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On perturbation method of an oscillator single degree of 
freedom with mass that changes periodically and forced 
vibrations 
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Abstract. In this paper will be studied an Oscillator with Mass that changes periodically and 
forced vibration of a simple degree of freedom. This system related to the dynamics of cables 
such as stayed bridges, electricity, telephone, and others.  Under normal conditions for all type 
of cables one would not expect galloping type of vibrations due to wind-forces. There is an 
exception concerns vibrations excited by a wind-field containing raindrops. As has been 
observed on scale models in wind-tunnels the raindrops that hit the inclined stay cable generate 
one or more rivulets on the surface of the cable. It will be studied in this paper an oscillator 
single degree of freedom with mass that changes periodically and forced vibrations. Small 
masses which periodically hitting and leaving to the oscillator with different velocity give a 
forced to the vibration. Because the small mass stay on the oscillator surface for some time 
then the effective mass of the oscillator will periodically vary in time. In this paper it will be 
studied the possibilities of the mass and the velocity of the masses which are hitting and 
leaving to the oscillator by using a perturbation method. 
 

1. Introduction 
The Den Hortog’s criteria should be considerate for modeling of vibration from a cable bridge. This 
criterion takes into account a number of assumptions that can cause a galloping phenomenon that is 
vibrations with small frequencies and large amplitude. (see [1, 2, 3, 4]). System of differential 
equation becomes a mathematical model that describes vibration of the cables in vertical direction 
because of the galloping phenomenon. The characteristic of cables of cable-stayed bridges usually 
smooth polyurethane mantle and have a cross section which is nearly circular. In the rain season the 
water on the cable may induce aerodynamic instability resulting in vibrations with relatively large 
amplitudes. The instability mechanism for this type of vibrations is known and can be understood on 
the basis of quasi-steady modeling and analysis. The experimental validation of a new energy 
harvesting system based on the wake galloping phenomenon has been studied by Jo Jung and Woo 
Lee [5]. Babu and Prasad [1], Van Horssen, et.al, [2],  and Waluya [3, 4]  have studied oscillation of 
bridge cable because of wind induce vibration, while mechanism and characteristic of rain-induced 
vibration on high-voltage transmission line have been studied by Zhou et.al[6]. The dynamic of cable 
stayed bridges with a time periodic damping coefficient have been studied by Van Horssen, et.al [2] 
and Waluya [3, 4]. It has been observed in experiments regarding wires that live tend to produce one 
or more rivulet on the cable surface. The pressure distribution on the cable with respect to the direction 
of the wind flow (uniform) can be asymmetrical, producing a lift force perpendicular to the direction 
of the wind speed. If there is a water ridge, it may be blown off if the wind speed exceeds the critical 
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value. With different speeds forced vibration small mass that periodically hits and leaves the oscillator. 
Due to the small mass stays on the surface of the oscillator for some time, the effective mass of the 
oscillator will vary in time. 

Many type of the oscillators have been studied by many researchers. Afzali, et.al [7] have studied 
Analysis of the Periodic Damping Coefficient Equation Based on Floquet Theory, Bayat, et.al [8] have 
studied Non-Linear Oscillation by series solution technique. On the separation of fast and slow 
motions in mechanical systems has been studied by Blekhman and Sorokin [9]. Analytical solution of 
strongly nonlinear Duffing oscillators has been studied by El-Naggar and Ismail [10]. Mechanism and 
characteristic of rain-induced vibration on high-voltage transmission line have been studied by Zhou 
et.al [6]. Von Wantoch et. Al [11] have studied Adaptive phasor control of a Duffing oscillator with 
unknown parameters. A novel method for the forced vibrations of nonlinear oscillators have been 
studied by En Du, et.al [12]. Ismail [13] has studied Analytical Technique for Solving Nonlinear 
Oscillators of the Motion of a Rigid Rod Rocking Bock and Tapered Beams. Many researcher have 
studied a various perturbation techniques to analyze nonlinear oscillators, such as a modified 
homotopy analysis method [14],  Floquet Theory [7], Iteration Perturbation Method [15], Multiple-
Scales Lindstedt-Poincaré Method [16], a modified homotopy analysis method [14],  multiple time 
scales perturbation [2, 3, 4], and many others perturbation technique.  In this paper will be studied 
vibration of an oscillator due to small masses which periodically changing with slow and high 
frequencies.  In [3, 4] used the assumption that external forces were not taken into account in the 
system, while in this paper will be studied that the force energy give significant impact to the 
vibration. 

This paper is organized as follows. In section 2 of this paper it will be shown the mathematical 
model. The analysis of the solution will be studied in section 3 of this paper. Finally in section 4 of 
this paper some conclusions will be drawn and some remarks will be made.  

 
2. Mathematical Model 

It will be derived in this section a mathematical model that describe an oscillator with forced for 
vibration of the cable. The model oscillator is a model in one degree of freedom that arises to the 
second order differential system with external forced. The Model Equation for Rain-Wind Induced 
Vibrations of a Prototype Oscillator is closely related to the quasi-steady approach as given in [2, 4]. 
The oscillator system is designed so that the oscillation (single degree of freedom) is only in the 
vertical direction. On the surface of cylinder there is a ridge that can bring the small amplitude 
oscillations. A quasi-steady approach is use to model the rain-wind forces oscillations with respective 
assumptions are known as galloping. The mathematical model can be given by [see 2, 3, 4] 

 
𝑀�̈� = �̇�(𝑤 − �̇�) − 𝑘+𝑦 + 𝐹+,				 (1) 

 
where M = M(t) the mass of the cylinder is, w = w(t) is a velocity of the raindrops which hit and 
leave to the cylinder,  c4 > 0 the damping coefficient of the mechanical structure and k4 > 0 the 
linear spring constant, ẏ represents the velocity of the system,  F4 is forcing. By Transformation and 
scaling then we obtain 
 

:
:;
<1 − 𝐵(𝑡) :+

:;
@ + 𝑦 = − A

BCDE
:F
:;
+ G

EH
𝐹+,                 (2) 

 
where 𝐵(𝑡) = <I(;)

CD
@. In the next following section will be discussed the case of B(t) is a periodic 

function, for instance		𝐵(𝑡) = 𝐴 𝑠𝑖𝑛(𝜔𝑡)	, 𝑤 = 𝐴 𝑐𝑜𝑠(𝜔𝑡), and let  𝜔R = S E
CD

, 𝐹+ = 𝐴 𝑐𝑜𝑠(𝜔𝑡). In 

paper [3, 4] have been used the assumption that external forces were not taken into account in the 
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system while this paper will be studied for cases: (i) A = O(ε), ω = O(ε) and (ii) A = O(ϵ), ω =
O(1). 

 
3. Solution of The Model 

Case 𝐴 = 𝑂(𝜀),𝜔 = 𝑂(𝜀). 

 

In this case let A = ARε and  ω = αε, AR = 1, k4 = 1		. If we take initial value problem y(0) =
yR, y	̇ (0) = yR	̇  then from the equation (2) will be obtained 

𝜖^ 𝑠𝑖𝑛(𝜖𝛼𝑡) 𝛼 `
𝑑
𝑑𝑡
b𝑦(𝑡)cd + (1 − 𝜖 𝑐𝑜𝑠(𝜖𝛼𝑡)) `

𝑑^

𝑑𝑡^
b𝑦(𝑡)cd + 𝑦(𝑡)

+
𝜖e 𝑐𝑜𝑠(𝜖𝛼𝑡) 𝑠𝑖𝑛(𝜖𝛼𝑡)𝛼

B𝑀R𝑘
− 𝜖 𝑐𝑜𝑠(𝜖𝛼𝑡) = 0					

																								(3) 

Letting  𝑡 = 𝑡, 𝜀𝑡 = 𝑡G,	 

𝑦(𝑡) = 𝑦R(𝑡, 𝑡G) + 𝜀	𝑦G(𝑡, 𝑡G) + 𝜀^𝑦^(𝑡, 𝑡G) +⋯. 

Substitute the series into equation (9) and collect the terms in power series in 𝜀 then it will be 
obtain the respectively problems in power series in 𝜀 for order 𝑂(1)	 problem.  Substitute the series 
into equation (3) and collect the terms in power series in 𝜀 then it will be obtain the respectively 
problems in power series in 𝜀 for order 𝑂(1)	 problem is 

⎩
⎨

⎧ 𝜕^𝑦R
𝜕𝑡^ + 𝑦R = 0,

𝑦R(0,0) = 𝑦R,
𝜕𝑦R
𝜕𝑡G

(0,0) = 𝑦R,̇
									(4) 

Order 𝑂(𝜀) –problem the becomes  

⎩
⎪
⎨

⎪
⎧𝜕

^𝑦G
𝜕𝑡^ + 𝑦G + 2

𝜕^𝑦R
𝜕𝑡𝜕𝑡G

− cos(𝜖𝛼𝑡) − 𝐴R cos(𝜀𝛼𝑡)
𝜕^𝑦R
𝜕𝑡^ = 0,

𝑦G(0,0) = 0,
𝜕𝑦G
𝜕𝑡

(0,0) +
𝜕𝑦R
𝜕𝑡G

(0,0) = 0,
		(5) 

Solution for order 𝑂(1)	 problem equation (4) can be given by  
𝑦R(𝑡, 𝑡G) = 𝑎R(𝑡G) sin 𝑡 + 𝑏R(𝑡G) cos 𝑡 ,																(6) 

with aR(0) = yR,̇   bR(0) = yR. Substituting equation (6) into equation O(ϵ)	problem (5) and removing 
secular term, will be obtained the system differential in aR and bR. After solving the system then for 
the initial values aR(0) = 1, bR(0) = 0 then will be obtained 

aR(tG) = cos <yz{(|}~)
^|

@ , bR(tG) = sin <yz{(|}~)
^|

@   (7) 

Because all the terms are linear then solution for order O(ε^) will be bounded, so, the 
approximation solution for equation problem (8) can be given up to O(ε), that is  

y(t, tG) = aR(tG) sin t + bR(tG) cos t, 

with aR(tG) dan bR(tG) are given in equation (7). 
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Plot of the solution approximation and numerical result by using Runge-Kutta method for an initial 
conditions and set of parameters can be given in Figure (1). 
 

  

 

Figure 1. Plot solution and phase portrait approximation versus numeric for𝐴R = 1, 𝛼 = 1, 𝜀 = 0.01, 
𝑦(0) = 1, �̇�(0) = 0 Straight line for solution approximation and dot points for numeric. 

From Figure (1) it can be seen that by using the multiple time scale perturbation method can be 
obtained the approximation solution of the model is almost periodic. 

Case 	𝐴 = 𝑂(𝜀),𝜔 = 𝑂(1). 

In this case let	𝐴 = 𝐴R𝜀, dan 𝜔 = 𝛼, 𝑦(0) = 𝑦R, 𝑦	̇ (0) = 𝑦Ṙ. Let 𝐴R = 1, 𝑘+ = 1,𝑀R = 1, 𝑘 = 1, 𝛼 =
1	. By using two time multiple time scale, let  t = t, εt = tG,	 

𝑦(𝑡) = 𝑦R(𝑡, 𝑡G) + 𝜀	𝑦G(𝑡, 𝑡G) + 𝜀^𝑦^(𝑡, 𝑡G) +⋯. 

Substitute the series into equation (9) and collect the terms in power series in ε then it will be obtain 
the respectively problems in power series in ε for order O(1)	 problem is 

⎩
⎨

⎧ ∂^yR
∂t^ + yR = 0,

yR(0,0) = yR,
∂yR
∂tG

(0,0) = yR,̇
									(8) 

Order O(ε) –problem the becomes  

⎩
⎪
⎨

⎪
⎧∂

^yG
∂t^ + yG + 2

∂^yR
∂t ∂tG

− cos(t) − cos(t)
∂^yR
∂t^ + sin(t)

∂yR
∂t + sin

(t) cos	(t) = 0,

yG(0,0) = 0,
∂yG
∂t

(0,0) +
∂yR
∂tG

(0,0) = 0,
		(9) 

Solution for equation (8) problem is  
𝑦R(𝑡, 𝑡G) = 𝑎R(𝑡G) 𝑠𝑖𝑛 𝑡 + 𝑏R(𝑡G) 𝑐𝑜𝑠 𝑡 ,																(10) 

with 𝑎R(0) = 𝑦R,̇   𝑏R(0) = 𝑦R. Substitute yR equation (10) into equation (9)  then will be obtained 
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𝜕^𝑦G
𝜕𝑡^ + 𝑦G + �2

𝑑𝑎R
𝑑𝑡G

− 1� 𝑐𝑜𝑠 𝑡

+ �−2
𝑑𝑏R
𝑑𝑡G

� 𝑠𝑖𝑛 𝑡 + 𝑎R(𝑡G) 𝑠𝑖𝑛(2𝑡) + 𝑏R(𝑡G) 𝑐𝑜𝑠(2𝑡) +
1
2 𝑠𝑖𝑛

(2𝑡) = 0	(11) 

Removing secular term in equation (11), will be obtained 

⎩
⎨

⎧2
𝑑𝑎R
𝑑𝑡G

− 1 = 0,

−2
𝑑𝑏R
𝑑𝑡G

= 0.
												(12) 

Solving problem in equation (12) and will be obtained. For the initial values aR(0) = 1, bR(0) = 0 
then we obtain 

𝑎R(𝑡G) =
G
^
𝑡G + 1, 𝑏R(𝑡G) = 0   (13) 

Because all the terms are linear then solution for order O(ε^) will be bounded, so, the approximation 
solution for equation problem (2) can be given up to O(ε), that is  

𝑦(𝑡, 𝑡G) =
1
2 𝜖𝑡 𝑠𝑖𝑛

(𝑡) + 𝑠𝑖𝑛(𝑡) 

Plot of the solution approximation and numerical result by using Runge-Kutta method for an initial 
condition and set of parameters can be given in Figure (2). 
 

  

 

 

Figure 2. Plot solution and phase portrait approximation versus numeric for  𝐴R = 1, 𝛼 = 1, 𝜀 = 0.01, 
𝑦(0) = 1, �̇�(0) = 0  

From Figure (2) it can be seen that the approximation of the solution by using perturbation technique 
also similar with the solution by numerical calculation, however the solution is not periodic solution. 
For this case there are no periodic solutions. 
 
4. Conclusion 
In the previous section has been derived an oscillator with mass that changes periodically and forced 
vibration of a simple degree of freedom. This system related to the dynamics of cables from stayed 
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bridges. The mathematical model is a differential equation that describes a vibration of cables in 
vertical direction. Those vibrations are assumed in the vertical direction due to the galloping 
phenomena, that is vibrations with small frequencies and large amplitude. Based on the analysis can 
be concluded that for case A = O(ε), ω = O(ϵ) using the multiple time scale perturbation method can 
be obtained the approximation solution of the model is almost periodic. This result is comparable with 
the result by Runge-Kutte technique.  For the case A = O(ε), ω = O(1) the approximation of the 
solution by using perturbation technique also similar with the solution by numerical calculation, 
however the solution is not periodic solution. For this case there are no periodic solutions. 
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