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Preface

Biorefineries utilize renewable sources for the production of various biofuels using
integrated approaches. Currently, biorefinery approaches are facing many technical
challenges. It is important to refine biorefinery concepts to overcome these challenges
and make commercially viable biorefineries. This book Biofuels and Bioenergy: A
Techno-Economic Approach covers the latest developments in biorefinery approaches for
the production of various biofuels and bioenergy by the utilization of various solid and
liquid renewable feedstocks. This book also covers biorefinery approaches for circular
bioeconomy, techno-economic analysis of biofuels production, environmental impact
analysis of biofuels, microbial electrosynthesis of biofuels, and performance of biodiesel
in a diesel engine. This book provides comprehensive information on biorefinery
approaches for biofuels and bioenergy under four sections comprising 33 chapters as
detailed here.

Section I focused on biorefinery approaches in biofuels and bioenergy production.
This section covers various chapters such as boundaries and openings of biorefineries
toward sustainable biofuel production, a perspective on the biorefinery approaches for
bioenergy production in a circular bioeconomy process, a comprehensive integration
of biorefinery concepts for the production of biofuels from lignocellulosic biomass,
evaluation of activated sludge derived from wastewater treatment process as a potential
biorefinery platform, and insights into the impact of biorefineries and sustainable green
technologies on circular bioeconomy.

Section II comprising nine chapters focused on fermentation technology for etha-
nol production: current trends and challenges, improved enzymatic hydrolysis of lig-
nocellulosic waste biomass: most essential stage to develop cost-effective bio-fuel
production, advances and sustainable conversion of waste lignocellulosic biomass into
biofuels, lignocellulosic biomass as an alternate source for next-generation biofuel, pro-
cess intensification of biobutanol production, production of n-butanol by clostridial
fermentation: a superior alternative renewable liquid fuel, biobutanol separation using
ionic liquids as a green solvent, synergistic prospects of microalgae in wastewater treat-
ment and third-generation biofuel production and concurrent reduction of carbon
dioxide and generation of biofuels by electrified microbial systems—concepts and
perspectives.

Section III comprising eight chapters focused on biofuels and bioenergy production
such as challenges and opportunities in large-scale production of biodiesel, lipid-
derived biofuel: production methodologies, interesterification reaction of vegetable oil
and alkyl acetate as alternative route for glycerol-free biodiesel synthesis, recent

xxxiii



advances of lipase catalyzed greener production of biodiesel in organic reaction media:
economic and sustainable viewpoint, efficient utilization of biomass-derived heteroge-
neous catalyst for biodiesel production, catalytic pyrolysis for upgrading of bio-oil
obtained from biomass, recent trends in pyrolysis and gasification of lignocellulosic
biomass and experimental investigation of performance of biodiesel with different
blends in a diesel engine.

Section IV is mainly about the techno-economic and environmental impact analy-
sis of biofuels and bioenergy. This section includes the chapters such as techno-
economic evaluation of 2G ethanol production with co-products from rice straw,
techno-economic analysis for production of biodiesel using noncatalytic transesterfica-
tion, techno-economic analysis of biodiesel production from nonedible biooil using
catalytic transesterfication, techno-economic analysis of biofuels production from
marine algae, techno-economic assessment of biofuel production using thermochemi-
cal pathways, modeling and techno-economic analysis of biogas production from
waste food, biofuels production from algal biomass: environmental impact and
techno-economic analysis, computer-aided environmental and techno-economic anal-
yses as tools for development of biorefineries under the circular bioeconomy approach,
environmental impact analysis of biofuels and bioenergy-a global perspective, environ-
mental impacts of biofuels and their blends: a case study on waste
vegetable oil�derived biofuel blends and solid biofuels production, environmental
impact and techno-economic analysis.

Biofuels and Bioenergy: A Techno-Economic Approach is a hands-on reference for fac-
ulty members, researchers, scientists, and practicing engineers working on various fields
of bioenergy, biorefinery, and biofuels’ production. This book is a good source of
information addressing industrial problems relevant to undergraduate, postgraduate,
and research students under different academic departments such as biotechnology,
chemical, energy, and environmental engineering in various universities and academic
institutions.

Baskar Gurunathan
Renganathan Sahadevan
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CHAPTER 17

Interesterification reaction of
vegetable oil and alkyl acetate as
alternative route for glycerol-free
biodiesel synthesis
Ratna Dewi Kusumaningtyas, Indah Purnamasari, Ririn Mahmudati and
Haniif Prasetiawan
Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus UNNES, Semarang,
Indonesia

17.1 Introduction

The world population growth and industrial development has led to the increasing of
the global energy needs. To date, fossil energy, which includes petroleum, coal, and
natural gas, has fulfilled around 80% of the world energy demand. In particular, petro-
leum shares approximately 90% of the fuel consumption in the transportation sector.
Fossil energy dominates the total energy supply (TES) source as reported by the
International Energy Agency (IEA) (IEA, 2020). Utilization of fossil fuel as major
energy resources has embarked on several dares related to the oil reserves decimation
and environmental issues. The data provided by the U.S. Energy Information
Administration indicates that the petroleum and other liquid fuel consumption
throughout 2019�22 tends to be higher than its production (EIA, 2020a). This unbal-
anced condition is predicted to be severer in the future due to the growth of popula-
tion, transportation, and industrial sectors. In fact, the worse condition happens in
some countries with significant declining in oil reserves.

At the same time, fossil fuel is under pressure to respond to the climate change
issue. Concerning the environmental aspects, combustion of fossil fuel is stated as the
major contributor of the greenhouse gases’ (such as CO2, NOx) emission to the atmo-
sphere, causing the increasing temperature of the planet and an extreme climate
change during the last few years. Therefore the energy transition from fossil-based fuel
to carbon-neutral or zero carbon energy resources is important for carbon reduction in
energy sector. This is also in line with the policy of the United Nation which has set
up the Sustainable Development Goal (SDG) 7 in terms of affordable and clean energy
by 2030 (Asadikia et al., 2021). According to the Paris Climate Agreement 2015, it is
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also expected to confine the global temperature increase to 1.5�C, to lessen the nega-
tive effect of climate change, and to achieve net-zero emission of energy utilization by
2050 (Kato and Kurosawa, 2019; Lopez et al., 2021). Furthermore, the new paradigm
of the energy sustainability established by the World Energy Council comprises the
three main attributes, which is called Trilemma: energy security, energy equity, and
environmental sustainability of energy system (World Energy Council, 2020). In this
context, energy also has enduring mission to reach a better lives for people
(Gadonneix et al., 2020).

Based on the SDG 7 and Trilemma concept, enhancement in energy security and
sustainability should proceed concurrently. One of the key to provide affordable
energy with low environmental negative impact is deploying renewable energy as sub-
stitute to the fossil-based energy (Bertheau, 2020; Gielen et al., 2019). Renewable
energy, especially with zero carbon or neutral carbon characteristic, has great potential
to contribute in lowering the greenhouse gases’ emission. Innovation in its process
technology likewise could decrease the production cost. Yet, it expected that renew-
able energy can afford 8% of the global energy consumption. Enhancing the portion
of renewable energy in the world’s energy consumption is one among the three main
targets of SDG 7 for 2030 (Santika et al., 2020). Therefore it is essential to work on
the renewable energy development, particularly which is applied for transportation as
the biggest CO2 emitter. Based on IEA projection for change in the global energy
mix 2019�40, it is indicated that bioenergy is among the important renewable energy
(CAPP, 2020).

Biodiesel is one of bioenergy. It is derived from vegetable oil which can be utilized
as substitute for petroleum diesel. It is regarded as carbon neutral since the
vegetable oils as common feedstock of biodiesel are obtained from plants, in which
plants take up carbon dioxide (CO2) from the air for photosynthesis. The absorption
of CO2 by these plants thus counterbalances the CO2 released during the production
and combustion of biodiesel as presented in Fig. 17.1 (EIA, 2020b). Therefore substi-
tuting fossil fuel with biodiesel is beneficial for decarbonizing the energy system.

17.2 Biodiesel

Biodiesel is classified as biomass-based diesel fuels, which can be used as substitute of
petroleum diesel. Utilization of biodiesel as alternative diesel fuel is strategic since die-
sel engine is extensively used in many sectors, for instance agriculture, transportation,
and industry (Ma et al., 2021; Ogunkunle and Ahmed, 2019). Compared to fossil die-
sel, biodiesel shows many advantages, namely, nontoxic, biodegradable, safer due to its
higher flash point (less inflammable), and more environmentally friendly. Biodiesel
also holds higher cetane number better fuel lubricity, superior ignition performance,
and higher combustion efficiency. Additionally, combustion of biodiesel releases lower
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emission in the form of particulates, CO, SO2, hydrocarbon, as well as other air toxics
and pollutants (Kusumaningtyas et al., 2014; Ma et al., 2021; Traviss and Treadwell,
2018). And again, owing to its carbon-neutral characteristic, utilization of biodiesel as
fossil diesel substitute will contribute to reduced climate change and global warming.

Biodiesel is usually applied as diesel engine fuel in form of biodiesel�petroleum
diesel blending in various ratios, such as 2%, 5%, 7%, 10%, 20%, or 30%. The higher
ratio or even pure biodiesel can be utilized, as well (Ogunkunle and Ahmed, 2019;
Widjanarko et al., 2020). Biodiesel has been used extensively in many countries as part
of the government policy on renewable energy, such as B20 in the United States
under the Energy Policy Act of 1992 (AFDC, 2008), B30 in Indonesia under MEMR
Regulation Number 12/2015 (Santika et al., 2020), B15 in Malaysia, and B10 in
Thailand (Zulqarnain et al., 2020).

Biodiesel, which is also currently known as fatty acid methyl ester (FAME), is
commonly produced using vegetable oils as raw material. In fact, vegetable-based bio-
fuel application has long been known since Rudolf Diesel employed peanut oil as the
fuel for the diesel engine and demonstrated it at the world fair in Paris in 1990 (Ma
and Hanna, 1999; Ogunkunle and Ahmed, 2019). But, then, the popularity of this
biofuel was decreasing because of the fossil-fuel booming in the early 20th century.
When the issue on the oil reserve exhaustion and energy crisis emerged in 1980s, bio-
diesel was gaining attention for the second time as alternative energy to the fossil diesel
fuel. However, vegetable oil cannot be directly applied for today’s diesel engine due

Figure 17.1 Biodiesel as carbon-neutral renewable energy source.
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to its exceptionally high viscosity. To fulfill the specification which suits the current
diesel engine, vegetable oil should be processed to reduce its viscosity. The product is
nowadays named biodiesel. There are several methods to convert vegetable oils into
biodiesel, among others:
1. Pyrolysis
2. Microemulsification
3. Dilution
4. Two-step preparation: hydrolysis and methyl esterification
5. Transesterification
6. Interesterification

Pyrolysis is thermal breakdown of organic materials in the absence of oxygen. It
can be direct or catalytic thermal cracking. Triglyceride pyrolysis results in hydrocar-
bons and oxygenated organic compounds, such as alkanes, alkenes, alkadienes, aro-
matic, and carboxylic acid. The liquid fraction of the pyrolysis product is alike diesel
fuel. The heating value is comparable, but the values of the cetane number, flash
point, viscosity, and pour point are lower than petroleum diesel (Maher and Bressler,
2007; Ogunkunle and Ahmed, 2019). Microemulsification is preparing a microemul-
sion of two immiscible liquids by adding surfactant to attain a thermodynamically
stable dispersion. It is also termed as cosolvent blending. This method can decrease the
viscosity of the oil (Ma and Hanna, 1999; Ogunkunle and Ahmed, 2019; Pereira
et al., 2016). Dilution is blending vegetable oil with diesel fuel at a certain ratio to
reduce its viscosity (Nguyen et al., 2010; Ogunkunle and Ahmed, 2019). On the
other hand, Kusdiana and Saka (2004) have reported a method named two-step prepa-
ration of biodiesel at supercritical condition. The process involves hydrolysis of trigly-
cerides to produce fatty acid and glycerol, followed by esterification of fatty acid with
supercritical methanol to yield in FAME.

The most common method for biodiesel synthesis at the present time is through
the alkaline-catalyzed transesterification of triglycerides of vegetable oils with metha-
nol. The mechanism of transesterification comprises three steps: (1) conversion of tri-
glyceride to 1 mole of FAME and diglyceride, (2) conversion of diglyceride to 1 mole
of FAME and monoglyceride, and (3) conversion of monoglyceride to 1 mole of
FAME and glycerol (Schuchardt et al., 1998).

The shortage of transesterification reaction is that this reaction produces glycerol as
by-product and needs to be separated from the main product (biodiesel). Low purity of
glycerol is less valuable, hence it is considered as a waste. To avoid the formation of glyc-
erol side product, methanol can be replaced by methyl acetate or ethyl acetate (Kashyap
et al., 2019). The reaction between vegetable oils with alkyl acetate, known as interesteri-
fication, will produce biodiesel and triacetin instead of glycerol. It is not necessary to sep-
arate triacetin from biodiesel product since triacetin has characteristic as fuel additive,
which can improve biodiesel combustion performance form (Dhawan et al., 2020).
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17.3 Interesterification reaction

The classical transesterification reaction to produce biodiesel generates glycerol as a
by-product. This fact is unfavorable since it needs a set of separation process to purify
biodiesel from glycerol, which consequently increases the production cost. On the
other hand, the abundant product of crude glycerol causes the declining price of glyc-
erol in the market (Kusumaningtyas et al., 2016; Lazdovica and Kampars, 2020).
Therefore development of the glycerol-free process for biodiesel synthesis has grabbed
a significant attention.

One attracting way to eliminate the formation of biodiesel is by using alkyl acetate
as reactant instead of methanol. By substituting methanol with methyl or ethyl acetate,
glycerol will not be yielded as by-product. As a substitute, the reaction between tri-
glyceride and alkyl acetate will result in biodiesel and triacetin. The alternative route
of biodiesel production using alkyl acetate as the acyl acceptor is called interesterifica-
tion. This reaction can be catalyzed using enzyme, classical homogeneous catalyst such
as sodium or potassium methoxide, heterogeneous catalyst, and in the absence of cata-
lyst using supercritical condition. Metal alkoxide catalyst is among the most effective
catalyst for interesterification reaction since it can result in high yield in a short time
and mild condition (Lazdovica and Kampars, 2020).

In the interesterification reaction, it is unnecessary to separate triacetin, which is
formed during the reaction since triacetin can blended with biodiesel as fuel additive
(Casas et al., 2011; Maddikeri et al., 2014). As fuel additive, triacetin acts to improve
the cetane number of the biodiesel. As the impact, it reduces the smoke emission and
knocking of engine. Besides, the addition of triacetin will promote the cold properties
of biodiesel. Biodiesel can be formulated with triacetin up to 10% or 20% (Lazdovica
and Kampars, 2020; Maddikeri et al., 2014; Mufrodi et al., 2014).

The reaction equation of interesterification of 1 molecule of triglyceride with 3
molecules of methyl acetate results in 3 molecules of FAMEs (biodiesel) and 1 mole-
cule of triacetine. The reaction mechanism shows that interesterification reaction is
complex reaction consisting of three consecutive steps. Based on its reaction mecha-
nism, interesterification reaction is identical to a combination of two transesterification
reactions (Casas et al., 2013). In this work, interesterification between triglycerides of
Jatropha oil and methyl acetate was conducted to produce biodiesel. Catalyst used in
this process was sodium methoxide (NaOCH3). Kinetic study was also performed in
this investigation.

There are many different seed oils that can be utilized as raw material for biodiesel
production. The selection of the vegetable oil depends on several factors, for instance:
the locally available feedstocks, price, oil composition, technical aspect, etc. In the
European Union, biodiesel is mostly prepared from rapeseed oil (Dutta, 2019; Van
Duren et al., 2015). Meanwhile, soybean oil is the most dominant biodiesel feedstock
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in the United States (Chen et al., 2018). Waste cooking oil is also a potential feedstock
in various countries (Fangfang et al., 2021). In tropical and coastal countries such as
Indonesia and Malaysia, palm and coconut oil are widely applied as raw materials for
biodiesel production. Jatropha curcas oil is also popular in Asian countries, such as India,
Malaysia, and Indonesia (Anwar, 2021; Hamzah et al., 2020; Siregar et al., 2015).

Utilization of Jatropha curcas Linn. oil is promising since it is an nonedible oil. Hence,
its utilization as bioenergy crop will not compete with the food demand
(Kusumaningtyas et al., 2014). Jatropha seed has high oil content between 63.16% and
66.4%, which is higher than the oil content of palm kernel and soybean (Hamzah et al.,
2020). In addition, the cetane number of Jatropha biodiesel is reported to be 57, which
is comparable to diesel fuel and higher than palm biodiesel. The Life Cycle Assessment
(LCA) has revealed that Jatropha biodiesel demonstrated the higher reduction value of
CO2 release from combustion than palm biodiesel (Siregar et al., 2015).

17.4 Kinetic model of interesterification reaction

Kinetic study is urgent for obtaining the kinetic parameters, which is required for
the process equipment design and scaling up. However, study on the kinetics of
triglyceride interesterification for biodiesel production is not widely found in liter-
ature (Brondani et al., 2020). Most findings focus on the kinetics of enzymatic
interesterification, and some other discuss about the kinetics of the interesterifica-
tion at supercritical condition. Kinetic analysis of the interesterification reaction
using classical metal alkoxides catalyst in mild condition has not been extensively
investigated. In spite of this, some research reported the compatibility of the
homogeneous irreversible second-order model for this reaction (Casas et al., 2011;
Teixeira et al., 2016).

Basically, interesterification consist of three sequential reversible reactions that can
be described through Eqs. (17.1)�(17.3). Furthermore, the overall reaction is written
in Eq. (17.4) (Casas et al., 2011):

TG1MA �!
k1
 �
k2

MADG1E ð17:1Þ

MAGD1MA �!
k3
 �
k4

DADG1E ð17:2Þ

DAGD1MA �!
k5
 �
k6

TA1E ð17:3Þ
Overall reaction:

TG1 3MA �!
k7
 �
k8

TA1 3E ð17:4Þ
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Reaction rate of each compound can be written as follow [Eqs. (17.5)�(17.10)]:

d
TG½ �
dt

52 k1 TG½ � MA½ �1 k2 MADG½ � E½ �2 k7 TG½ � MA½ �3 1 k8 TA½ � E½ �3 ð17:5Þ

d
MADG½ �

dt
5 k1 TG½ � MA½ �2 k2 MADG½ � E½ �2 k3 MADG½ � MA½ �1 k4 DAMG½ � E½ � ð17:6Þ

d
DAMG½ �

dt
5 k3 MADG½ � MA½ �2 k4 DAMG½ � E½ �2 k5 DAMG½ � MA½ �1 k6 TA½ � E½ � ð17:7Þ

d
E½ �
dt

5 k1 TG½ � MA½ �2 k2 MADG½ � E½ �1 k3 MADG½ � MA½ �2 k4 DAMG½ � E½ �
1 k5 DAMG½ � MA½ �2 k6 TA½ � E½ �1 k7 TG½ � MA½ �3 2 k8 TA½ � E½ �3

ð17:8Þ

d
MA½ �
dt

52 d
E½ �
dt

ð17:9Þ

d
TA½ �
dt

5 k5 DAMG½ � MA½ �2 k6 TA½ � E½ �1 k7 TG½ � MA½ �3 2 k8 TA½ � E½ �3 ð17:10Þ

where TG5 triglycerides, MADG5monoacetin diglyceride, DAMG5 diacetin mono-
glyceride, and E5 FAME (biodiesel).

Generally, the value of the reaction rate constant on the secondary group is slightly
greater than that of the primary group. Since the difference constant values are not
exceedingly significant, it can be assumed that the reaction, which comprises three
steps occurs simultaneously. Subsequently, the overall reaction in Eq. (17.4) can be
rewritten as Eq. (17.11):

TG1 3MA �!
k01 �
kv2

TA1 3E ð17:11Þ

The reaction rate equation can be formulated as follows [Eq. (17.12)]:

d
TG½ �
dt

52k01 TG½ � MA½ �31 k02 TA½ � E½ �3 ð17:12Þ

where k015 reaction rate constant for the forward reaction and k025 reaction rate con-
stant for the reverse reaction.

Reaction rate constant in general is defined using Arrhenius function [Eq. (17.13)]:

k Tð Þ5Ae2E=RT ð17:13Þ
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where kðT Þ5 reaction rate constant, A5 frequency/preexponential factor, E5 activation
energy (mol/J), R5 ideal gas constant (8314 J/K.mol), and T5 reaction temperature (K).

The units for k(T) and A depend on the reaction order, namely L/mol.min and
min21 for the first-and second-order reactions, respectively.

Casas et al. (2011) suggested a kinetic model of irreversible interesterification of tri-
glycerides with methyl acetate so as to Eq. (17.12) can be simplified. Once the exces-
sive methyl acetate is employed in the reaction system, it can be assumed that forward
reaction in Eq. (17.12) obeys a pseudo-first-order reaction, and the reverse reaction
follows the second-order reaction law. However, when far excess methyl acetate is
used in the reaction, the k value of the reverse reaction can be disregarded and sup-
posed to be zero. For this reason, the interesterification reaction can be considered an
irreversible reaction. Thus Eq. (17.12) can be simplified into a second-order irrevers-
ible reaction kinetic model as indicated in Eq. (17.14):

2
dCTG

dt
5 rTG 5 k0:C2

TG ð17:14Þ

The kinetic model obtained is then presented in Eq. (17.15):

1
CTG

5 k0:t1
1

CTGo

ð17:15Þ

The value of k0 is affected by the catalyst concentration.
Plotting of 1

CTG
against t will form a linear line, denoting that the model fits the experi-

mental data.where CTG 5molar concentration of triglycerides (mol/L), CTGo 5 initial
concentration of triglycerides (mol/L), t5 reaction time (min), rTG 5 reaction rate of tri-
glycerides (mol/L.min), and k05 reaction rate constant (L/mol.min).

17.5 Case study: kinetic study on the biodiesel synthesis from
Jatropha (Jatropha curcas L.) with methyl acetate in the presence of
sodium methoxide catalyst

In this case, Jatropha oil was obtained from PT. Jatropha Green Energi, Kudus, Jawa
Tengah, Indonesia. Experimental study and kinetic reaction rate were inspected in this study.
The experiment was conducted through interesterification reaction of J. curcas L. with
methyl acetate in the presence of NaOCH3 catalyst. Consecutively, kinetic factor and activa-
tion energy of interesterification reaction were obtained from the proposed kinetic model.

17.5.1 Methods
There are two main stages in this case, which are neutralization of crude Jatropha oil
and interesterification of neutralized Jatropha oil. The physical and chemical properties
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of Jatropha oil such as density, viscosity, acid value, and acidity were analyzed before
and after neutralization process.

Purification or neutralization of Jatropha oil was intended to remove the free fatty acid
and avoid the gumming process in the interesterification reaction. Two hundred milliliters
of crude Jatropha oil was prepared in a three-necked flask. Sodium carbonate (Na2CO3)
was dissolved in a water with combined a mixing and heating process. Saturated Na2CO3

was then filtered to remove the unwanted solid and undissolved Na2CO3 powder. The oil
was heated to 90�C, and once it reached the neutralization temperature (90�C), saturated
Na2CO3 was injected into the oil at a low flow rate. Continuous mixing was conducted
for 1 h and the solution was then separated to remove the produced soap from the oil.

NaOCH3 was mixed with methyl acetate in a three-necked flask accompanied with
magnetic stirrer, and the mixture was then heated to operating temperature. Purified
Jatropha oil was prepared in a different apparatus and also heated to the same temperature
with catalyst mixture. Once it reached the required temperature, the Jatropha oil was then
poured into the previous three-necked flask, which contains catalyst and methyl acetate.

In this interesterification reaction, the catalyst concentration was varied to 0.25%,
0.5%, 0.75%, and 1%, oil to molar ratio was varied to 1:6, 1:9, 1:12, and 1:15, while
the reaction time was varied to 40�C, 50�C, and 60�C. Interesterification was con-
ducted for 8 h and the samples were taken periodically. The samples were then ana-
lyzed its composition by using gas chromatography�mass spectrometry (GC-MS).

17.5.2 Kinetic model
Triglycerides concentration from GC-MS analysis was converted into the reaction
conversion. The kinetic model was then solved by using Eqs. (17.14) and (17.15),
which are the proposed by Casas et al. (2011). The differential equation was solved by
using Runge�Kutta method. Experimental data and the calculated triglyceride con-
centration were compared and calculated its sum square of error (SSE). Kinetic rate
constant was determined once it reached the minimum SSE.

Kinetic factor and the energy activation were obtained by using Arrhenius equa-
tion as shown in Eq. (17.16).

kðT Þ5Ae2E=RT ð17:16Þ
where kðT Þ is the reaction rate constant (L/mol.min), A is the frequency/preexponen-
tial factor (L/mol.min), E is the energy activation (mol/J), R is the ideal gas constant
(8314 J/K.mol), and T is the reaction temperature (K).

17.5.3 Characterization of Jatropha oil
Characteristics of Jatropha oil before and after neutralization process are demonstrated
in Table 17.1. The characterization consists of oil density, viscosity, molecular weight,
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acid value, and acidity. According to Table 17.1, it can be seen that neutralization pro-
cess has successfully decreased all the parameters compared to the crude Jatropha oil.
However, most of the parameter values are still above the required standard for diesel
engine. It can be concluded that this crude oil cannot be directly used as diesel engine.
Several problems that might appear when crude oil with the current physical and
chemical properties is used as diesel engine are engine failure, increasing the engine
weariness (Pristiyani, 2015), power loss engine (Mittlebach and Remschmidt, 2004),
corrosion, and create deposit on the engine (Ferrari et al., 2011). Since the acidity
value is already dropped to 0.465%, this purified Jatropha oil can be used for the next
process to produce the methyl ester.

17.5.4 Effect of catalyst concentration
In this case, the concentration of NaOCH3 catalyst was varied into 0.25%, 0.5%, 0.75%,
and 0.1% w/w, while the other variables were remaining constant. The oil to methyl ace-
tate molar ratio was 1:6, reaction temperature was set at 50�C, and the reaction time was
4 h. NaOCH3 catalyst was chosen since it contains less water compared to sodium
hydroxide (KOH) (Ma and Hanna, 1999). Based on this operating condition, the effect of
catalyst concentration on the triglyceride conversion is shown in Fig. 17.2.

The result shows that higher catalyst concentration also increases the number of
converted triglyceride into methyl ester. This was caused by the increasing number of
available active sites to promote the reaction (Masduki et al., 2013). With the increas-
ing number of active sites, it also reduces the energy activation and increases the reac-
tion rate of triglyceride into methyl ester (Rasyid, 2010). Reduction on the energy
activation creates more collision between the reactant particles, which can increase the
reaction rate. In this case, the highest conversion was 88.1% obtained by using catalyst
concentration of 1%. Maddikeri et al. (2014) in their study also reported that the opti-
mum catalyst concentration for the interesterification of cooking oil was 1%. Higher
catalyst concentration did not affect the conversion; on the other hand, it increases the
catalyst recovery cost. On the previous study, Pristiyani (2015) used KOH for interes-
terification of used cooking oil. The results showed that the highest conversion
obtained was 13.79. It can be concluded that NaOCH3 is more effective as an interes-
terification catalyst compared to KOH.

Table 17.1 Physical and chemical properties of Jatropha oil.

Variable Standard Before After

Density (g/mL) 0.85�0.89 0.965 0.956
Viscosity (mm2/s) 2.3�6.0 37.83 40.39
Acid value (mg KOH/g oil) Max 0.80 16.157 0.926
Acidity (%) Max 0.5 8.12 0.465
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Table 17.2 shows the chemical compounds of methyl ester by using 1% w/w of
NaOCH3 catalyst. It can be seen that at the current catalyst concentration and operat-
ing condition, triacetin was not found on the compounds of methyl ester although it
has a quite high triglyceride conversion. Sustere and Kampars (2015) on the previous
studies found that the optimum results were obtained by using catalyst to oil ratio of
0.15 with methyl acetate to oil molar ratio of 36. The catalyst used was tert-butoxide,
and the product composition was 73.2% of methyl ester and 16.6% of triacetin. Since
in this case the methyl ester to oil molar ratio was only 6:1, it might be the main rea-
son triacetin was not found in the product.

17.5.5 Effect of Jatropha oil to methyl acetate molar ratio
According to the stoichiometry of interesterification reaction, 3 moles of methyl ace-
tate is reacted with 1 mole of triglyceride. Since it is a reversible reaction, excess
methyl acetate is needed to shift the reaction towards the product side (Maddikeri
et al., 2014). Effect of the oil to methyl acetate molar ratio to triglyceride conversion

Table 17.2 Methyl ester chemical compounds at the catalyst concentration of 1% w/w.

No. Retention time, min Area % Chemical compound

1 43.056 0.79 Oleic acid
2 43.795 0.36 Linoleic acid
3 45.770 4.54 Methyl ester
4 49.907 10.74 Palmitic acid
5 54.825 3.14 Methyl ester
6 55.249 3.40 Mono-oleic acid
7 59.475 0.22 Methyl ester

Figure 17.2 Effect of catalyst concentration on the triglyceride conversion.
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was studied at 1:6, 1:9, 1:12, and 1:15. The reaction was conducted at reaction tem-
perature of 50�C, catalyst concentration of 0.5% w/w, and reaction time of 4 h.
Fig. 17.3 shows the effect of oil to methyl acetate molar ratio to the triglyceride
conversion.

It can be seen that the conversion of triglyceride into methyl ester is decreasing
along with the increasing of oil to methyl acetate molar ratio. Huang and Akoh
(1996) also reported the same trend line on their study, and yield of transesterification
product between triolein and caprylic acid ethyl ester was not increasing with the
increasing reactant molar ratio. Moreover, excess amount of methyl ester might pro-
duce biodiesel with high viscosity and became another issue on the product separation.
Reduction on the reaction conversion was caused by the low amount of triglyceride
concentration, furthermore this excessive dissolution inflicted a slower reaction pro-
cess. In reversible reactions such as interesterification, excess ethyl acetate might slide
the equilibrium to the backward reaction, which can reduce the yield of biodiesel and
triacetin (Komintarachat et al., 2015). In this case, the highest conversion was obtained
at oil to methyl acetate molar ratio of 1:6 with a conversion of 29.76%. Freedman
et al. (1984) previously studied the effect of molar ratio on the sunflower oil methano-
lysis, and the results showed that the highest ester conversion was 98% and obtained
by using molar ratio of 1:6. However, ester conversion was decreased to 82% at molar
ratio of 1:3.

Table 17.3 shows the chemical compounds of methyl ester obtained at oil to
methyl acetate molar ratio of 1:6. Based on the GC-MS results’ analysis in Table 17.3,
it can be seen that with high amount of methyl ester on the product, triacetin had not
been found on the product analysis. It shows that the optimization is necessary to
obtain the best operating condition of the process for the future work.

Figure 17.3 Effect of oil to methyl acetate molar ratio to the triglyceride conversion.
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17.5.6 Effect of reaction time and temperature
In this case, the reaction temperatures were varied to 40�C, 50�C, and 60�C, while
the interesterification process was carried out for 8 h and samples were taken at 0, 30,
60, 120, 240, and 480 min. The remaining parameters were constant, where the cata-
lyst concentration was 0.5% w/w and oil to methyl acetate molar ratio was 1:6. This
temperature range was chosen based on the catalyst activity, which is ranged between
20�C and 100�C (Mittlebach and Remschmidt, 2004). Freedman et al. (1984) also
stated that transesterification process for peanut oil, cotton seeds oil, sunflower seeds
oil, and soybean seeds oil should be carried out with oil to alcohol molar ratio of 1:6,
catalyst concentration of 0.5%, and reaction temperature of 60�C. Fig. 17.4 shows the
effect of reaction time and temperature to the triglyceride conversion.

Triglyceride conversion is decreasing with the increasing reaction temperature.
Decreasing conversion from reaction temperature of 40�C�50�C was caused by the
shifted reaction equilibrium to the reactant. Interesterification reaction is an exother-
mic reaction, which releases energy, furthermore increasing temperature will supply
more heat. According to Le Chatelier’s principle, the equilibrium will shifted to the
reactant side (Kusumaningtyas et al., 2014). Rachimoellah et al. (2009) reported that
since transesterification is an exotherm reaction, excess methyl acetate is needed to
decrease the reaction temperature and shift the equilibrium reaction to the product
side. Triglyceride conversion is also decreasing on the temperature increment from
50�C to 60�C, which was due to the reaction temperature used that was higher than
the boiling point of methyl acetate, which is 56.1�C (Said et al., 2010). Hence,

Table 17.3 Chemical compounds of methyl ester at molar ratio of 1:6.

No. Retention time, min Area % Chemical compound

1 39.239 0.60 Palmitic acid
2 42.257 6.90 Methyl ester
3 43.108 1.10 Methyl ester
4 43.784 0.09 Stearic acid
5 45.626 6.35 Palmitic acid
6 47.695 0.05 Palmitic acid
7 47.984 0.19 Mono-oleic acid
8 48.166 0.14 Methyl ester
9 49.607 0.20 Palmitic acid
10 49.736 7.73 Methyl ester
11 51.048 0.59 Oleic acid
12 51.225 0.16 Methyl ester
13 52.843 0.46 Methyl ester
14 53.012 0.93 Methyl ester
15 53.727 0.09 Stearic acid
16 54.033 0.34 Lauric acid
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reaction between oil and methyl acetate at this reaction temperature is not effective
and decreases the yield of methyl ester. However, longer reaction times give more
chance for the oil to react with methyl acetate and resulted in more biodiesel product.
In this case, the optimum operating condition was obtained at the reaction tempera-
ture and time of 40�C and 8 h, respectively, with triglyceride conversion of 73.96%.

Chemical compounds of the product at the optimum condition are presented in
Table 17.4. Based on Table 17.4, it was cleared that triacetin has not been found on the prod-
uct analysis. It also can be concluded that the current operating condition was not the opti-
mum condition for the interesterification reaction. However, glycerol was also found as the
product. During the interesterification reaction between Jatropha oil and methyl acetate with
KOH catalyst, the formation of triacetin di-(9-octadecenoyl)-glycerol inhibits the production
of triacetin (Pristiyani, 2015). Brondani et al. (2020) suggested the higher reaction temperature
and molar ratio of methyl acetate to oil in order to obtain higher yield of products.

17.5.7 Kinetic study
Fig. 17.5 shows the comparison between experimental data and the calculated triglyc-
eride concentration as a function of reaction time and temperature. Based on the SSE
between experimental data and the calculated triglyceride concentration, it can be
concluded that the kinetic reaction of oil and methyl acetate interesterification process
with the presence of NaOCH3 catalyst can be approached by using second-order
reversible kinetic model. Furthermore, based on the kinetic data for each temperature,
kinetic factor (A) and energy activation (E) can be calculated by using Arrhenius equa-
tion. Table 17.5 shows the calculated kinetic rate of interesterification reaction as a
function of reaction temperature.

Figure 17.4 Effect of reaction time and temperature to the triglyceride converison.

448 Biofuels and Bioenergy



Regression analysis of reaction rate constant in Table 17.5 results in a preexponen-
tial factor (A) of 7.233 10215 L/mol.min and energy activation in terms of �E/R
with 10,358 K/min. With a gas constant (R) of 8.314 J/mol/K, the obtained energy

Figure 17.5 Relation between CTG experimental data and CTG calculated as a function of reaction
time and temperature.

Table 17.5 Reaction rate constant.

Temperature (�C) Reaction rate constant (L/mol.min)

40 1.5728
50 0.6753
60 0.2151

Table 17.4 Chemical compounds of methyl ester at reaction temperature of 40�C and reaction
time of 8 h.

No. Retention time, min Area % Chemical compound

1 45.050 0.20 Di-9-octadecenoyl glycerol
2 45.582 4.71 Palmitic acid
3 47.952 0.13 Mono-oleic acid
4 48.129 0.11 Oleic acid
5 49.692 5.31 Methyl ester
6 53.996 4.88 Lauric acid
7 55.365 4.04 Oleic acid
8 58.987 3.40 Lauric acid
9 59.984 0.42 Lauric acid
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activation is 86,116.41 J/mol. Energy activation in this case was in line with the study
reported by Casas et al. (2011), where the energy activation for conventional interes-
terification process was between 24,318 and 88,551 J/mol. The results are in accor-
dance with Le Chatelier’s principle, where reaction equilibrium will shift to the
reactants for an exothermic reaction. As it can be seen in Table 17.5, the reaction rate
is decreasing along with the increasing reaction temperature.

17.6 Conclusion

The data presented in this work demonstrate the feasibility of producing biodiesel fuels
through interesterification reaction of Jatropha oil with methyl acetate in the presence
of NaOCH3 catalyst. Various parameters were studied, and it shows that the highest
yield obtained in this study was 88.1% in oil to methyl acetate molar ratio of 1:6, reac-
tion temperature of 50�C, and catalyst concentration of 1% w/w with 4 h of reaction
time. Hence, highest catalyst concentration still can be used to achieve higher triglyc-
eride conversion. Moreover, the resultant analysis of biodiesel product from various
operating conditions shows the absence of triacetin. The kinetic model was fitted with
the second-order reaction kinetic model. The energy activation was in line with the
previous studies, which was 86,116.41 J/mol, while the preexponential factor (A) was
7.233 10215 L/mol.min.
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