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Abstract 

In this paper, a modified S-I-P of two species predator-prey 
interactions model is discussed. The S-I-P system consists of three 
differential equations that represent sub-populations growth of 
susceptible-preys (S), infected-preys (I) and predators (P). In prey 
population there is deadly disease transmission rated with Holling type 
II response characteristic of predator to catched prey. The analysis 
result showed that the system has six equilibrium points. There are 
always two points which are unstable in any condition. Routh-Hurwitz 
criteria are used to analyze the stability of the equilibrium points. 
Numerical simulations are carried out to demonstrate the results 
obtained. 



K. Ni’mah, S. B. Waluya and M. Kharis 728 

1. Introduction 

Ecology is the field of science that studies ecosystem. Food chain is an 
important item in ecology, which contains at least two kinds of species called 
predators and preys. Jorgensen [9] has studied food chain in predator-prey 
mathematical model. In the epidemic population when a disease occurs at a 
frequency higher than that is expected, it is said to be epidemic (see [6]). A 
localized epidemic may be referred to as an outbreak. Hence, in various types 
of mathematical models we happened to know the existence of epidemic in 
the population studied by Guerrant et al. [6]. Classic epidemic models split 
the population into the two classes: susceptible and infected. Susceptible 
class consists of population which can be easily infected and the infected 
class consists of those capable to move infection. Joydif and Sharma [10] 
have studied the SI model with population ,ISN +=  where S and I 
represent population of susceptible and infected classes, respectively. 

The interaction system in the ecosystem that describes a physical 
phenomenon is a predator-prey interaction system, in which preys are eaten 
and predators are fed has been studied by Du et al. [5]. Predator-prey system 
is one of the kind of system that is a combination of the two populations, 
namely predators and preys. Interaction between these two populations is 
very important because the survival of species depends on the environment 
around them. The balance is achieved if the population of predators and 
preys interact according to their size and percentage (see [7]). 

Predator-prey model widely used is the model that consists of two 
different species in which one of the two provides food to another. Predator-
prey model was first introduced by Lotka in 1925 and Volterra in 1926, so 
that this model is called Lotka-Volterra model (see [17]). Holling in 1950 
introduced the functional response for the predator-prey model. The 
functional response in ecology, i.e., the amount of food eaten by the predator 
population is a function of the density of food has been studied by Hunsicker 
et al. [8]. Lotka-Volterra model does not take into account the time needed 
by a predator to digest the food. One modification is made with the 
introduction of a response function in predator-prey model interaction. The 
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amount of food eaten by predators is a function of density of food. This 
model has been studied by Brauer and Chaves [1]. In this paper, we use used 
the response function type II. In the type II response function, a predator has 
the characteristics to search a prey actively. Wolf is an example.  

Das et al. [3] modified epidemic predator-prey model consisting of three 
species that are prey species, intermediate predators, and top predator in 
cases of epidemic diseases with the prey population used to response Holling 
type II. In this case, the existence of the rate of infections is responsible for 
the stability around the equilibrium points. Kooi et al. [11] have studied 
predator-prey model of two species appearing only in cases of predators in 
the population. The model based upon the function of a predatory behavior is 
hunting mechanism type II Holling response. In the analysis of the model, it 
was also obtained that the system was more stable with the increase of the 
rate of infection disease. Chattopadhyay and Arino [2] have also studied an 
epidemic predator-prey model consisting of two species in which predators 
use hunting prey following the type II Holling response function. The 
modified epidemic predator-prey mathematical model where there is the 
spread of disease in the population prey follows the law of action of the 
simple and hunting mechanism way predators type II Holling response 
function. Mathematical model consists of three equations, namely of the         
rate of population growth susceptible-prey, the rate of population growth 
infected-prey, and the rate of population growth predatory. Analysis of the 
model was conducted by determining equilibrium points and their stability. 
Numerical simulations were performed to support the results of the analysis 
(see [13, 14]). 

This paper is organized as follows. In Section 2, the construction of 
mathematical model is discussed, and equilibrium points are found in Section 
3. In Section 4, the stability analysis is the focal point. Numerical simulations 
of a modified predator-prey model within epidemic in prey population      
using type II Holling response function are carried out in Section 5 to 
demonstrate the result obtained by using Maple software. Finally, in Section 
6, conclusions are drawn. 
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2. Mathematical Model 

The mathematical model was restricted by some assumptions. The 
assumptions used in the S-I-P two species interaction predator-prey model 
with the type II Holling functional response are listed below:  

1. The growth-rate of prey population has a pattern of growth logistics 
because of ecosystems carrying-capacity. 

2. Disease only infects prey population and the infected prey cannot be 
cured or made immune. 

3. Prey food supplies are limited, so there are competitions among prey 
population to obtain food. 

4. Predator food supplies depend on prey population. 

5. Prey population declines and population of predators increase at the 
time of the occurrence of preys-predators interaction. 

6. In the interaction, predator only consumes infected-prey. 

7. In the ecosystems, there is only a kind of prey for consumption by 
predator. 

8. Preys respond presence of a predator, so the predator needs time to 
catch a prey (based on type II Holling functional response). 

A modified S-I-P prey-predator model with Holling type II functional 
response can be described by 
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where ,K
Sx =  ,K

Iy =  ,K
PZ =  ,0>= rtT  ,0>= r

aA  ,0>= K
bB  

,0>= r
cC  ,0>= r

dD  and .0>β= r
Km  
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In the system (2.1), the parameter KxS =  describes the susceptible-prey 
sub-population density with the carrying-capacity K, the parameter KyI =  

describes the infected-prey population density with carrying-capacity K, the 
parameter KzP =  shows the predator population density with carrying-
capacity K which is interacting with the prey population, rtT =  shows the 

time, r
aA =  describes the decrease in number of the prey population caused 

by the interaction of the prey and the predator populations, K
bB =  describes 

the saturation rate of the predator, K
mr=β  describes transmission rate of the 

infectious disease in the prey population, each Crc =  and Drd =  are 
natural death rates of the prey and the predator, the effort applied to harvest 
the prey population with the influence of the surroundings and μ describes 
that the growth rate of the predator population. System (2.1) can be rewritten 
as follows: 
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with ( ) ( ) 00,00 >> yx  and ( ) .00 >z  

3. Equilibrium 

Theorem 3.1. (1) With no condition, the system (2.2) has two 
equilibrium points, namely ( )0,0,00E  and ( ).0,0,11E  

(2) If ,1<C  then the system (2.2) has three equilibrium points, namely 
( ) ( ),0,0,1,0,0,0 10 EE  and ( ).0,,0 12 yE  

(3) If ,1<C  and ( ) ,111 mCCm <+<<−  then the system (2.2) has 

four equilibrium points, namely ( ),0,0,00E  ( ),0,0,11E  ( ),0,,0 12 yE  and 

( ).0,, 223 yxE  
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(4) If ,1<C  DA >μ  and ( ) ( ) ,1 BDDAC >−μ−  then the system (2.2) 

has four equilibrium points, namely ( ),0,0,00E  ( ),0,0,11E  ( ),0,,0 12 yE  

and ( ).,,0 14 zyE  

(5) If ,1<C  DA >μ  and ,DAmBD −μ<  then the system (2.2) has 

four equilibrium points, namely ( ),0,0,00E  ( ),0,0,11E  ( ),0,,0 12 yE  and 

( ).,, 25 zyxE  

Proof. To obtain the equilibrium points, we consider 

,0=dT
dx    0=dT

dy    and   .0=dT
dz  

From (2.2), we have 
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From the third equation of (3.1), it follows that DzyB
Ayz −⎟

⎠
⎞⎜

⎝
⎛

+
μ  

.00 DA
BDyz
−μ

=∨=⇔=  If ,0=z  from the second equation of the 

system (3.1), we obtain 

( ) .00021 =∨=⇔=−
+

−+−− yyCyyB
Ayzmxyyxy  

Substituting 0=y  and 0=z  into the first equation of the system (3.1), it 

follows that 

( ) .1002 =∨=⇔=−− xxmxyxx  

Hence, for 0=y  and ,0=z  the equilibrium points are ( )0,0,00E  and 

( ).0,0,11E  If ,0≠y  substitute ( ) Cxmy −+−= 12  and 0=z  into the 

first equation of the system (3.1) which provides 
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For ,0=x  we obtain .11 Cy −=  It is clear that the initial condition 

C<0  1<  implies .01 >y  Hence, if ,1<C  then the equilibrium point is 

( ).0,,0 12 yE   

For ,0≠x  substitute ( )
( )2

2
1

11
−

−−=
m

Cmx  into ( ) =⇔−+−= 212 yCxmy  
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,0>  ( ) .11 <−Cm  Hence, if ( ) ,111 mCCm <+<<−  then the equilibrium 

points is ( ).0,, 223 yxE  
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Because 0>y  and ,0>z  0>
−μ DA

BD  and ( ) ( ) .01 >>−μ− BDDAC  It 

is clear that .1<C  Hence, if DA >μ  and ( ) ( ) ,1 BDDAC >−μ−  then 

( )14 ,,0 zyE  is an equilibrium point of the system (3.1). If ,0≠x  then 

substitute 
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Thus, ,0>BD  0>m  and .0>μB  Hence, if 

DAmBD −μ<<0  

and 

( ) ( ) ( ) ,11 2 BDmDACm −>−μ−−  

then ( )25 ,, zyxE  is an equilibrium point of the system (3.1).  

4. Stability Analysis 

Theorem 4.1. If 0E  and 1E  are the equilibrium points of the system 

(2.2), then 
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(1) 0E  is always unstable for any conditions, 

(2) 1E  is an unstable saddle point if 1+> Cm  and a stable node point 

if .1+< Cm  

Proof. Jacobian of the equilibrium point ( )0,0,00E  is 
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The eigenvalues of the characteristic equation ( )0EJ  are ,11 =λ  C−=λ 12  

and .3 D−=λ  Hence, the equilibrium point ( )0,0,00E  is an unstable 

saddle point. Jacobian of the equilibrium point ( )0,0,11E  is 
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The eigenvalues of the characteristic equation ( )1EJ  are ,11 −=λ  =λ2  

1−− Cm  and .3 D−=λ  Hence, the equilibrium point ( )0,0,11E  is an 

unstable saddle point if 1+> Cm  and a stable node point if .1+< Cm  ~ 

Theorem 4.2. If 2E  and 3E  are the equilibrium points of the system 

(2.2), ,1<C  ,DA >μ  ( ) ,111 mCCm <+<<−  ( ) ( ) ,1 BDDAC >−μ−  

then 

(1) 2E  is a stable node point, 

(2) 3E  is a stable node point if m<+ 21  and ( )( ) >−−−μ CmDA 1  

( ) .1 2−mBD  

Proof. Jacobian of the equilibrium point ( )0,,0 12 yE  with Cy −= 11  is 
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The characteristic equation of ( )3EJ  is 

( ) ( ) .065165324141
23 =+−−λ++λ−λ KKKKKKKKKKK  

If ( )0,, 223 yxE  is an equilibrium point, then ( ) .041 >+ KK  If 

m<+ 21  and ( ) ( ) ( ) ,11 2−>−−−μ mBDCmDA  then we obtain  

.0,0 651653241 >>−− KKKKKKKKK  

Thus, 

( ) 0,0,0 65165324141 >>−−>+ KKKKKKKKKKK  

and 

( ) ( ) .052165324141 >−−−+ KKKKKKKKKKK  

Based on Routh-Hurwitz criterion, if m<+ 21  and ( ) ( )CmDA −−−μ 1  

( ) ,1 2−> mBD  then all real parts of the eigenvalues are negative. So, the 

equilibrium point ( )0,, 223 yxE  is a stable point.  

Theorem 4.3. If 4E  is the equilibrium point of the system (2.2), ,1<C  

DA >μ  and ( ) ( ) ,1 BDDAC >−μ−  then 4E  is a stable point if ,1<D  

1>+ CB  and .mBDDA <−μ  

Proof. Jacobian of the equilibrium point ( )14 ,,0 zyE  with 
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with 

( )
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( )
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μ
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The characteristic equation of ( )4EJ  is 

( ) ( ) .0541543113
23 =+−λ++λ−λ LLLLLLLLL  

If 1<D  and ,mBDDA <−μ  then 013 >+ LL  and .0541 >LLL  If 

,1<D  1>+ CB  and ,mBDDA <−μ  then 05431 >− LLLL  and 

( )13 LL +  ( ) .05415431 >−−⋅ LLLLLLL  Thus, 

0,0,0 541543113 >>−>+ LLLLLLLLL  

and 

( ) ( ) .0541543113 >−−+ LLLLLLLLL  

Based on Routh-Hurwitz criterion, if ,1<D  1>+ CB  and DA −μ  

,mBD<  then all real parts of the eigenvalues are negative. So, the 

equilibrium point ( )14 ,,0 zyE  is a stable point.  

Theorem 4.4. If 5E  is the equilibrium point of the system (2.2), 

,DA >μ  DAmBD −μ<  and ( ) ( ) ( ) ,11 2−>−μ−− mBDDACm  then 5E  

is a stable point if ( ) ( ) ,1 ABDACm μ<−μ−−  2>m  and .1<μB  

Proof. Jacobian of the equilibrium point ( )25 ,, zyxE  with 

DA
BDyDA

mBDx
−μ

=
−μ

−= ,1  
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and 
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The characteristic equation of ( )5EJ  is 

( ) ( ) .065165324141
23 =+−−λ++λ−λ MMMMMMMMMMM  

If ( )25 ,, zyxE  is an equilibrium point, then .0651 >MMM  Also, 

( ) 041 >+ MM  if ( ) ( ) .1 ABDACm μ<−μ−−  Thus, 

( ) ,65241653241 MMmMMMMMMMMM −−=−−  

if 2>m  and ( ) ( ) ABDACm μ<−μ−− 1  and then 

( ) .065241 >−− MMmMMM  
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Furthermore, 

( ) ( ) 065165324141 >−−−+ MMMMMMMMMMM  

if ( ) ( ) ABDACmm μ<−μ−−> 1,2  and .1<μB   

Therefore, 

0,0,0 65165324141 >>−−>+ MMMMMMMMMMM  

and 
( ) ( ) .065165324141 >−−−+ MMMMMMMMMMM  

Based on Routh-Hurwitz criterion, if ( ) ( ) <−μ−−> DACmm 1,2  

ABμ  and ,1<μB  then all real parts of the eigenvalues are negative. So, the 

equilibrium point ( )25 ,, zyxE  is a stable point. ~ 

5. Numerical Simulations 

Dynamics of the predator-prey population can be shown as the curve       
of the solution field that describes a population of prey and predator during 
certain period. The numerical simulations based on the parameters are 
provided in the following Table 1. 

Table 1. Equilibrium points, bounded parameters of the existence of the 
equilibrium point, parameter values and stability of the equilibrium point 

Equilibrium points M A B C D μ  Stability 

0E  1,5 1 0,4 0,7 0,2 0,5 Unstable 

1E  case 1 2,21 0,85 0,6 0,7 0,2 0,5 Unstable 

1E  case 2 1,5 1 0,4 0,7 0,2 0,5 Stable 

2E  2,21 0,85 0,6 0,7 0,2 0,5 Unstable 

3E  2,21 0,85 0,6 0,41 0,2 0,5 Stable 

4E  3,1 0,85 0,6 0,41 0,2 0,5 Stable 

5E  2,1 0,8 0,4 0,3 0,2 0,5 Stable 
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Figure 1. The solution field of predator-prey system and the phase portrait of 
predator-prey system at the equilibrium point ,, 10 EE  and the equilibrium 

2E  in Case 2, .1+< Cm  

Figure 1 is phase portrait for system (3.1) which shows that the 
equilibrium point 0E  is an unstable node. In this case, we can say that both 
prey and predator population densities are unstable. In Case 1, the 
equilibrium 1E  is an unstable node. Furthermore, Figure 1 shows the phase 

portrait for the equilibrium point 2E  in Case 1 which indicates that the 

equilibrium point 2E  is a saddle point. 

Figure 1(a) shows that in the beginning the infected-prey population and 
the predator population declined and then become extinct. While growth rate 
of the susceptible-prey population rose significantly and simultaneously with 
the decline of the infected-prey population until the extinct. This condition 
occurred because the pace of the spread of diseases is not large enough       
and predators do not get enough preys which caused the extinction of the 
predator population. 

Figure 1(b) shows the point of equilibrium 0E  is a saddle point, because 

it is clearly visible that all the trajectories in the direction space around are 
avoiding the equilibrium point ,0E  thus the equilibrium 0E  is unstable. This 
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condition provides the stability of each population number. If ,1+> Cm  

then the equilibrium point 1E  is a node point, and hence 1E  is unstable. 

 

Figure 2. Phase portrait for the equilibrium points ,, 21 EE  and 3E  for 

,21,1 +>+> mCm  and ( ) ( ) ( ) .11 2−>−−−μ mBDCmDA  

Figure 2(a) shows that in the early stage infected and susceptible prey 
grow significantly. When the total number of infected-prey comes close              
to 35%, then the population growth rate becomes constant. The number            
of experienced susceptible-prey decline to 25% and becomes stable at the 
position after representing a significant increase of 50% in the period up to 
200 time unit. In the same period, the predator population declined and 
afterwards approaches to extinction. 

Figure 2(b) indicates the equilibrium point 1E  with ,1+> Cm  

21 +>m , and ( )0,3.0,02E  is the saddle point. All the trajectories in the 

direction space avoid the point 1E  and 2E , and then 1E  and 2E  become 

stable. Furthermore, the equilibrium point ( )0,348337.0,547162.03E  is a 

spiral stable because all the trajectories in the direction space approach the 
equilibrium point ( ).0,348337.0,547162.03E  So the equilibrium point 3E  

is stable. 
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Figure 3(a) shows that in the beginning the infected-prey sub-population 
significantly rose and the sub-population growth becomes stable into a 
constant rate after reaching more than 50% at the period 100 up to 200 time 
units. While the susceptible-prey population approaches to extinction. It is 
caused due to the disease spread rate in the prey population, so the predator 
populations decline from the very beginning, and then becomes constant in 
the value between 5% up to 10%. 

 

Figure 3. Phase portrait equilibrium 4E  for 1,1 >+< CBD  and <−μ DA  

.mBD  

This condition caused due to survival of the prey population only around 
50% of the total. 

Figure 3(b) indicates that the equilibrium point ( ),0755,0;5333,0;04E  

is the node point. Clearly, all the trajectories in the direction space are 
towards the equilibrium point ( )0755,0;5333,0;04E , and hence the point 

4E  is stable if 1,1 >+< CBD  and .mBDDA <−μ  

Figure 4(a) shows that in the beginning the infected-prey and the 
susceptible prey population rose significantly when the total number of 
infected-prey populations declined in the range of 60% when 500<t  of 
time units. Then the rate of population growth being constant is not subjected 
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to increase or decrease in the value of 40%. These conditions continued until 
drive t time unit. Susceptible-prey population rose in the range of 20%, and 
then became stable at this value because of the growth rate constant 
throughout. In the same period the predator population decreased, and then 
rose and became stable at about 15%. 

Figure 4(b) indicates that the equilibrium point ( )316,0;4.0;16.05E  is 

a node point. We conclude that the equilibrium point ( )316,0;4.0;16.05E  

is stable if ( ) ( ) 2,1 >μ<−μ−− mABDACm  and .1<μB  

 

Figure 4. Phase portrait equilibrium point 5E  for ( ) ( )DACm −μ−− 1  

,ABμ<  2>m  and .1<μB  

6. Conclusions 

In Section 2, a modified S-I-P predator-prey model with type II Holling 
functional response has been constructed. The six equilibrium points have 
been obtained from the mathematical model described by (2.2) in Section 3. 
In Section 4, stability analysis of the equilibrium points is carried out. Routh-
Hurwitz criteria are used to discuss the stability of the critical points. The 
numerical simulations for some parameters have been carried out in Section 
5 to show the stability of the equilibrium points. 
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