\{(2n-2)i - (2n-5)\}$ $f(b_{ji}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(5+3j+3\left|\frac{j}{3}\right| \right) \right] \right\}, j \equiv 1 \mod 3; j \equiv 2 \mod 3; 1 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$ $f(b_{ji}) = \frac{1}{3} \{ (2n-2)i - [2n - (2+4j)] \}, j \equiv 0 \mod 3; 3 \le j \le \left\lceil \frac{n-2}{2} \right\rceil$

$$\begin{split} &f(a_{i+1}) = \left\lceil \frac{(2n-2)i+2}{3} \right\rceil; \ f(b_{1i}') = \frac{1}{3} \{(2n-2)r - [2n-8]\} \\ &f(b_{j}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(2+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right] \right\rfloor \right\}, \ j \equiv 1 \mod 3; \ 4 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil \\ &f(b_{j}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(2+4j\right) \right] \right\}, \ j \equiv 2 \mod 3, \ 2 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil \\ &f(b_{j}') = \frac{1}{3} \{(2n-2)i - [2n - (2+4j)] \}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil \\ &f(c_{j_{1}}) = \frac{1}{3} \{(2n-2)i - [2n - (2+4j)] \}, \ j \equiv 1 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil \\ &f(c_{j_{1}}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (5+4j) \right] \right\}, \ j \equiv 1 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil \\ &f(c_{j_{1}}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (5+4j) \right] \right\}, \ j \equiv 1 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil \\ &f(c_{j_{1}}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (5+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right] \right\}, \ j \equiv 2 \mod 3; \ 2 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil \\ &f(a_{b_{1}}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (5+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right] \right\}, \ j \equiv 1 \mod 3; \ 4 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil - 1 \\ &f(b_{j_{1}}b_{j_{1}+1}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(5+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right] \right\}, \ j \equiv 1 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil - 1 \\ &f(b_{j_{1}}b_{(j+1)}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(5+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right] \right\}, \ j \equiv 1 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil - 1 \\ &f(b_{j_{1}}b_{(j+1)}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (5+4j) \right] \right\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil - 1 \\ &f(b_{j_{1}}b_{j_{1}+1}) = \left\lfloor \frac{3}{3} \left\{ (2n-2)i - \left[2n - (5+4j) \right] \right\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil \\ &f(b_{j_{1}}b_{j_{1}}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - (2+4j) \right] \right\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil \\ &f(b_{j_{1}}b_{j_{1}+1}) = \left\lceil \frac{(2n-2)i - \left[2n - (2+4j) \right]}{3} \right\}, \ j \equiv 1 \mod 3; \ j \leq 2 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil \\ &f(b_{j_{1}}b_{j_{1}+1}) = \left\lceil \frac{(2n-2)i - \left[2n - (2+4j) \right]}{3} \right\}, \ j \equiv 1 \mod 3; \ j \leq 2 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil \\ &f(b_{j_{1}}b_{j_{1}+1}) = \left\lceil \frac{(2n-2)i - \left[2n - (2+4j) \right]}{3} \right\}, \ j \equiv 1 \mod 3; \ j \leq 2 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil \\ &f(b_{j_{1}}b_{j_{1}+1}) = \left\lceil \frac{(2n-2)i - \left[2n - (2+4j) \right]}{3} \right\}, \ j \equiv 1 \mod 3; \ j \leq 2 \mod 3; \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rceil - 1 \\ &f(b_{j_{1}}b_{j_{1}+1}) = \left\lceil \frac{1}{3} \left\{ (2$$

$$f(c_{ji}c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(5+3j+3 \left\lfloor \frac{j}{3} \right\rfloor \right) \right] \right\}, j \equiv 1 \mod 3; j \equiv 2 \mod 3, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$
$$f(c_{ji}c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - (2n-(2+4j)) \right\}, j \equiv 0 \mod 3; 3 \le j < \left\lfloor \frac{n-2}{2} \right\rfloor$$

Subcase 3.2 : For $n \equiv 3 \mod 6$ and length $i \equiv 2 \mod 3$. All elements of $C_r(C_n^{n-2})$ are labeled as in Subcase 2.3, except for labels of the following edges:

$$f\left(b_{\left\lceil\frac{n-2}{2}\right\rceil i}a_{i+1}\right) = \frac{(2n-2)i+1}{3} \text{ and } f\left(c_{\left\lfloor\frac{n-2}{2}\right\rfloor i}a_{i+1}\right) = \frac{(2n-2)i+1}{3}.$$

Subcase 3.3 : For $n \equiv 3 \mod 6$ and length $i \equiv 0 \mod 3$.

In this case, we assign labels for each $v, e \in V(C_r(C_n^{n-2})) \cup E(C_r(C_n^{n-2}))$ in the following way.

$$\begin{split} &f(a_i) = \frac{1}{3} \{ (2n-2)i - (2n-6) \}; \ f(a_{i+1}) = \left| \frac{(2n-2)i+2}{3} \right| \\ &f(b_{ji}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(3+3j+3 \right| \frac{j}{3} \right] \right) \right\}, \ j \equiv 1 \mod 3; \ 1 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil \\ &f(b_{ji}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(6+3j+3 \right| \frac{j}{3} \right] \right) \right\}, \ j \equiv 2 \mod 3; \ 2 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil \\ &f(b_{ji}) = \frac{1}{3} \{ (2n-2)i - \left[2n - (3+4j) \right] \}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil \\ &f(b_{ji}') = \frac{1}{3} \{ (2n-2)i - \left[2n - \left(3+4j \right) \right] \}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3; \ 1 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil \\ &f(b_{ji}') = \frac{1}{3} \{ (2n-2)i - \left[2n - \left(3+4j \right) \right] \}, \ j \equiv 1 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil \\ &f(b_{ji}) = \frac{1}{3} \{ (2n-2)i - \left[2n - (3+4j) \right] \}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil \\ &f(c_{ji}) = \frac{1}{3} \{ (2n-2)i - \left[2n - (6+4j) \right] \}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3, \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(c_{ji}) = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(6+3j+3 \left| \frac{j}{3} \right| \right) \right\} \right\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3, \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(6+3j+3 \left| \frac{j}{3} \right| \right) \right] \right\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3, \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(6+3j+3 \left| \frac{j}{3} \right| \right) \right] \right\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3, \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(c_{ji}') = \frac{1}{3} \{ (2n-2)i - \left[2n - \left(6+3j+3 \left| \frac{j}{3} \right| \right) \right] \right\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3, \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(c_{ji}') = \frac{1}{3} \{ (2n-2)i - \left[2n - \left(6+3j+3 \left| \frac{j}{3} \right| \right) \right] \right\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3, \ 1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(c_{ji}') = \frac{1}{3} \{ (2n-2)i - (2n - (3+4j)) \}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(a_{i}b_{1i}) = \frac{1}{3} \{ (2n-2)i - (2n - (3+4j)) \}; \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(a_{i}b_{1i}) = \frac{1}{3} \{ (2n-2)i - (2n - (3+4j)) \}; \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(a_{i}b_{1i}) = \frac{1}{3} \{ (2n-2)i - (2n - (3+4j)) \}; \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor \\ &f(a_{i}b_{1i}) = \frac{1}{3} \{ (2n-2)i - (2n - (3+4j)) \}; \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor$$

$$f\left(b_{\left[\left[\frac{n-2}{2}\right]\right]i}a_{i+1}\right) = \left[\frac{(2n-2)i+2}{3}\right]; f\left(c_{\left[\left[\frac{n-2}{2}\right]\right]i}a_{i+1}\right) = \frac{(2n-2)i}{3}$$
$$f(b_{ji}b_{(j+1)i}) = \frac{1}{3}\left\{(2n-2)i-\left[2n-\left(6+3j+3\left\lfloor\frac{j}{3}\right\rfloor\right)\right]\right\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3,$$
$$1 \le j \le \left\lceil\frac{n-2}{2}\right\rceil - 1$$

$$\begin{split} f(b_{ji}b_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i - [2n-(6+4j)]\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil - 1 \\ f(b_{ji}b_{ji}') &= \frac{1}{3}\left\{(2n-2)i - \left\lfloor 2n - \left(3+3j+3\left\lfloor \frac{j}{3} \right\rfloor \right)\right\rfloor\right\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3; \ 1 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil; \\ f(b_{ji}b_{ji}') &= \frac{1}{3}\{(2n-2)i - [2n-4j]\}, \ j \equiv 0 \mod 3; \ 3 \leq j \leq \left\lceil \frac{n-2}{2} \right\rceil; \\ f(a_ic_{1i}) &= \frac{1}{3}\{(2n-2)r - (2n-6)\} \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3}\left\{(2n-2)i - \left\lfloor 2n - \left(6+3j+3\left\lceil \frac{j}{3} \right\rceil \right)\right\rceil\right\}, \ j \equiv 1 \mod 3; \ j \equiv 2 \mod 3, \\ &1 \leq j \leq \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i - [2n - (6+4j)]\}, \ j \equiv 0 \mod 3; \ 3 \leq j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \\ f(c_{ji}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i - (2n - (6+4j))\}, \ j \equiv 0 \mod 3; \ 3 \leq j < \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \end{split}$$

$$f(c_{ji}c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(3+3j+3\left\lfloor \frac{j}{3} \right\rfloor \right) \right] \right\}, \ j \equiv 1 \mod 3; \ 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$
$$f(c_{ji}c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(6+3j+3\left\lfloor \frac{j}{3} \right\rfloor \right) \right] \right\}, \ j \equiv 2 \mod 3; \ 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor$$

In Case 1, 2, and 3 (for all subcases), it is shown that labels of all elements of $C_r(C_n^{n-2})$ are not more than $k = \left\lceil \frac{(2n-2)r+2}{3} \right\rceil$. Further, we show that the weights $wt(e) \neq wt(e')$ whenever $e \neq e'$:

$$\begin{split} &wt(a_{i}b_{1i}) = (2n-2)i - \{2n-5\}, wt \left(b_{\left(\left\lceil \frac{n-2}{2} \right\rceil\right)^{i}}a_{(i+1)} \right) = (2n-2)i + 2, wt \left(c_{\left(\left\lfloor \frac{n-2}{2} \right\rfloor\right)^{i}}a_{(i+1)} \right) \\ &= (2n-2)i + 1, wt(b_{ji}b_{(j+1)i}) = (2n-2)i - \{2n-(5+4j)\}, 1 \le j \le \left\lceil \frac{n-2}{2} \right\rceil - 1; \\ &wt(a_{i}c_{1i}) = (2n-2)i - \{2n-7\}, wt(b_{ji}b_{ji}') = (2n-2)i - \{2n-(2+4j)\}; \\ &wt(c_{ji}c_{ji}') = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \left\lfloor \frac{n-2}{2} \right\rfloor wt(c_{(j+1)i}) = (2n-2)i - \left\lfloor \frac{n-2}{2} \right\rfloor wt($$

$$(2n-2)i - \{2n - (7+4j)\}, 1 \le j \le \left\lfloor \frac{n-2}{2} \right\rfloor - 1;$$

It is obvious that *f* is an edge irregular total *k*-labeling on the general cactus chain graphs. This concludes $tes(C_r(C_n^{n-2})) = k = \left\lceil \frac{((2n-2)r+2)}{3} \right\rceil$.

Case 4 : For $n \equiv 0 \mod 6$, $n \equiv 2 \mod 6$, and $n \ge 6$.

This case is divided into three subcases as follows.

Subcase 4.1 : For length $i \equiv 1 \mod 3$.

In this case, labels for $x, e \in V(C_r(C_n^{n-2})) \cup E(C_r(C_n^{n-2}))$ are given below. $f(a_i) = \frac{1}{3} \{ (2n-2)i - (2n-5) \}; \ f(a_i) = \left\lceil \frac{(2n-2)i+2}{3} \right\rceil; \ f(b_{1i}) = \frac{1}{3} \{ (2n-2)i - (2n-5) \}; \ f(a_i) = \frac{1}{3} \{ (2n-2)i - (2n-5) \};$ $f(b_{ji}) = \begin{cases} \frac{1}{3} \{ (2n-2)i - [2n-(5+3j)] \}, & j = 2, 3 \\ \frac{1}{3} \{ (2n-2)i - \left[2n - \left(2+3j+3\left\lceil \frac{j}{3} \right\rceil \right) \right] \} & 4 \le j \le \frac{n-2}{2} \end{cases}$ $f(b_{ji}') = \begin{cases} \frac{1}{3} \{(2n-2)i - (2n-8)\} & j = 1, 2, \\ \frac{1}{3} \{(2n-2)i - (2n-(5+3j))\} & j = 3, 4, \\ \frac{1}{3} \{(2n-2)i - (2n-(8+3j))\} & j = 5, \end{cases}$ $f(b_{ij}') = \frac{1}{3} \{ (2n-2)i - (2n-(2+4j)) \}, j = 0 \mod 3, 6 \le j \le \frac{n-2}{2} \}$ $f(b_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(2+3j+3\left\lceil \frac{j}{3} \right\rceil \right) \right] \right\}, j = 2 \mod 3, 8 \le j \le \frac{n-2}{2}$ $f(b_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(2+3j+3 \left| \frac{j}{3} \right| \right) \right] \right\}, j = 1 \mod 3, \ 7 \le j \le \frac{n-2}{2}$ $f(c_{ii}') = \frac{1}{2} \{ (2n-2)i - [2n - (5+3j)] \}, j = 1, 2;$ $f(c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(5+3j+3 \left| \frac{j}{3} \right| \right) \right] \right\}, 3 \le j \le \frac{n-2}{2}$

$$\begin{split} f(c_{\mu}) &= \begin{cases} \frac{1}{3}\{(2n-2)i-(2n-8)\} & j=1\\ \frac{1}{3}[(2n-2)i-[2n-(5+3j+3\left\lfloor\frac{j}{3}\right\rfloor)]\} & j=2 \mod 3, \ 2\leq j\leq \frac{n-2}{2}\\ \frac{1}{3}\{(2n-2)i-[2n-(5+4j)]\} & j=0 \mod 3, \ 3\leq j\leq \frac{n-2}{2}\\ \frac{1}{3}[(2n-2)i-[2n-(5+3j+3\left\lfloor\frac{j}{3}\right\rfloor)]\} & j=1 \mod 3, \ 4\leq j\leq \frac{n-2}{2}\\ f\left(\frac{b_{\frac{n-2}{2}}}{a_{1+1}}\right) &= \left\lceil \frac{(2n-2)i+2}{3} \right\rceil -1; \ f\left(\frac{c_{\frac{n-2}{2}}}{a_{1+1}}\right) &= \left\lceil \frac{(2n-2)i+2}{3} \right\rceil -1;\\ f(a_{1}b_{1i}) &= \frac{1}{3}\{(2n-2)i-(2n-5)\}\\ f(a_{i}c_{1i}) &= \frac{1}{3}\{(2n-2)i-(2n-8)\}; \ f(b_{1i}b_{1i}') &= \frac{1}{3}\{(2n-2)i-(2n-5)\}\\ f(a_{i}c_{1i}) &= \frac{1}{3}\{(2n-2)i-(2n-(8+3j))\} & j=1,2\\ f(c_{\mu}c_{(j+1)i}) &= \left\{\frac{1}{3}\{(2n-2)i-(2n-(8+4j))\} & j=0 \mod 3, 3\leq j\leq \frac{n-2}{2} -1\\ \frac{1}{3}\{(2n-2)i-(2n-(5+3j+3\left\lfloor\frac{j}{3}\right\rfloor))\right]\}, \ j=1 \mod 3, j=2 \mod 3, 1\leq j\leq \frac{n-2}{2}\\ f(c_{\mu}c_{\mu}') &= \frac{1}{3}\{(2n-2)i-(2n-(2+4j))\}, \ j=0 \mod 3, 3\leq j\leq \frac{n-2}{2} -1\\ \frac{1}{3}\{(2n-2)i-(2n-(5+3j+3\left\lfloor\frac{j}{3}\right\rfloor))\}, \ j=1,2,3,4\\ \frac{1}{3}\{(2n-2)i-(2n-(5+3j+3\left\lfloor\frac{j}{3}\right\rfloor))\}, \ j=1 \mod 3, j\geq 5\\ \frac{1}{3}\{(2n-2)i-(2n-(5+3j+3\left\lfloor\frac{j}{3}\right\rfloor))\}, \ j=1 \mod 3, j\geq 5\\ \frac{1}{3}\{(2n-2)i-(2n-(5+3j+3\left\lfloor\frac{j}{3}\right\rfloor))\}, \ j=1 \mod 3, j\geq 7\\ f(b_{\mu}b_{\mu}') &= \left\{\frac{1}{3}\{(2n-2)i-(2n-(5+3j))\}, \ j=2,3,\\ \frac{1}{3}\{(2n-2)i-(2n-(5+3j))\}, \ j=2,3,\\ \frac{1}{3}\{(2n-2)i-(2n-(5+3j))\}, \ j=0 \mod 3, 3\leq j\leq \frac{n-2}{2}\\ \frac{1}{3}\{(2n-2)i-(2n-(2n+(3+3j)))\}, \ j=0 \mod 3, 3\leq j\leq \frac{n-2}{2}\\ \frac{1}{3}\{(2n-2)i-(2n-(2n+(5+3j)))\}, \ j=0 \mod 3, j\geq 7\\ f(b_{\mu}b_{\mu}') &= \left\{\frac{1}{3}\{(2n-2)i-(2n-(5+3j+3\left\lfloor\frac{j}{3}\right\rfloor))\}, \ j=1 \mod 3, j\geq 7\\ f(b_{\mu}b_{\mu}') &= \left\{\frac{1}{3}\{(2n-2)i-(2n-(5+3j))\}, \ j=2,3,\\ \frac{1}{3}\{(2n-2)i-(2n-(2n+(5+3j)))\}, \ j=0 \mod 3, 3\leq j\leq \frac{n-2}{2}\\ \frac{1}{3}\{(2n-2)i-(2n-(2n+(3+3j)))\}, \ j=0 \mod 3, 3\leq j\leq \frac{n-2}{2}\\ \frac{1}{3}\{(2n-2)i-(2n-(2n+(2+4j)))\}, \ j=0 \mod 3, 3\leq j\leq \frac{n-2}{2}\\ \frac{1}{3}\{(2n-2)i-(2n-(2n+(2+3j)))\}, \ j=0 \mod 3, 3\leq j\leq \frac{n-2}{2}\\ \frac{1}{3}\{(2n-2)i-(2n-($$

Subcase 4.2 : For length $i \equiv 2 \mod 3$.

We create labels for elements $x \in V(C_r(C_n^{n-2}))$ and $e \in E(C_r(C_n^{n-2}))$ as presented below.

$$\begin{split} f(a_i) &= \begin{cases} \frac{1}{3} \{(2n-2)i - (2n-4)\}, & n \equiv 0 \mod 6 \\ \frac{1}{3} \{(2n-2)i - (2n-6)\}, & n \equiv 2 \mod 6 \end{cases} \\ f(b_{ji}) &= \begin{cases} \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(4+3j+3\left[\frac{j}{3}\right] \right) \right] \right\}, & 1 \leq j \leq \frac{n-2}{2}, n \equiv 0 \mod 6 \\ \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(3+3j+3\left[\frac{j}{3}\right] \right) \right] \right\}, & 1 \leq j \leq \frac{n-2}{2}, n \equiv 2 \mod 6 \end{cases} \\ f(b_{ji}') &= \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(3+3j+3\left[\frac{j}{3}\right] \right) \right] \right\}, & 1 \leq j \leq \frac{n-2}{2}, n \equiv 2 \mod 6; \end{cases} \\ f(b_{ji}') &= \begin{cases} \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(1+3j+3\left[\frac{j}{3}\right] \right) \right] \right\}, & j \equiv 1 \mod 3, n \equiv 0 \mod 6 \\ \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(1+3j+3\left[\frac{j}{3}\right] \right) \right] \right\}, & j \equiv 0 \mod 3, j \equiv 2 \mod 3, n \equiv 0 \mod 6 \end{cases} \\ f(c_{ji}') &= \frac{1}{3} \{ (2n-2)i - \left[2n - \left(2n-9 \right) \}, j = 1, 2; \\ f(c_{ji}') &= \frac{1}{3} \{ (2n-2)i - \left[2n - \left(3+3j+3\left[\frac{j}{3}\right] \right) \right] \right\}, & 3 \leq j \leq \frac{n-2}{2}; n \equiv 2 \mod 6 \end{split}$$

$$f(c_{ji}') = \frac{1}{3} \left\{ (2n-2)i - \left[2n - \left(4 + 3j + 3\left\lfloor \frac{j}{3} \right\rfloor \right) \right] \right\}, 1 \le j \le \frac{n-2}{2}, n = 0 \mod 6$$

 $f(c_{ji}) = \begin{cases} \frac{1}{3} \left\{ (2n-2)i - \left(2n - \left(1 + 3j + 3\left\lceil \frac{j}{3} \right\rceil \right) \right) \right\}, & j = 2 \mod 3, n \equiv 0 \mod 6 \\ \frac{1}{3} \left\{ (2n-2)i - \left(2n - \left(3 + 3j + 3\left\lceil \frac{j}{3} \right\rceil \right) \right) \right\}, & j = 2 \mod 3, n \equiv 2 \mod 6 \end{cases}$

$$f(c_{ji}) = \begin{cases} \frac{1}{3} \left\{ (2n-2)i - \left(2n - \left(4 + 3j + 3\left\lfloor \frac{j}{3} \right\rfloor \right) \right\} \right\}, & j = 1 \mod 3, n \equiv 0 \mod 6 \\ \frac{1}{3} \left\{ (2n-2)i - \left(2n - \left(3 + 3j + 3\left\lfloor \frac{j}{3} \right\rfloor \right) \right\} \right\}, & j = 1 \mod 3, n \equiv 2 \mod 6 \end{cases}$$

$$f(c_{ji}) = \begin{cases} \frac{1}{3} \{ (2n-2)i - (2n-(4+4j)) \}, & j = 0 \mod 3, n \equiv 0 \mod 6 \\ \frac{1}{3} \{ (2n-2)i - (2n-(3+4j)) \}, & j = 0 \mod 3, n \equiv 2 \mod 6 \end{cases}$$

$$\begin{split} &f(a_{i}b_{ii}) = \frac{1}{3}\{(2n-2)i - (2n-7)\}, n \equiv 0 \mod 6; \\ &f(a_{i}b_{ii}) = \frac{1}{3}\{(2n-2)i - (2n-6)\}, n \equiv 2 \mod 6 \\ &f(b_{ji}b_{(j+1)i}) = \begin{cases} \frac{1}{3}\{(2n-2)i - (2n-(7+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 2 \mod 3, n \equiv 0 \mod 6 \\ & \frac{1}{3}\{(2n-2)i - (2n-(7+4j))\} \\ & j \equiv 0 \mod 3, n \equiv 0 \mod 6 \\ & \frac{1}{3}\{(2n-2)i - (2n-(6+4j))\} \\ & j \equiv 1 \mod 3, n \equiv 0 \mod 6 \\ & \frac{1}{3}\{(2n-2)i - (2n-(6+4j))\} \\ & j \equiv 1 \mod 3, j \equiv 2 \mod 3; \\ & n \equiv 2 \mod 6 \\ & f(b_{ji}b_{(j+1)i}) = \begin{cases} \frac{1}{3}\{(2n-2)i - (2n-(6+4j))\} \\ & \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 1 \mod 3, j \equiv 2 \mod 3; \\ & n \equiv 2 \mod 6 \\ \end{cases} \\ & f(b_{ji}b_{ji}') = \begin{cases} \frac{1}{3}\{(2n-2)i - (2n-(4+4j))\} \\ & \frac{1}{3}\{(2n-2)i - (2n-(4+4j))\} \\ & j \equiv 1 \mod 3, j \equiv 2 \mod 3; n \equiv 0 \mod 6 \\ \\ & \frac{1}{3}\{(2n-2)i - (2n-(4+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 1 \mod 3, n \equiv 2 \mod 6 \\ \end{cases} \\ & f(b_{ji}b_{ji}') = \begin{cases} \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 1 \mod 3, n \equiv 2 \mod 6 \\ \\ & \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\} \\ & j \equiv 1 \mod 3, n \equiv 2 \mod 6 \\ \\ & \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\} \\ & j \equiv 1 \mod 3, n \equiv 2 \mod 6 \\ \\ & f(a_{i}c_{1i}) = \frac{1}{3}\{(2n-2)i - (2n-4)\}, n \equiv 0 \mod 6; \\ & f(a_{i}c_{1i}) = \frac{1}{3}\{(2n-2)i - (2n-4)\}, n \equiv 0 \mod 6; \\ & f(a_{i}c_{1i}) = \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 1 \mod 3, j \equiv 2 \mod 3 \\ & 1 \le j < (\frac{n-2}{2}-1); n \equiv 0 \mod 6; \\ & f(c_{ji}c_{(j+1)i}) = \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 1 \mod 3, j \equiv 2 \mod 3 \\ & 1 \le j < (\frac{n-2}{2}-1); n \equiv 0 \mod 6; \\ & f(c_{ji}c_{(j+1)i}) = \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 1 \mod 3, j \equiv 2 \mod 3 \\ & 1 \le j < (\frac{n-2}{2}-1); n \equiv 0 \mod 6; \\ & f(c_{ji}c_{(j+1)i}) = \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 1 \mod 3, j \equiv 2 \mod 3 \\ & 1 \le j < (\frac{n-2}{2}-1); n \equiv 0 \mod 6; \\ & f(c_{ji}c_{(j+1)i}) = \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 1 \mod 3, j \equiv 2 \mod 3 \\ & 1 \le j < (\frac{n-2}{2}-1); n \equiv 0 \mod 6; \\ & f(c_{ji}c_{(j+1)i}) = \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 1 \mod 3, j \equiv 2 \mod 3 \\ & 1 \le j < (\frac{n-2}{2}-1); n \equiv 0 \mod 6; \\ & f(c_{ji}c_{(j+1)i}) = \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left\lceil\frac{j}{3}\right\rceil))\} \\ & j \equiv 1 \mod 3, j \equiv 0 \mod 3, j \equiv 0 \mod 3; n \equiv 0 \mod 6; \\ & f(c_{ji}c_{(j+1)i}) = \frac{1}{3$$

$$\begin{split} &f(c_{ji}c_{(j+1)i}) = \frac{1}{3} \bigg\{ (2n-2)i - \bigg\{ 2n - \bigg\{ 4+3j+3\bigg\{ \frac{j}{3} \bigg\} \bigg) \bigg\}, \ j \equiv 1 \ \mathrm{mod} \ 3; \ n \equiv 2 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{(j+1)i}) = \frac{1}{3} \bigg\{ (2n-2)i - \bigg\{ 2n - \bigg\{ 7+3j+3\bigg\{ \frac{j}{3} \bigg\} \bigg) \bigg\}, \ j \equiv 2 \ \mathrm{mod} \ 3, \ 2 \leq j < \bigg\{ \frac{n-2}{2} - 1 \big\} \ n \equiv 2 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{(j+1)i}) = \frac{1}{3} \bigg\{ (2n-2)i - \bigg\{ 2n - \bigg\{ 4+3j+3\bigg\{ \frac{j}{3} \bigg\} \bigg) \bigg\}, \ j = \frac{n-2}{2} - 1; \ n \equiv 2 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{(j+1)i}) = \frac{1}{3} \big\{ (2n-2)i - (2n - (7+4j)) \big\}, \ j \equiv 0 \ \mathrm{mod} \ 3; \ n \equiv 2 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{(j+1)i}) = \frac{1}{3} \big\{ (2n-2)i - (2n - (7+4j)) \big\}, \ n \equiv 0 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{1i}') = \frac{1}{3} \big\{ (2n-2)i - (2n - 3) \big\}, \ n \equiv 2 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{1i}') = \frac{1}{3} \big\{ (2n-2)i - (2n - 4) \big\}, \ n \equiv 0 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{ji}') = \frac{1}{3} \big\{ (2n-2)i - \big\{ 2n - \big\{ 3+3j+3\bigg\} \frac{j}{3} \bigg\} \big\} \bigg\}, \ j \equiv 1 \ \mathrm{mod} \ 3, \ j \equiv 2 \ \mathrm{mod} \ 3; \ n \equiv 2 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{ji}') = \frac{1}{3} \big\{ (2n-2)i - \big\{ 2n - \big\{ 4+3j+3\bigg\} \frac{j}{3} \bigg\} \big\} \bigg\}, \ j \equiv 1 \ \mathrm{mod} \ 3, \ n \equiv 2 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{ji}') = \frac{1}{3} \big\{ (2n-2)i - \big\{ 2n - \big\{ 4+3j+3\bigg\} \frac{j}{3} \bigg\} \big\} \bigg\}, \ j \equiv 2 \ \mathrm{mod} \ 3; \ n \equiv 0 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{ji}') = \frac{1}{3} \big\{ (2n-2)i - \big\{ 2n - \big\{ 4+3j+3\bigg\} \frac{j}{3} \bigg\} \big\} \bigg\}, \ j \equiv 2 \ \mathrm{mod} \ 3; \ n \equiv 0 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{ji}') = \frac{1}{3} \big\{ (2n-2)i - \big\{ 2n - \big\{ 4+3j+3\bigg\} \frac{j}{3} \bigg\} \big\} \bigg\}, \ j \equiv 2 \ \mathrm{mod} \ 3; \ n \equiv 0 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{ji}') = \frac{1}{3} \big\{ (2n-2)i - \big\{ 2n - \big\{ 4+3j+3\bigg\} \frac{j}{3} \bigg\} \big\} \bigg\}, \ j \equiv 1 \ \mathrm{mod} \ 3; \ n \equiv 0 \ \mathrm{mod} \ 6 \\ &f(c_{ji}c_{ji}') = \frac{1}{3} \big\{ (2n-2)i - \big\{ 2n - \big\{ 1+3j+3\bigg\} \frac{j}{3} \bigg\} \big\} \bigg\}$$

In Subcase 4.2 ($i \equiv 2 \mod 3$), we verify the edge weights as follows:

$$\begin{split} &wt(a_{i}b_{1i}) = (2n-2)i - \{2n-7\}, wt\left(b_{\left(\frac{n-2}{2}\right)i}a_{(i+1)}\right) = (2n-2)i + 2, \\ &wt(b_{ji}b_{(j+1)i}) = (2n-2)i - \{2n-(7+4j)\}, \ 1 \leq j \leq \frac{n-2}{2} - 1 \\ &wt(b_{ji}b_{ji}') = (2n-2)i - \{2n-(4+4j)\}, \ 1 \leq j \leq \frac{n-2}{2} \\ &wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(5+4j)\}, \ 1 \leq j \leq \frac{n-2}{2} - 1; \\ &wt(a_{i}c_{1i}) = (2n-2)i - \{2n-(5+4j)\}, \ 1 \leq j \leq \frac{n-2}{2} - 1; \\ &wt(c_{ji}c_{ji}c_{ji}') = (2n-2)i - \{2n-(4+4j)\}, \ 1 \leq j \leq \frac{n-2}{2}; \ wt\left(c_{\left(\frac{n-2}{2}\right)i}a_{(i+1)}\right) = (2n-2)i + 1, \end{split}$$

Subcase 4.3 : For length $i \equiv 0 \mod 3$.

We assign labels for elements $v, e \in V(C_r(C_n^{n-2})) \cup E(C_r(C_n^{n-2}))$ as displayed below.

$$\begin{split} f(a_i) &= \begin{cases} \frac{1}{3} \{(2n-2)i - (2n-4)\} & n \equiv 2 \mod 6 \\ \frac{1}{3} \{(2n-2)i - (2n-6)\} & n \equiv 0 \mod 6 \end{cases} \\ f(b_{\mu}) &= \begin{cases} \frac{1}{3} \{(2n-2)i - (2n-6)j\} & j = 1, 2; n \equiv 0 \mod 6 \\ \frac{1}{3} \{(2n-2)i - (2n-(3+3j+3\left\lfloor \frac{j}{3} \right\rfloor))\} & 3 \leq j < \frac{n-2}{2}; n \equiv 0 \mod 6 \end{cases} \\ f(b_{\mu}) &= \frac{1}{3} \{(2n-2)i - (2n-(3+3j+3\left\lfloor \frac{j}{3} \right\rfloor))\}, 1 \leq j < \frac{n-2}{2}; n \equiv 2 \mod 6 \end{cases} \\ f(b_{\mu}) &= \begin{bmatrix} \frac{(2n-2)i-2}{3} & j = \frac{n-2}{2}; n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu'}) &= \frac{1}{3} \{(2n-2)i - (2n-7)\}, n \equiv 2 \mod 6; f(c_{\mu'}) = \frac{1}{3} \{(2n-2)i - (2n-9)\}, n \equiv 0 \mod 6 \end{cases} \\ f(c_{\mu'}) &= \frac{1}{3} \{(2n-2)i - (2n-7)\}, n \equiv 2 \mod 6; f(c_{\mu'}) = \frac{1}{3} \{(2n-2)i - (2n-9)\}, n \equiv 0 \mod 6 \end{cases} \\ f(c_{\mu'}) &= \frac{1}{3} \{(2n-2)i - (2n-(4+3j+3\left\lfloor \frac{j}{3} \right\rfloor))\}, j \equiv 2 \mod 3; 2 \leq j < \frac{n-2}{2} - 1, n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu'}) &= \frac{1}{3} \{(2n-2)i - (2n-(4+4j))\}, j \equiv 0 \mod 3; 3 \leq j < \frac{n-2}{2} - 1, n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu'}) &= \frac{1}{3} \{(2n-2)i - (2n-(4+4j))\}, j \equiv 1 \mod 3; 4 \leq j < \frac{n-2}{2} - 1, n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu'}) &= \frac{1}{3} \{(2n-2)i - (2n-(4+3j+3\left\lfloor \frac{j}{3} \right\rfloor))\}, j \equiv 1 \mod 3; 4 \leq j < \frac{n-2}{2} - 1, n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu'}) &= \frac{1}{3} \{(2n-2)i - (2n-(4+3j+3\left\lfloor \frac{j}{3} \right\rfloor))\}, j \equiv 1 \mod 3, j \equiv 2 \mod 3; n \equiv 0 \mod 6 \end{cases} \\ f(c_{\mu'}) &= \frac{1}{3} \{(2n-2)i - (2n-(3+4j+3\left\lfloor \frac{j}{3} \right\rfloor))\}, j \equiv 0 \mod 3; n \equiv 0 \mod 6 \end{cases} \\ f(c_{\mu}) &= \frac{1}{3} \{(2n-2)i - (2n-(4+3j+3\left\lfloor \frac{j}{3} \right\rfloor))\}, 1 \leq j < \frac{n-2}{2}, n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu}) &= \frac{1}{3} \{(2n-2)i - (2n-(4+3j+3\left\lfloor \frac{j}{3} \right\rfloor))\}, 1 \leq j < \frac{n-2}{2}, n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu}) &= \frac{1}{3} \{(2n-2)i - (2n-(3+4j+3\left\lfloor \frac{j}{3} \right\lfloor))\}, 1 \leq j < \frac{n-2}{2}, n \equiv 2 \mod 6 \end{cases}$$

$$\begin{split} f(c_{\mu}) &= \frac{(2n-2)i}{3}, j \equiv \frac{n-2}{2}, n \equiv 0 \mod 6; n \equiv 2 \mod 6 \\ f(a_{i}b_{1i}) &= \begin{cases} \frac{1}{3}\{(2n-2)i-(2n-3)\} & n \equiv 0 \mod 6 \\ \frac{1}{3}\{(2n-2)i-(2n-4)\} & n \equiv 2 \mod 6 \end{cases} \\ f(a_{i}c_{1i}) &= \begin{cases} \frac{1}{3}\{(2n-2)i-(2n-6)\} & n \equiv 0 \mod 6 \\ \frac{1}{3}\{(2n-2)i-(2n-7)\} & n \equiv 2 \mod 6 \end{cases} \\ f(b_{\mu}b_{(j+1)i}) &= \begin{cases} \frac{1}{3}\{(2n-2)i-(2n-(6+3j+3\left\lfloor\frac{j}{3}\right\rfloor))\} & j \equiv 1 \mod 3, j \equiv 2 \mod 3; \\ n \equiv 0 \mod 6 \\ \frac{1}{3}\{(2n-2)i-(2n-(6+4j))\} & j \equiv 0 \mod 3; n \equiv 0 \mod 6 \end{cases} \\ f(b_{\mu}b_{(j+1)i}) &= \begin{cases} \frac{1}{3}\{(2n-2)i-(2n-(6+4j+3)\left\lfloor\frac{j}{3}\right\rfloor)\} & j \equiv 1 \mod 3, j \equiv 2 \mod 3; \\ \frac{1}{3}\{(2n-2)i-(2n-(4+4j))\} & j \equiv 0 \mod 3; n \equiv 0 \mod 6 \end{cases} \\ f(b_{\mu}b_{(j+1)i}) &= \begin{cases} \frac{1}{3}\{(2n-2)i-(2n-(4+3j+3\left\lfloor\frac{j}{3}\right\rfloor))\} & j \equiv 1 \mod 3; j \equiv 2 \mod 3; \\ \frac{1}{3}\{(2n-2)i-(2n-(4+4j))\} & j \equiv 0 \mod 3; n \equiv 2 \mod 6 \end{cases} \\ f(b_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(6+3j+3\left\lfloor\frac{j}{3}\right\rfloor))\}, j \equiv 1 \mod 3; j \equiv 2 \mod 3; \\ 1 \le j < \left(\frac{n-2}{2}-1\right); n \equiv 0 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(6+4j+3\left\lfloor\frac{j}{3}\right\rfloor))\}, j \equiv 1 \mod 3; n \equiv 0 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(6+4j))\}, j \equiv 0 \mod 3; n \equiv 0 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(6+4j+3\left\lfloor\frac{j}{3}\right\rfloor))\}, j \equiv 1 \mod 3; n \equiv 0 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(6+4j+3\left\lfloor\frac{j}{3}\right\rfloor))\}, j \equiv 1 \mod 3; n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(6+4j+3\left\lfloor\frac{j}{3}\right\rfloor))\}, j \equiv 1 \mod 3; n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(7+4)j+3\left\lfloor\frac{j}{3}\right\rfloor)\}, j \equiv 1 \mod 3; n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(7+4)j+3\left\lfloor\frac{j}{3}\right\rfloor)\}, j \equiv 1 \mod 3; n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(7+4)j+3\left\lfloor\frac{j}{3}\right\rfloor)\}, j \equiv 2 \mod 3; n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(7+4)j+3\left\lfloor\frac{j}{3}\right\rfloor)\}, j \equiv 2 \mod 3; n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(7+4)j+3\left\lfloor\frac{j}{3}\right\rfloor)\}, j \equiv 2 \mod 3; n \equiv 2 \mod 6 \end{cases} \\ f(c_{\mu}c_{(j+1)i}) &= \frac{1}{3}\{(2n-2)i-(2n-(7+4)j+3\left\lfloor\frac{j}{3}\right\rfloor)\}, j \equiv 2 \mod 3; n \equiv 2 \mod 6 \end{cases}$$

$$\begin{split} f(b_{\mu}b_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-3)\}, n \equiv 0 \mod{6}; \\ f(b_{\mu}b_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-4)\}, n \equiv 2 \mod{6} \\ f(b_{\mu}b_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(3+3j))\}, j \equiv 2, 3, n \equiv 0 \mod{6} \\ f(b_{\mu}b_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(3+3j+3\left|\frac{j}{3}\right|))\}, j \equiv 1 \mod{3}, j \equiv 2 \mod{3}; \\ &4 \leq j \leq \left(\frac{n-2}{2}\right), n \equiv 0 \mod{6} \\ f(b_{\mu}b_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-4j)\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ f(b_{\mu}b_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-4j)\}, j \equiv 0 \mod{3}, n \equiv 2 \mod{6} \\ f(b_{\mu}b_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(4+3j+3\left|\frac{j}{3}\right|))\}, j \equiv 1 \mod{3}, n \equiv 2 \mod{6} \\ f(b_{\mu}b_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(1+4j))\}, j \equiv 0 \mod{3}, n \equiv 2 \mod{6} \\ f(b_{\mu}b_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(1+4j))\}, j \equiv 0 \mod{3}, n \equiv 2 \mod{6} \\ f(c_{\mu}c_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(4+3j))\}, j \equiv 1 \mod{3}, n \equiv 2 \mod{6} \\ f(c_{\mu}c_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(4+4j))\}, j \equiv 0 \mod{3}, 3 \leq j < \frac{n-2}{2}, n \equiv 2 \mod{6} \\ f(c_{\mu}c_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(1+4j))\}, j \equiv 1 \mod{3}, 3 \leq j < \frac{n-2}{2}, n \equiv 2 \mod{6} \\ f(c_{\mu}c_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(4+4j+3))\}, j \equiv 1 \mod{3}, j \equiv 2 \mod{6} \\ f(c_{\mu}c_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(4+3j+3\left|\frac{j}{3}\right))\}, j \equiv 1 \mod{3}, j \equiv 2 \mod{6} \\ f(c_{\mu}c_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(4+3j+3\left|\frac{j}{3}\right))\}, j \equiv 1 \mod{3}, n \equiv 0 \mod{6} \\ f(c_{\mu}c_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(4+3j+3\left|\frac{j}{3}\right))\}, j \equiv 1 \mod{3}, n \equiv 0 \mod{6} \\ f(c_{\mu}c_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left|\frac{j}{3}\right))\}, j \equiv 1 \mod{3}, n \equiv 0 \mod{6} \\ f(c_{\mu}c_{\mu'}) &= \frac{1}{3}\{(2n-2)i - (2n-(6+3j+3\left|\frac{j}{3}\right))\}, j \equiv 1 \mod{3}, n \equiv 0 \mod{6} \\ \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ \frac{1}{3}\{(2n-2)i - (2n-(3+4j))\}, j \equiv 0 \mod{3}, n \equiv 0 \mod{6} \\ \frac$$

In Subcases 4.1 and 4.3 ($i \equiv 1 \mod 3$ and $i \equiv 0 \mod 3$), we observe the weights of edges below:

$$wt(a_i b_{1i}) = (2n-2)i - \{2n-5\}, wt\left(b_{\left(\frac{n-2}{2}\right)i}a_{(i+1)}\right) = (2n-2)i + 1;$$

$$wt(a_i c_{1i}) = (2n-2)i - \{2n-7\},$$

$$\begin{split} &wt(b_{ji}b_{(j+1)i}) = (2n-2)i - \{2n-(5+4j)\},\\ &wt(c_{ji}c_{(j+1)i}) = (2n-2)i - \{2n-(7+4j)\}, 1 \le j \le \frac{n-2}{2} - 1\\ &wt(b_{ji}b_{ji}') = (2n-2)i - \{2n-(2+4j)\}, 1 \le j \le \frac{n-2}{2};\\ &wt\left(c_{\left(\frac{n-2}{2}\right)i}a_{(i+1)}\right) = (2n-2)i + 2,\\ &wt(c_{ji}c_{ji}') = (2n-2)i - \{2n-(4+4j)\}, 1 \le j \le \frac{n-2}{2}. \end{split}$$

In Case 4 (all subcases), no edges have a same weight. In addition, the vertex and edge labels are not more than $k = \left\lceil \frac{((2n-2)r+2)}{3} \right\rceil$. Thus, $tes(C_r(C_n^{n-2})) = \left\lceil \frac{(2n-2)r+2}{3} \right\rceil$. \Box

Example 2.2.1 : Figure 1 depicts a pattern to get $tes(C_4(C_{13}^{11})) = \left\lceil \frac{96+2}{3} \right\rceil = 33$. Further, Figure 2 shows a pattern to get $tes(C_6(C_{11}^9)) = \left\lceil \frac{120+2}{3} \right\rceil = 41$.

Fig. 1

An edge irregular total 33-labeling of $C_4(C_{13}^{11})$.

Fig. 2 Vertex and edge labels in $C_6(C_{11}^9)$ so that tes $(C_6(C_{11}^9)) = 41$.

3. Conclusions

We have verified that $tes(C_r(C_n^{n-2})) = \left\lceil \frac{(2n-2)r+2}{3} \right\rceil$ for $n \ge 6$. The formulas for labels of elements of the graph were presented in the theorem. In upcoming research, we are interested to investigate tvs or tes of some tadpole chain graphs.

4. Funding Statement

The authors wishing to acknowledge RISTEK-BRIN who gave a Research Grant by contract number 056/SP2H/LT/DRPM/2020.

References

- A. Ahmad, A. Gupta, R. Simanjuntak, Computing the edge irregularity strengths of chain graphs and the join of two graphs, *Electronic Journal of Graph Theory and Applications*, 6, 201–207, 2018. DOI: 10.5614/ejgta.2018.6.1.15
- [2] S. Ahmad, H.M. Afzal Siddiqui, A. Ali, M.R. Farahani, M. Imran, I.N. Cangul. On Wiener index and Wiener polarity index of some polyomino chains. *Journal of Discrete Mathematical Sciences and Cryptography.* 22(7), 1151-1164, (2019). DOI:10.1080/09720529.2019.1688965
- [3] S. T. Arockiamary, Total edge irregularity strength of diamond snake and dove, *International Journal of Pure Applied Mathematics*, 109, 125– 132, 2016. DOI:10.12732/ijpam.v109i5.15
- [4] M. Bača, M. Jendrol, S. Miller, J. Ryan, On irregular total labellings, *Discrete Mathematics*, 307, 1378–1388, 2007. doi:10.1016/j.disc.2005.11.075
- [5] M. Bača, S. Jendrol, Kathiresan, K. Muthugurupackiam, K. Semaničová-Fenovcikova, A Survey of Irregularity Strength, *Electronic Notes in Discrete Mathematics*, 48, 19–26, 2015. DOI:10.1016/j. endm.2015.05.004
- [6] K. Borissevich and T. Došlić, Counting dominating sets in cactus chains, *Filomat*, 29, 8, 1847–1855, 2015.
- [7] J.A. Gallian, A dynamic survey of graph labeling, *Electronic Journal Of Combinatorics*, 1, #DS6, 2018.

- [8] W. Gao, M.R. Farahani, The Zagreb topological indices for a type of Benzenoid systems jagged-rectangle, *Journal of Interdisciplinary Mathematics*, 20 (5), 1341–1348, 2017.
- [9] W. Gao. Three algorithms for graph locally harmonious colouring. Journal of Difference Equations and Applications 23(1-2), 2017, 8-20. DOI :10.1080/10236198.2015.1124101
- [10] D. Indriati, Widodo, I.E. Wijayanti, K.A. Sugeng, On the total edge irregularity strength of generalized helm, *AKCE International Journal* of Graphs and Combinatorics, 10, 2, 147-155, 2013. DOI:10.1080/097286 00.2013.12088731
- [11] D. Indriati, Widodo, I. E. Wijayanti, K. A. Sugeng, M. Bača, On Total Edge Irregularity Strength of Generalized Web Graphs and Related Graphs, *Mathematics in Computer Science*, 9, 2, 161–167, 2015. DOI:10.1007/s11786-015-0221-5
- [12] A. Sadeghieh, S. Alikhani, N. Ghanbari, A.J.M. Khalaf, Hosoya polynomial of some cactus chains, *Cogent Mathematics*, 4(1):1305638, 2017. DOI:10.1080/23311835.2017.1305638
- [13] X. Li, J.-B. Liu. A novel approach to speed up ant colony algorithm via applying vertex coloring. *International Journal of Parallel, Emergent and Distributed Systems*. 33(6), 2018, 608-617. DOI:10.1080/17445760.2 017.1298758
- [14] I. Rosyida, D. Indriati, On total edge irregularity strength of some cactus chain graphs with pendant vertices, *Journal of Physics: Conference Series*, 1211, 012016, 2019.
- [15] I. Rosyida, D. Indriati, Computing total edge irregularity strength of some n-uniform cactus chain graphs and related chain graphs, *Indonesian Journal of Combinatorics*. 4(1), 2020, 53 DOI:10.19184/ijc.2020.4.1.6
- [16] I. Rosyida, E. Ningrum, A. Setyaningrum, Mulyono, On total edge and total vertex irregularity strength of pentagon cactus chain graph with pendant vertices, *Journal of Physics: Conference Series*, 1567, 2020, 022073.
- [17] W. D. Wallis, Magic Graphs, 1st ed. Boston: Birkhäuser Basel, 2001.

1358 I. ROSYIDA, E. NINGRUM, MULYONO AND D. INDRIATI

- [18] L. Yan, Y. Li, X. Zhang, M. Saqlain, S. Zafar, M.R. Farahani. 3-total edge product cordial labeling of some new classes of graphs. *Journal* of Information & Optimization Sciences. 39(3), 2018, 705–724. DOI:10.10 80/02522667.2017.1417727
- [19] H. Yang, M.A. Rashid, S. Ahmad, M.K. Siddiqui, M. F. Hanif. Cycle super magic labeling of pumpkin, octagonal and hexagonal graphs. *Journal of Discrete Mathematical Sciences and Cryptography*. 22(7), 1165-1176, (2019).DOI:10.1080/09720529.2019.1698800
- [20] X. Zhang, F.A. Shah, Y.F. Li, L. Yan, A.Q. Baig, M.R. Farahani. A family of fifth-order convergent methods for solving nonlinear equations using variational iteration technique. *Journal of Information and Optimization Sciences*, 39(3),2018,673–694. DOI:10.1080/02522667.2018.144 3628