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Chapter 10
Valorization of Sugarcane-Based
Bioethanol Industry Waste (Vinasse)
to Organic Fertilizer

Ratna Dewi Kusumaningtyas, Dhoni Hartanto, Hasan Abdul Rohman,
Mitamaytawati, Nur Qudus, and Daniyanto

Abstract Indonesia is among the top ten sugarcane-producing countries in the
world. Among the important sugarcane-based industry is bioethanol production.
Bioethanol is recently experiencing significant growth due to the increase in need
of renewable energy. However, this industry faces a challenge since it produces a
huge amount of liquid waste, namely vinasse. The production of 1 L of bioethanol
generates 12 L of vinasse. Vinasse is pollutant due to its high value of chemical
oxygen demand (COD) and biological oxygen demand (BOD), high salt content,
unpleasant odor, high acidity, and dark color. Therefore, it should be treated before
releasing to the environment. However, pretreatment of vinasse is not economical.
The more feasible way to handle vinasse is shifting it into valuable product. Vinasse
contains nutrients which are necessary for improving soil fertility and useful for
plant fertilization. There are some methods to convert vinasse to organic fertilizer.
This chapter shows one case study of formulating vinasse with filter cake of sugar
factory, and agricultural wastes to produce liquid organic fertilizer (LOF). LOF was
synthesized via anaerobic fermentation of vinasse in the presence of promoting
microbes and formulation of fermented vinasse with filter cake, lead tree leaves,
and banana peel to produce LOF. The LOFs were characterized to determine the
values of organic C, C/N ratio, and the contents of N, P, and K elements. LOFs were
applied on the tomato plant to enhance plant growth. The more advanced process of
vinasse valorization is converting it into slow release solid organo-mineral fertilizer
(SR-OMF).
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10.1 Introduction

Indonesia is among the major sugarcane producing countries in the world. In
Indonesia, sugarcane (Saccharum officinarum) is mostly utilized as raw material in
sugar industry. There are 62 sugar industries for sugarcane, and 10 refined sugar
industries. In Manufacture Year 2017/2018, Indonesian white sugar production
increased to 2.2 MMT, while sugarcane production was stable at 28.0 MMT (Wright
and Meylinah 2014). Among the major residues of sugar refinery is filter cake and
molasses. Filter cake is a waste of sugarcane juice filtration, which contains organic
compounds and phosphorus. Hence, this waste is potential to be converted into
fertilizer (Prado et al. 2013). On the other hand, molasses is usually used for the
production of ethanol (Obono et al. 2016). Sugarcane ethanol is a well-established
industry and it is recently experiencing significant growth due to the increase in need
of renewable energy. However, this industry faces a challenge since it produces a
huge amount of liquid waste, namely vinasse.

Vinasse is the bottom effluent of distillation column in sugarcane ethanol purifi-
cation process. The production of 1 L of ethanol from sugarcane generates up to 12 L
of vinasse (Cassman et al. 2018). Vinasse is pollutant to the environment due to its
high value of Chemical Oxygen Demand (COD) up to 140 g/L, high value of
Biological Oxygen Demand (BOD), high salt content, strong unpleasant odor,
very high acidity (pH 3.5–5), and heavy dark color (Hoarau et al. 2018). Therefore,
it should be treated before releasing to the environment, or otherwise it will pollute
surface and groundwater, as well as harm aquatic biota. However, pretreatment
process of vinasse waste prior to its disposal is not economical since it is produced
abundantly. The more feasible way to handle vinasse is shifting this liquid waste into
valuable product.

Despite its polluting characteristic, vinasse contains nutrients which is necessary for
improving soil fertility, such as nitrogen (up to 4.2 g/L), phosphorus (up to 3.0 g/L), or
potassium (up to 17.5 g/L) as reported by Hoarau et al. (2018). Vinasse also comprises
magnesium, calcium, and organic matters (organic acids, amino acids, sugars, poly-
saccharides, and proteins) which are useful for plant fertilization. This feature dem-
onstrates that valorization of vinasse to organic fertilizer is prospective. Application of
vinasse for organic fertilizer of several types of plants (sugarcane, corn, tomato,
watermelon) has been studied previously.

There are some methods of applying vinasse as organic fertilizer, such as
fertigation or direct application of untreated vinasse to the soil (Jiang et al. 2012),
application of concentrated vinasse (Lourenço et al. 2019), formulation of vinasse-
based organo-mineral fertilizer (Kusumaningtyas et al. 2017). Fertigation is simple
and easy to apply. However, the direct application of unprocessed vinasse to the land
shows several drawbacks to the environment, such as the increasing salt level in the
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soil, groundwater pollution, and greenhouse gas emissions. Besides that, untreated
vinasse contains high amount of water. Thus, fertilization needs large volume of
untreated vinasse. This condition causes costly expense of vinasse transportation
(Bettani et al. 2019). To overcome this obstacle, vinasse is concentrated through
vaporization before being applied as organic fertilizer. This is the efficient way to
lessen the volume of vinasse in order to decrease transportation cost without losing
its nutrients (Lourenço et al. 2019). However, in some countries, characteristic of
solitary concentrated vinasse fertilizer does not fulfill the national standard param-
eter of organic fertilizer properties, such as nitrogen (N), phosphorus (P), and
potassium (K) contents, as well as C/N (carbon/nitrogen) ratio value. Hence, con-
centrated vinasse should be combined with other material to improve its character-
istic as organic fertilizer. In the previous work, concentrated vinasse was blended
with 3, 6, and 9% commercial NPK fertilizer to produce vinasse-based organo-
mineral fertilizer (OMF). OMF was successfully employed for improving the growth
of tomato and watermelon plant.

In this work, vinasse was combined with other sugar industry waste (filter cake)
and agricultural wastes to produce liquid organic fertilizer (LOF) through microbi-
ological process. Microbiological process was applied to help the decomposition of
solid organic matters and transform them into organic fertilizers which are useful for
improving soil fertility and plant productivity. Filter cake and agricultural wastes
(lead tree leaves and banana peel) were added in formulation to enhance the quality
of vinasse-based fertilizer. Filter cake is a good source of phosphorus. Phosphorus is
important for supporting photosynthesis process and stomatal conductance, as well
as promoting root growth (Vasconcelos et al. 2017). The improved stomatal con-
ductance is essential for increasing transpiration rates. On the other hand, the
optimum growth of root will enhance the root exploration capability, leading to
increased water absorption.

Lead tree (Leucaena leucocephala) is a plant that is widely grown in Indonesia
and commonly used for greening purpose. This plant produces lots of leaves, but this
plant leaves have not been optimally utilized. In fact, lead tree leaves contain high
nitrogen, phosphorus, potassium, carbon, and oxygen elements, which are necessary
for supporting plant growth. ter Meulen et al. (1979) reported that lead tree leaves
(LTL) contain 19.0 g/kg calcium, 2.16 g/kg phosphorus, and 17.0 g/kg potassium. It
was also described that fermented LTL can be applied as liquid organic fertilizer (ter
Meulen et al. 1979). The other agricultural waste employed for LOF formulation in
this work was banana peels. Banana peel is potential to be used for organic fertilizer
since it contains nutrients for plant. Kalemelawa (2012) stated that solid organic
fertilizer made of banana peel was a potential source of K and N (Kalemelawa et al.
2012).
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10.2 Vinasse

The bioethanol industry is growing because people are focusing on finding renew-
able energy sources. The most developed bioethanol industry in Indonesia is
molasses-based bioethanol. Molasses is sugar syrup which does not crystallize
after the crystallization process. Molasses which is usually reddish brown is a
by-product of the sugar industry which still contains sucrose. Although there are
other raw materials, generally bioethanol manufacturers prefer using molasses
because molasses is cheaper and easier to obtain, the process of making molasses-
based bioethanol is simpler, it contains high sucrose and nitrogen, phosphorus,
sulfur, minerals, and vitamins required by yeast. However, the molasses-based
bioethanol industry creates a problem of producing liquid waste called vinasse in
very large quantities and it is polluting the environment.

Vinasse is the liquid waste resulting from the bottom product of distillation in the
maisch column during the production of bioethanol frommolasses. Vinasse contains a
chemical compound that causes Chemical Oxygen Demand (COD) to increase more
than 50,000 ppm and Biological Oxygen Demand (BOD) to increase more than
30,000 ppm. This waste cannot be directly discharged into the water environment or
river, because it will eliminate the dissolved oxygen in it which ultimately damages the
ecosystem of the biota. The main impacts caused by vinasse waste in soil and
groundwater resources are salinity and increased concentrations of nitrates, nitrite,
ammonia, magnesium, phosphate, aluminum, iron, manganese, chloride, and organic
carbon. Metal mobilization/dissolution such as iron, copper, cadmium, chromium,
cobalt, nickel, tin, and zinc can occur, as well as changes in pH in soil and ground
water. The bioethanol plant produces vinasse as its liquid waste of 12 times more than
the volume of bioethanol production (Leme and Seabra 2016). The characteristics of
vinasse waste can be seen in Table 10.1.

Vinasse waste has high organic matter and low acidity with pH around 3.9–4.3
(Parnaudeau et al. 2008). The problem caused by the low acidity of vinasse waste is
the difficulty of nutrient adsorption by plants. Nutrients can be easily absorbed by
plants at pH 6–7, because at that level of acidity, most nutrients can dissolve easily in
water. The level of pH in the soil also indicates the presence of toxic substances for
plants. Al (aluminum) elements are found in acid soil which can both poison plants

Table 10.1 Characteristics of
vinasse

Character Information

Debit �480 m3 per day

pH 3.9–4.3

Suspended residue High

NH3 200 ppm

BOD, 20 �C Very high

COD Very high

Color Dark brown to black

Source: Madubaru (2008)
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and bind phosphorus which causes plants to be unable to absorb it. In addition to
acidic soil, too many microelements can poison plants. As for alkaline soil, there are
many elements of Na (Sodium) and Mo (Molybdenum). The condition of soil acidity
also determines the development of microorganisms in the soil. Mushrooms and
organic matter-decomposing bacteria can grow well in the environment with
pH 5.5–7. In addition, microorganisms which are beneficial to roots of plant can
also develop well (Gyaneshwar et al. 2002). Vinasse waste also has a reddish brown
color and is malodorous (Fig. 10.1). One of the negative effects of vinasse waste on
rice plants is that it causes the color of the grains of rice to become brownish and
malodourous, making rice less suitable for consumption. One of the efforts to handle
vinasse waste is by using vinasse as organic fertilizer. Vinasse has macro- and
micronutrients including N, P, K, Ca, Mg, Fe, Mn, Zn, and Cu which are useful
and required for plant to grow (Madubaru 2008). Vinasse has been used as solid
organo-mineral fertilizer (Kusumaningtyas et al. 2017). Vinasse can also be
processed into liquid organic fertilizer through fermentation and non-fermentation
process.

The production of organic fertilizer through fermentation process is usually
conducted in the presence of Promi (Promoting Microbes). Promi is active microbes
that can stimulate the plant growth. Microbes in promi involve three types of
microbes, namely Aspergillus sp., Trichoderma harzianum DT 38, Trichoderma
harzianum DT 39, and microbial weathering. Aspergillus sp. has an ability to solve
phosphate from the insoluble sources. Trichoderma harzianum DT 38 has a role in
stimulating plant growth. Furthermore, Trichoderma harzianum DT 39 is a natural
agent to resist infectious soil diseases.

Fig. 10.1 Untreated
vinasse
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10.3 Organic Fertilizer

Organic fertilizers are plant fertilizers that originate from organic sources, such as
animal and plant matters, human excreta, manure, etc. It commonly contains various
important nutrients needed by plants, both macro and micro. The macroelements
required by plants include nitrogen (N), phosphorus (P), potassium (K), sulfur (S),
calcium (Ca), and magnesium (Mg). Furthermore, microelements are iron (Fe),
copper (Cu), zinc (Zn), chlorine (CI), boron (B), molybdenum (Mo), and aluminum
(AI) (Chang et al. 2007). Vinasse waste, which is derived from agro-industrial
process, is among the potential feedstock for composing organic fertilizer. To
improve its properties as organic fertilizer, vinasse can be combined with other
organic fertilizer sources, for example filter cake and agricultural wastes.

Filter cake is one of the wastes produced by sugar mills in the process of
manufacturing sugar. This waste comes out of the process in solid form containing
water, still has high temperature, and in the form of soil. The filter cake is actually
sugarcane fiber mixed with dirt and separated from the sap. The filter cake compo-
sition consists of coir, wax and crude fat, crude protein, sugar, total ash, SiO2, CaO,
P2O5, and MgO. The composition of the filter cake has different percentage of
content from one sugar mill to another, depending on the production pattern and
origin of the sugarcane (Prado et al. 2013).

The filter cake is generally used as an organic fertilizer. The filter cake of some
sugar mills are recycled as fertilizer, which is then used for fertilizing sugarcane in
sugarcane plantation areas. The process of using organic fertilizer is not complicated.
The fertilizer undergoes drying process for a few weeks/months for aeration in an
open area. The drying process is aimed to reduce the temperature and the excessive
content of nitrogen in the filter cake. By continuing to use inorganic fertilizers as a
starter, the use of filter cake organic fertilizer can still be accepted by the community
(Prado et al. 2013). The filter cake can be used directly as fertilizer, because it
contains nutrients required by the soil. To enrich the N element, it is composted with
bagasse and kettle ash. Administering 100 tons of filter cake or its compost per
hectare to sugarcane can significantly increase the weight and yield of sugarcane.
Besides, combining filter cake with vinasse to produce organic fertilizer is consid-
ered attractive as well.

Beside filter cake, the other potential organic substance which can be formulated
with vinasse to prepare organic fertilizer is agricultural wastes. As an agricultural
country, Indonesia has various and abundant sources of organic fertilizer from crops,
among the others are banana peels and lead tree (Leucaena leucocephala) leaves.
Bananas and banana peels are rich in minerals such as potassium, magnesium,
phosphorus, chloride, and iron. The contents of banana peel can be seen from
Table 10.2.

Lead tree leaves are widely available in Indonesia and are used for reforestation.
This plant contains high levels of nutrients required by plants. Lead tree leaves contain
19.0 g/kg calcium, 2.16 g/kg phosphorus, and 17.0 g/kg potassium (ter Meulen et al.
1979). According to Kang (1981), the organic fertilizer in the form of lead tree leaves
can improve soil fertility and affect the growth of plants (Kang et al. 1981).
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10.4 Case Study: Formulation of Vinasse, Filter Cake,
and Agricultural Wastes to Liquid Organic Fertilizer

One case study of vinasse valorization is the formulation of vinasse, filter cake, and
local agricultural wastes (banana peels and lead tree leaves) to produce liquid
organic fertilizer (LOF). In this case, vinasse was obtained from Micro, Small, and
Medium Enterprises (MSME) of bioethanol production in Sukoharjo, Central Java,
Indonesia. Meanwhile the filter cake was supplied by PT Madubaru Sugar Factory,
Yogyakarta, Indonesia.

10.4.1 Methods

The main raw materials of the process were vinasse, filter cake (FC), banana peels
(BP), and lead tree leaves (LTL). The raw materials were formulated with and
without fermentation process. The fermentation was performed in the presence of
promoting microbes (promi). The formulations were conducted at various compo-
sitions of feedstocks and operation condition, as shown in Table 10.3.

The conversion of vinasse into LOF was conducted through the following
procedure. Vinasse (100 mL) was prepared in the beaker glass. The acidity
(pH) of vinasse was adjusted by the addition of 40% NaOH solution until it reached
pH 7 (neutral). Subsequently, vinasse was evaporated at the temperature of 100 �C
for 1 h to remove the water and volatile compounds content until the volume of
vinasse reached 80 mL (Kusumaningtyas et al. 2017). After being cooled, vinasse
was then mixed with the other feedstocks as depicted in Table 10.3. Promi as much
as 2 g was added for the fermentation process. The fermentation was conducted as
set in Table 10.1 and in the anaerobic condition. The LOFs resulted from this process
were then characterized to determine the values of N, P, and K contents, organic C
content, and C/N ratio. The values were compared to the Indonesian Standard quality

Table 10.2 Mineral and
nutrient contents in
banana peel

Mineral and nutrient contents of banana peel Total

Water (%) 68.90

Carbohydrates (%) 18.50

Fat (%) 2.11

Protein (%) 0.32

Potassium (mg/100 g) 71.5

Phosphorus (mg/100 g) 11.7

Iron (mg/100 g) 1.6

Vitamins:

B (mg/100 g) 0.12

C (mg/100 g) 17.5

Source: Essien (2005)
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of organic fertilizer (Table 10.4) in terms of the tested parameters. Next, the LOFs
were applied to fertilize the tomato plant.

To examine the effectiveness of LOFs in fertilizing tomato plant, firstly, 22 pots
were filled with soil and prepared as plant growing media. Seeding of tomato plant
seedlings were carried out on the growing media. After 14 days, 15 mL each type of
LOF was added on two pots of tomato plants for the first time. It was called as Period
1 of Fertilization. The next fertilizing periods were conducted every 10 days until it
reached the sixth period of fertilization (60 days after the first period of fertilization).
On each period, the growth of tomato plants was observed in terms of the height of
tomato plant, diameter of stem, number of the leaves, first time of flowering, first
time of fruiting, as well as the number and diameter of fruit on the last period of
fertilization. An identical procedure was also performed for the tomato plant fertil-
ized by commercial NPK fertilizer and the plant without fertilization for comparison.

Table 10.3 Formulation of liquid organic fertilizer (LOF) from vinasse

Types of LOF

Composition of raw materials

Texture Length of fermentation, daysV, mL FC, g BP, g LTL, g

LOF 1 100 – – – Smooth –

LOF 2 100 – – – Smooth 7

LOF 3 100 12 6 12 Rough 7

LOF 4 100 12 6 12 Rough 14

LOF 5 100 12 6 12 Smooth 7

LOF 6 100 – 30 – Smooth 7

LOF 7 100 – – 30 Smooth 7

LOF 8 100 30 – – Smooth 7

LOF 9 Blending of LOF 6 + LOF 7 + LOF 8 –

Table 10.4 Indonesian Standard Quality of organic fertilizer (SNI 19-7030-2004)

No Parameter Unit Minimum Maximum

1 Water content % – 50

2 Temperature
�
C – Water temperature

3 Color – Black brownish

4 pH 6.8 7.49

5 Impurities % – 1.5

Macro element

6 Organic compounds % 27 58

7 Nitrogen % 0.40 –

8 Organic C (carbon) % 9.80 31

9 Phosphorus % 0.10 –

10 C/N—Ratio % 10 20

11 Kalium % 0.20 –
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10.4.2 Characterization of Liquid Organic Fertilizers (LOFs)

The physical properties of LOFs in terms of main N, P, and K contents, organic C
content, and C/N ratio are demonstrated in Table 10.5.

Production of liquid organic fertilizer (LOF) can be conducted with or without
fermentation. However, anaerobic fermentation in the presence of promi could
accelerate the formation of fertilizer and enhance the quality of LOF (Pangnakorn
et al. 2009). In the anaerobic vinasse fermentation, specific gasses, i.e., methane
(CH4) and carbon dioxide (CO2), were released (Sydney and Sydney 2013).

The first experiment was the preparation of LOF without fermentation process
(LOF 1). In this case, the solely vinasse was simply treated with 40% NaOH solution
to adjust the pH and evaporated to reduce the water content. It was found that LOF
1 has fulfilled the standard parameter of N, P, K, organic C, and C/N ratio. However,
when the anaerobic fermentation process was carried out on the vinasse (LOF 2) for
7 days, the NPK and organic C content were significantly improved as it is presented
in Table 10.5. Besides, the C/N ratio also increased. C/N ratio is among the
important parameters to control the quality of organic fertilizer (Chanyasak and
Kubota 1981).

To enhance the properties of organic fertilizer, especially the content of NPK and
organic C, vinasse was combined with filter cake (FC) and agricultural wastes, i.e.,
banana peel (BP) and lead tree leaves (LTL), with the specific formulation of LOF
3, LOF 4, and LOF 4 as depicted in Table 10.3. In LOF 3, agricultural wastes were
blended with the other feedstocks in a rough texture and fermented for 7 days. A
similar composition was also applied for LOF 4, but it was fermented for a longer
period (14 days). It was revealed that the simultaneous blend of vinasse with FC, BP,
and LTL could not provide a higher NPK and organic C content compared to the
pure vinasse and fermented vinasse fertilizer (LOF 1 and LOF 2). Moreover, the C/N
ratio value of LOF 3 and LOF 4 are too high (excess carbon). If the C/N ratio is too
high, the decomposition will slow down. It was also found that the longer fermen-
tation time than 7 days did not improve the quality of LOF. Hence, 7 days of
fermentation is considered efficient.

Table 10.5 Properties of various types of liquid organic fertilizer (LOF)

No Types of LOF

NPK content, %

Organic C content, % C/N ratioN P K

1 LOF 1 0.63 0.42 0.38 12.35 19.60

2 LOF 2 0.68 0.48 0.43 14.20 20.88

3 LOF 3 0.65 0.46 0.36 13.30 21.45

4 LOF 4 0.59 0.56 0.29 13.13 22.55

5 LOF 5 0.56 0.52 0.35 12.63 22.55

6 LOF 6 0.68 0.63 0.61 13.25 19.48

7 LOF 7 0.71 0.54 0.59 12.30 17.32

8 LOF 8 0.66 0.56 0.59 12.90 19.55

9 LOF 9 0.75 0.67 0.70 14.28 19.05
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To examine the effect of agricultural wastes texture, the identical formulation of
vinasse, FC, BP, and LTL was blended together, but the agricultural wastes were
added in a smooth texture (LOF 5). The smooth form of material was expected to
result in a more homogeneous mixture. The mixture was then fermented for 7 days.
However, the changing of the texture yet did not enhance the NPK content. The
value of C/N ratio was also higher than the Indonesian National Standard of organic
fertilizer product.

To explore the better quality of organic fertilizer, vinasse was mixed with the BP,
LTL, and FC separately as demonstrated in the LOF 6, LOF 7, and LOF 8 formula-
tion, respectively (Table 10.3). Each mixture was fermented for 7 days. It was shown
that a single blending of vinasse with BP, TLT, and FC resulted in the significant
improvement of NPK and organic C contents. The value of C/N ratio also met the
Indonesian standard of organic fertilizer. However, the best enhancement was given
by blending LOF 6, LOF 7, and LOF 8 with ratio of 1:1:1 to obtain LOF 9. LOF
9 demonstrated the highest NPK and organic C content. The C/N ratio of LOF
9 satisfied the standard as well. Among all the types of LOF, LOF 9 has shown the
best properties in terms of NPK content, C organic content, and C/N ratio. To
investigate the effectiveness of vinasse-based organic fertilizer, all types of LOFs
were applied for fertilizing tomato plant.

10.4.3 Application of Liquid Organic Fertilizers (LOFs)
on Tomato Plants

LOFs produced in this work were applied to tomato plants. The effects of fertiliza-
tion using LOFs on the tomato plants in terms of the height of tomato plant, diameter
of stem, number of the leaves, first time of flowering, first time of fruiting, as well as
the number and diameter of fruit on the last period of fertilization were observed.
Tomato plant is selected as the medium for applying LOFs because tomato plant has
a fast growth period. LOFs were primarily applied to the tomato plants which were
approximately 14 days old. At this age, tomato plants already had complete growth
organs. The fertilizing period was conducted every 10 days with the LOFs dose of
15 mL. There were totally six periods of fertilization during this observation,
meaning that the observation was conducted for 60 days. As control, observation
was also performed for the plants fertilized by commercial NPK fertilizer and plants
without fertilization.

Plant height is an important parameter in plant ecological aspect. It is generally
related to the life span, seed mass, and time to maturity, and is an essential factor of
plant’s capability to struggle for light (Moles et al. 2009). The height of tomato
plants fertilized by LOFs, commercial NPK fertilizer, and without fertilization for
each period of fertilization is shown in Fig. 10.2. It was disclosed that all types of
LOFs provide the higher stem height of tomato plants. However, LOF 9 has shown
the best enhancement on the stem height growth compared to that of the other types
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of LOFs and commercial NPK fertilizer. It is due to the fact that LOF 9 contained
higher organic C, N, P, and K elements than the other types of LOFs. Meanwhile,
commercial NPK fertilizer has high element of N, P, K, but it does not contain
organic C. Tomato plant needs nutrients such as N, P, K, and C for growing,
flowering, and fruiting.

Organic C has an important function to support the photosynthesis process
(Xu et al. 2015). C element can be absorbed by the plant from the air (CO2) or
from the soil (HCO3

�). Deficiency of C element could interrupt photosynthesis
process. On the other hand, the N element is important as the precursor of protein
in the plant. It is also essential in the chlorophyll formation. Thus, N has a vital role
to create the green color of the plant’s organs. Besides, N element has a function to
enhance the plant’s growth, such as the growth of stem, branch, and leaves, and
improve the quality of the plant (Dobermann and Fairhurst 2001). N element is
absorbed by the plant in the form of NH4

+ or NO3
�. The lack of nitrogen brings

about the symptoms of slow or dwarf growth, withering of plants, and the lack of
chlorophyll, which cause the old leaves to quickly turn into yellow and die.

The effect of tomato plant fertilizing using LOFs on the growth of stem diameter
is shown in Fig. 10.3. It was revealed that the addition of fertilizer increased the rate
of stem growth. However, the best rate of stem growth was provided by the
fertilization using NPK and LOF 9. It is not surprising since NPK and LOF
9 comprised the highest content of N, P, and K elements. In addition, LOF
9 contained the highest substance of C, compared to the other types of LOFs.
Beside N, plants also need a considerable amount of P and K elements to support

Fig. 10.2 The effect of LOFs fertilization on the height of tomato plants for each period of
fertilization
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their growth. The P element is principal to maintain the development of carbohydrate
and to ensure the efficient mechanism of the chloroplast activity. It also plays an
important role in the metabolism activity (Dobermann and Fairhurst 2001). P is
beneficial to stimulate root growth and plant growth as well as supports the forma-
tion of flowers and seeds. Moreover, it accelerates fruit ripening so that it speeds up
the harvest period. The lack of P causes the incomplete plant roots, dwarf, and thin
plants. It also makes the leaves to become dry, and the color becomes reddish and
brown.

Figure 10.4 demonstrates the influences of fertilization using LOFs on the
number of leaves of tomato plants. The highest number of leaves was provided by
the tomato plants fertilized by commercial NPK and LOF 9. NPK and LOF 9 had the
highest content of potassium (K) element. Potassium elements are usually available
for plants nutrient in the form of K+ cations. The existence of adequate K is crucial
since this element plays an important role in the carbohydrate formation, promoting
the production of chlorophylls and flower, increasing root absorption to nutrients
capability, and improving the plant’s resistance to diseases. Inadequate K supply to
the plant will bring about several indications, for instance, slow stem formation and
dwarf plants, yellowing shoots like burning at the edges, the death of roots and hair
roots, and the disruption on nutrient absorption (Xu et al. 2015).

Fertilization using LOF also affected the flowering and fruiting time of the tomato
plants. The addition of fertilizer enhances the flowering and fruiting speed. It can be
seen in Table 10.6 and Fig. 10.5 that the tomato plants which had been given LOFs

Fig. 10.3 The effect of LOFs fertilization on the stem diameter of tomato plants for each period of
fertilization
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needed flowering time less than 50 days. At this time, very small fruits were also
found on the tomato plants. Among the others, LOF 9 has shown the earliest time of
flowering and fruiting (46 days). It was due to the fact that LOF 9 had the highest
content of N, P, K, and C elements, which are important for supporting the plant
growth.

The flowering and fruiting speed of the tomato plants has a significant impact on
the fruits produced by the plant, especially in terms of the number and diameter of
the fruit as indicated in Table 10.7 and Fig. 10.6. It was demonstrated that LOF
9 produced the highest number of fruits (9) with a big diameter of fruit (4.1 cm). For
comparison, tomato plants fertilized by commercial NPK could produce a slightly

Fig. 10.4 The effect of LOFs fertilization on the number of leaves of tomato plants for each period
of fertilization

Table 10.6 Flowering and
fruiting time of tomato plant
fertilized by LOF

Types of fertilizer Flowering time (days)

Without fertilizer (control 1) 50

NPK (control 2) 46

LOF 1 48

LOF 2 47

LOF 3 48

LOF 4 47

LOF 5 48

LOF 6 47

LOF 7 47

LOF 8 48

LOF 9 46
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higher diameter of fruit (4.2 cm), but the number of fruits was only eight. As control,
tomato plant without any fertilization barely produced three fruits having a small
diameter (3.5 cm).

The experimental result has denoted that vinasse-based organic fertilizers could
promote the growth of the tomato plant in terms of height, stems, leaves, the speed of
flowering and fruiting time of tomato plants, as well as the quality and quantity of the
fruits. This innovation is a prospective alternative to give added value to vinasse
waste. It is also an appropriate option to provide an economical organic fertilizer for
farmers, which will support the government in increasing food security.

Fig. 10.5 The flower and small fruit on the tomato plant fertilized by LOF at the age less than
50 days

Table 10.7 Number and diameter of tomato fruit

Types of fertilizer Number of fruit Diameter (cm)

Without fertilizer (control 1) 3 3.5

NPK (control 2) 8 4.2

LOF 1 5 3.7

LOF 2 7 4

LOF 3 5 3.6

LOF 4 6 3.6

LOF 5 4 3.7

LOF 6 6 3.7

LOF 7 7 3.9

LOF 8 7 3.8

LOF 9 9 4.1
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10.5 Future Trend: Slow Release Solid Organic Fertilizer

10.5.1 Vinasse-Based Slow Release Organo-Mineral
Fertilizer

Upgrading vinasse to organic fertilizer has a high economic potency. Vinasse can be
converted to liquid or solid organic fertilizer. Solid organic fertilizer provides advan-
tages compared to liquid organic fertilizer to some extent, such as: it is easy in
handling and transportation, it is more stable, and has a longer life time than LOF.
Vinasse-based solid organic fertilizer, which was called organo-mineral fertilizer
(OMF), has been developed by (Kusumaningtyas et al. 2017). It has been proved
that OMF contained high N, P, K, and organic C and it was effective in improving the
tomato and watermelon plants. However, there are some issues related to the losses of
N during the application of OMF in soil for plant fertilization.

N element is important since one of the essential and limit nutrient required in
agriculture production is nitrogen (Qiu et al. 2018). N fertilizer is commonly used to
improve crop production. Therefore, it is produced in a huge amount to fulfill the
demand of the agricultural production worldwide. The conventional use of N
fertilizer becomes inefficient because more than 42–47% of N fertilizer will be
leached, denitrified, or volatile (Zhang et al. 2015; Bouwman et al. 2017; Zhu
et al. 2018; Siva et al. 1999). The loss of N causes some environmental pollution
such as the contamination of groundwater by nitrate leaching and even causes
greenhouse gas emission (Zhang 2017). It also can increase the cost in agriculture
production but give less effect to the yield. Therefore, it is important to prevent the N
loss through some pathways to increase the use efficiency of N fertilizer.

Some research has been conducted to develop the strategies in N fertilizer loss
prevention. The biochar addition with urea can reduce the loss of N through
ammonia volatilization (Zhu et al. 2018). Biochar combined with water treatment
has high capabilities to decrease N loss through leaching (Zhu et al. 2018). Slow
release of fertilizer from urea can also be used as a treatment to decrease the loss of
nitrogen through N leaching and ammonia emission with a high yield of the crop
(Yang et al. 2017; Tian et al. 2018).

Organo-mineral fertilizer (OMF) is becoming a popular strategy to enhance the
efficiency of the use of fertilizer and increase the crop yields and soil health compared
to the use of organic or inorganic fertilizer because of its slow release properties (Buss
et al. 2019). OMF provides nutrients simultaneously for the crops through controlling
the nutrient release to the soil, surface water, groundwater, and atmosphere. OMF
which was made of biochar-ash composite increased the crop yields and P uptake
compared with the conventional phosphate fertilizer (Buss et al. 2019). It was also
used to enhance the use efficiency of N, N uptake, plant photosynthesis, and N
availability during plant cycle compared to commercial organic fertilizer (Nguyen
et al. 2017). Brown coal mixed with urea as a slow release organo-mineral fertilizer
reduced the loss of gaseous N and increased crop yields and N uptake (Saha et al.
2019). Fly ash in a coal power plant also has potential as a slow-release fertilizer even
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in calcareous soils (Hermassi et al. 2017). Slow-release fertilizer is also applied in a
mixed of mono-ammonium phosphate, triple superphosphate, and phosphoric acid,
with and without the addition of magnesium oxide with poultry litter yielding the
slow release of P which makes potential in tropical soils (Lustosa Filho et al. 2017).

The technique of slow-release fertilizer for improving the quality of vinasse-
based OMF has not been previously developed. On the other hand, the use of vinasse
with the controlled-release characteristic becomes critical to enable the effective use
of the nutrient as soil fertilizer. In this study, novel slow-release organo-mineral
fertilizer from vinasse or vinasse-based slow release solid organo-mineral fertilizer
(SR-OMF) with the chitosan–bentonite matrix was developed to investigate the
nitrogen release performance in soil fertilized.

10.5.2 Methods

The first step of SR-OMF production is preparation of vinasse organo-mineral
fertilizer (OMF). Initially, vinasse of 100 g was dissolved in NaOH to adjust the
pH of vinasse to 7. The solution was evaporated in the temperature range of
80–90 �C for about 30 min to remove 80% water from the solution. Then, NPK
was added to the vinasse-rich solution and stirred at a constant speed until NPK
completely dissolved. The solution was heated using the oven in a constant temper-
ature of 110 �C and stopped when the weight remains constant.

The second step is chitosan–bentonite matrix composite production. Primarily,
chitosan solution (1% w/v) was prepared by dissolving 1 g of chitosan in 100 mL of
acetic acid (2% w/v) and stirred at a constant speed. Subsequently, chitosan–
bentonite matrix composite was prepared by dissolving bentonite in a chitosan
solution to obtain the various concentrations of 2%, 3%, and 5%. The solution
was stirred for about 5 h and then 2 drops of Tween 80 surfactant were added to
the solution followed by stirring for about 1 h.

The third step, the final step, is SR-OMF production. SR-OMF was prepared by
mixing OMF which consists of 9% NPK with the chitosan–bentonite matrix in a
ratio of 7:3. The solution is stirred using magnetic stirrer for about 2 h at a
temperature of 25 �C and then heated in a temperature of 50 �C until the mass of
the solution remains constant. The SR-OMF was then obtained. It was then charac-
terized to determine the content of N element and the N release rate.

The nitrogen release rate was conducted using incubation method in an open
space in the laboratory. Dry soil of 113.79 g was undertaken in low-density
polyethylene tubes of 6.0 cm diameter and 6.70 cm height. SR-OMF 1 g was
mixed with dry soil of 200 g and then added to each tube. During the incubation,
the leaching of nitrogen for each tube will be analyzed at days 0, 7, 14, 21, 28, and
60 through watered method. The nitrogen compositions dissolved in water was
analyzed through Kjeldahl method. The carbon compositions was analyzed using
a UV/Vis spectrophotometer.

218 R. D. Kusumaningtyas et al.



10.5.3 Nitrogen Release Pattern of SR-OMF

The nitrogen concentrations were initially analyzed for the vinasse SR-OMF which
consists of the mixture of the vinasse OMF and chitosan–bentonite matrix. The ratio
of chitosan–bentonite was 7:3. The effect of chitosan–bentonite matrix concentration
in a vinasse OMF is shown in Fig. 10.6. The concentration of chitosan–bentonite
matrix added in a vinasse OMF were 0, 1, 2, 3, and 5%w/v which produced nitrogen
of 0.5, 1.51, 1.66, 1.91, and 2.10%w/w, respectively. Figure 10.7 shows that the
increase of the chitosan–bentonite matrix concentration can increase the total nitro-
gen. The maximum total nitrogen achieved in a chitosan–bentonite matrix concen-
tration was 5%w/v.

The nitrogen release rate was analyzed through the incubation method to obtain the
amount of nitrogen released to the soil. The nitrogen release rate of SR-OMF was
compared to the OMF. The comparison between two fertilizers for the nitrogen release
and the interval comparison before and after incubation is listed in Table 10.1 which
shows that the nitrogen dissolved in water for the OMF are 0.011, 0.01, 0.008, and
0.006%w/w in 3, 6, 9, and 12 days, respectively. The total nitrogen dissolved is
0.035%w/w which is about 6.36% compared to the nitrogen concentration before the
incubation. In a SR-OMF, the nitrogen dissolved is 0.01, 0.08, 0.004, and 0.003%w/
w in 3, 6, 9, and 12 days, respectively. The total nitrogen dissolved in water is 0.025
which is smaller compared to the total dissolved nitrogen in OMF. This number is
about 1.19% from the nitrogen concentration before the incubation. Thus, the addition
of the chitosan–bentonite matrix to the fertilizer causes the decrease of the nitrogen
release rate to the water because the nitrogen release is controlled by the matrix.

The nitrogen release profile for both fertilizers is shown in Fig. 10.8 which
indicates the decrease of nitrogen as the day increases. The decrease in nitrogen
happened because of the less nitrogen dissolved in water. This condition occurred
due to the volatilization of nitrogen to the air. Nitrogen is a volatile compound which
is easy to be released from the soil to the air.

Fig. 10.6 The fruit
produced by the tomato
plant fertilized by LOF
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10.6 Conclusion

Vinasse waste of bioethanol industry is potential to be upgraded into liquid organic
fertilizer as well as solid organic fertilizer. The ability of vinasse-based organic
fertilizer to promote the growth of the tomato plant in terms of height, stems, leaves,
the speed of flowering and fruiting time of tomato plants, as well as the quality and
quantity of the fruits is evidence. Combination of vinasse with co-feedstocks (filter
cake, banana peels, and lead tree leaves) could improve the properties of vinasse-
based liquid organic fertilizer. The best way of LOF formulation vinasse, banana
peels, and lead tree leaves is through the blending and fermentation process of
vinasse with each feedstock separately, resulting in LOF 6, LOF 7, and LOF
8. Subsequently, the three types of LOFs (LOF 6, LOF 7, and LOF 8) were mixed
together to produce LOF 9, which becomes the best formulation of vinasse and filter
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cake–banana peels–lead tree leaves. On the other hand, the conversion of vinasse
into solid fertilizer (OMF) is also an attractive option. To improve the effectiveness
of OMF in fertilization, development of the slow-release organo-mineral fertilizer
from vinasse becomes of increasing interest in research. In this work, the soil
fertilized is used and analyzed to understand the nitrogen release behavior. The
increase of the chitosan–bentonite matrix concentration causes the increase of the
nitrogen with the maximum concentration of the matrix is 5%w/v yielding 2.1%w/
w of nitrogen. The nitrogen release rate of SR-OMF is slower compared to OMF. It
shows that SR-OMF from vinasse has a promising potential as a fertilizer which
allows nitrogen release control to optimize the nutrient use efficiency in agricultural
crops.
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