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Abstract

In this paper, a modified S-I-P of two species predator-prey
interactions model is discussed. The S-I-P system consists of three
differential equations that represent sub-populations growth of
susceptible-preys (S), infected-preys (I) and predators (P). In prey
population there is deadly disease transmission rated with Holling type
Il response characteristic of predator to catched prey. The analysis
result showed that the system has six equilibrium points. There are
always two points which are unstable in any condition. Routh-Hurwitz
criteria are used to analyze the stability of the equilibrium points.
Numerical simulations are carried out to demonstrate the results
obtained.
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1. Introduction

Ecology is the field of science that studies ecosystem. Food chain is an
important item in ecology, which contains at least two kinds of species called
predators and preys. Jorgensen [9] has studied food chain in predator-prey
mathematical model. In the epidemic population when a disease occurs at a
frequency higher than that is expected, it is said to be epidemic (see [6]). A
localized epidemic may be referred to as an outbreak. Hence, in various types
of mathematical models we happened to know the existence of epidemic in
the population studied by Guerrant et al. [6]. Classic epidemic models split
the population into the two classes: susceptible and infected. Susceptible
class consists of population which can be easily infected and the infected
class consists of those capable to move infection. Joydif and Sharma [10]
have studied the SI model with population N =S + 1, where S and |

represent population of susceptible and infected classes, respectively.

The interaction system in the ecosystem that describes a physical
phenomenon is a predator-prey interaction system, in which preys are eaten
and predators are fed has been studied by Du et al. [5]. Predator-prey system
is one of the kind of system that is a combination of the two populations,
namely predators and preys. Interaction between these two populations is
very important because the survival of species depends on the environment
around them. The balance is achieved if the population of predators and
preys interact according to their size and percentage (see [7]).

Predator-prey model widely used is the model that consists of two
different species in which one of the two provides food to another. Predator-
prey model was first introduced by Lotka in 1925 and Volterra in 1926, so
that this model is called Lotka-Volterra model (see [17]). Holling in 1950
introduced the functional response for the predator-prey model. The
functional response in ecology, i.e., the amount of food eaten by the predator
population is a function of the density of food has been studied by Hunsicker
et al. [8]. Lotka-Volterra model does not take into account the time needed
by a predator to digest the food. One modification is made with the
introduction of a response function in predator-prey model interaction. The



A Dynamic S-1-P Model with Disease in the Prey Population ... 729

amount of food eaten by predators is a function of density of food. This
model has been studied by Brauer and Chaves [1]. In this paper, we use used
the response function type Il. In the type Il response function, a predator has
the characteristics to search a prey actively. Wolf is an example.

Das et al. [3] modified epidemic predator-prey model consisting of three
species that are prey species, intermediate predators, and top predator in
cases of epidemic diseases with the prey population used to response Holling
type I1. In this case, the existence of the rate of infections is responsible for
the stability around the equilibrium points. Kooi et al. [11] have studied
predator-prey model of two species appearing only in cases of predators in
the population. The model based upon the function of a predatory behavior is
hunting mechanism type 1l Holling response. In the analysis of the model, it
was also obtained that the system was more stable with the increase of the
rate of infection disease. Chattopadhyay and Arino [2] have also studied an
epidemic predator-prey model consisting of two species in which predators
use hunting prey following the type Il Holling response function. The
modified epidemic predator-prey mathematical model where there is the
spread of disease in the population prey follows the law of action of the
simple and hunting mechanism way predators type Il Holling response
function. Mathematical model consists of three equations, namely of the
rate of population growth susceptible-prey, the rate of population growth
infected-prey, and the rate of population growth predatory. Analysis of the
model was conducted by determining equilibrium points and their stability.
Numerical simulations were performed to support the results of the analysis
(see [13, 14]).

This paper is organized as follows. In Section 2, the construction of
mathematical model is discussed, and equilibrium points are found in Section
3. In Section 4, the stability analysis is the focal point. Numerical simulations
of a modified predator-prey model within epidemic in prey population
using type Il Holling response function are carried out in Section 5 to
demonstrate the result obtained by using Maple software. Finally, in Section
6, conclusions are drawn.
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2. Mathematical Model
The mathematical model was restricted by some assumptions. The

assumptions used in the S-I-P two species interaction predator-prey model
with the type Il Holling functional response are listed below:

1. The growth-rate of prey population has a pattern of growth logistics
because of ecosystems carrying-capacity.

2. Disease only infects prey population and the infected prey cannot be
cured or made immune.

3. Prey food supplies are limited, so there are competitions among prey
population to obtain food.

4. Predator food supplies depend on prey population.

5. Prey population declines and population of predators increase at the
time of the occurrence of preys-predators interaction.

6. In the interaction, predator only consumes infected-prey.

7. In the ecosystems, there is only a kind of prey for consumption by
predator.

8. Preys respond presence of a predator, so the predator needs time to
catch a prey (based on type 11 Holling functional response).

A modified S-1-P prey-predator model with Holling type Il functional
response can be described by

ds S

W—rs(l—K)—BSI,

di 28 + 1 alP

a_rl(l— < j+BSI—b+I—cI, 2.1)

P alP

o T Heer

S I P a b

where X=1 V=10, Z=1, T=rt>0 A=2>0 B=-7>0,
C=2>0, D=%>o,andm=¥>o
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In the system (2.1), the parameter S = Kx describes the susceptible-prey
sub-population density with the carrying-capacity K, the parameter | = Ky
describes the infected-prey population density with carrying-capacity K, the
parameter P = Kz shows the predator population density with carrying-
capacity K which is interacting with the prey population, T = rt shows the

time, A = % describes the decrease in number of the prey population caused

by the interaction of the prey and the predator populations, B = % describes

the saturation rate of the predator, = % describes transmission rate of the

infectious disease in the prey population, each ¢ = Cr and d = Dr are
natural death rates of the prey and the predator, the effort applied to harvest
the prey population with the influence of the surroundings and p describes
that the growth rate of the predator population. System (2.1) can be rewritten
as follows:

dx 2y

T X(1 - x) — mxy,

dy oy Az

T y(d - 2x — y) + mxy Bry Cy, (2.2)
dz Ayz \

aT - “( B+ yj o2

with x(0) > 0, y(0) > 0 and z(0) > 0.
3. Equilibrium
Theorem 3.1. (1) With no condition, the system (2.2) has two

equilibrium points, namely E(0, 0, 0) and E;(1, 0, 0).

(2) If C <1, then the system (2.2) has three equilibrium points, namely
Eo(0, 0, 0), E;(1, 0, 0), and E,(0, yj, 0).

Q) If C<1 and m1-C)<1<1+C < m, then the system (2.2) has
four equilibrium points, namely Eq(0, 0, 0), E;(1, 0, 0), E(0, y;, 0), and
Es(x2, ¥2, 0).
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(4)I1f C<1 pA>D and (1-C)(uA— D) > BD, then the system (2.2)
has four equilibrium points, namely Eq(0, 0, 0), E;(1, 0, 0), E5(0, yq, 0),

and E4(0, y*, z{).

() If C<1 pA>D and mBD < pA — D, then the system (2.2) has
four equilibrium points, namely Eq(0, 0, 0), E;(1, 0, 0), E»(O, y;, 0), and
Es(x*, y*, 23).

Proof. To obtain the equilibrium points, we consider

dx _, dy dz _
ﬁ_o, d_l__O and dT_O.
From (2.2), we have

x(L— x%)—mxy = 0,

(1 2% — _ A

y=0-2x-y)+ mxy B4y Cy =0, (3.1)
Ayz _

H(B+y)—DZ—O.

From the third equation of (3.1), it follows that u(BAZZy)—Dz

BD
pA-D
system (3.1), we obtain

. If z=0, from the second equation of the

=0 z=0vy* =

Ayz _ _ B
y(1—2x—y)+mxy—B—+y—Cy_O©y_Ovy_O.

Substituting y = 0 and z = 0 into the first equation of the system (3.1), it
follows that

(x—x2)—mxy=0<:> x=0vx=1
Hence, for y =0 and z =0, the equilibrium points are Ey(0, 0, 0) and
E{(1, 0,0). If y =0, substitute y=(m-2)x+1-C and z =0 into the
first equation of the system (3.1) which provides
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1-m@1-C) _ 1—m(1—C).

pa— 2_ —_ = = =
(x=x°)-mxy=0< x=0vV Xy T+ m(m=2) (m—1)2

For x =0, we obtain y; =1—-C. It is clear that the initial condition

0<C <1 implies y; >0. Hence, if C <1, then the equilibrium point is
E2(0, y1, 0).

For x = 0, substitute x, 2%1—20) into y=(m-2)x+1-C <y, =
(m-1)
%. Because y > 0 and C > 0, m > 1+ C. Furthermore, because x
m-1

>0, m(1-C)<1.Hence, if m(1-C) <1<1+C < m, then the equilibrium
points is Ez(x,, Yy, 0).

If z = 0, substitute y* =

into the second equality of the system

pA-D
(3.1) and obtain y(1-—2x —y)+ mxy — BA%yzy —Cy =0. Because y* =
BD B MY (o ~_BD v . -
A D z= B[(l C)-(2-m)x LA D}(uA— D)' Substitute y* =
BD . . .
JA-D into the first equation of the system (3.1) to have
_ 2 _ _ _ _ _ _ * _1_ mBD
(Xx=x)-mxy=0< x[1-x)-my]=0< x=0vx* =1 A-D

If x =0, then

z= B[(l—C)—(2 —m)X - ,u,A\BE)DKuAPi D)’

and hence

4+ — ¥B[L-C)(uA~D) - BD]
2
(hA-D)
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Because y >0 and z > 0, HAB——DD>O and 1-C)(unA—D)>BD > 0. It

is clear that C <1. Hence, if yA>D and (1-C)(nA- D) > BD, then

E4(0, y*, z{) is an equilibrium point of the system (3.1). If x = 0, then
substitute

7= B[(l—C)—(2 —m)x - MAB—DDMMAPi D)

to get

. |@-C)(uA-D)-(m-1)?BD
2T ”B{ (hA- DY’ }

Because x >0, y>0and z > 0,

mBD BD
<

and

B (1-C)(uA-D)-(m-1)’BD N

> 0.
(vA-D)
Thus, BD >0, m> 0 and uB > 0. Hence, if

0<mBD <pA-D

and
(m-C —1)(uA- D) > (m-1)’BD,

then Eg(x*, y*, z3) is an equilibrium point of the system (3.1). O
4. Stability Analysis

Theorem 4.1. If Ey and E; are the equilibrium points of the system
(2.2), then
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(1) Eq is always unstable for any conditions,

(2) E; is an unstable saddle point if m > C +1 and a stable node point

ifm<C+1.

Proof. Jacobian of the equilibrium point E(0, 0, 0) is

1 0 0
J(Ey) =0 1-C 0|
0 0 -D

The eigenvalues of the characteristic equation J(Ep) are A; =1, A, =1-C
and A3 = —D. Hence, the equilibrium point Ey(0, 0, 0) is an unstable

saddle point. Jacobian of the equilibrium point E;(1, 0, 0) is

-1 -m 0
JE)=|0 -1+m-C 0
0 0 -D

The eigenvalues of the characteristic equation J(E;) are Ay =-1, Ay =
m—-C -1 and Az =—D. Hence, the equilibrium point E;(1, 0, 0) is an

unstable saddle point if m > C +1 and a stable node pointif m < C +1. [

Theorem 4.2. If E, and Eg are the equilibrium points of the system
(22), C<1, yA>D, m1l-C)<1<1l+C<m, (1-C)(unA-D)> BD,
then

(1) E, is a stable node point,

(2) Ej is a stable node point if 1++/2 <m and (uWA-D)(m-1-C)>
BD(m — 1)°.

Proof. Jacobian of the equilibrium point E,(0, y;, 0) with y; =1-C is
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1-m@-C) 0 0
J(Ep)=|(mM-2)(1-C) 3(1-C) (‘%}
A(l-C)
0 0 rgi1c D

The eigenvalues of the characteristic equation J(E,) are A =1-

Al-C)
B+1-C
>0, A and A, are always positive and Az is negative if
pAl-C)-D(B+1-C)
B+1-C
an unstable saddle point if pA(1—C) < D(B +1— C) and stable node point
when pA(l-C) > D(B+1-C).

ml-C), A, =31-C) and Az= —D. Because y; =1-C

< 0. Hence, the equilibrium point E, (0, y;, 0) is

Jacobian of the equilibrium point E3(x,, yo,0) with x, =

1-ml-C) 1-m@1-C) (m-1-0C) .
1+ m(m—Z)_ (m_1)2 and Y2 = (m_l)Z IS
Ki K, 0
J(Eg)=|Ks Kq Kz},
0 Kg O
with
_(m-1)-mC _m’@-C)-m
“TTmey T mey
K _m?—(3+C)m+2+2C K _m-1-C  _ A(m-1)-C]
3 (m—1)2 ' 4 (m_l)Z ' 5 B+(m-1-C)
and
A[(m-1)-C]

-D.

B(m-1)? +(m-1-C)
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The characteristic equation of J(Ej3) is

23— 22(Ky + Kg)+ MK Ky — KoKy — KgKg ) + K{KsKg = 0.

If Ez(Xp, yp, 0) is an equilibrium point, then (K;+ Ky)>0. If
1++2 <m and (A—D)(m—-1-C) > BD(m —1)?, then we obtain
KK, — KoKs — KsKg > 0,  K;KgsKg > 0.

Thus,

(Ky +Kq) >0, KiK4 - KyKs —KsKg >0, K;{KsKg >0
and

(Ky + Kg)(KiKyg = KoKz = K5Kg) = KiK,Ks > 0.

Based on Routh-Hurwitz criterion, if 1++v2 < m and (uA— D)(m—-1-C)

> BD(m —1)2, then all real parts of the eigenvalues are negative. So, the

equilibrium point Ez(x,, y,, 0) is a stable point. O

Theorem 4.3. If E, is the equilibrium point of the system (2.2), C <1,

pA>D and (1-C)(uA-D)> BD, then E, is a stable point if D <1,
B+C >1and pA—- D < mBD.

Proof. Jacobian of the equilibrium point E4(0, y*, z{*) with

«_ _BD _ _ bB[L-C)(uA- D) - BD]
A-D' T (hA - DY
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with
., _,_ _mBD , _(m-2)BD | _1-(C+B)D |  _ D
1= (wA-D)’ "?7 (WA-D)’ 3 pA T T
and

B (1- C)(uA—D)- BD
s = a-0)( R )

The characteristic equation of J(E,4) is
23 —22(Lg + L) + MIyls — LyLs) + Lylyls = 0.

If D<1 and pA—D <mBD, then L3+ L >0 and LjL4Ls > 0. If
D<1 B+C>1 and pA-D < mBD, then Llz-L4Ls>0 and
(L3 + Ll) . (L1L3 - L4L5) - L1L4|_5 > 0. ThUS,

L3 + Ll > 0, L1L3 - L4L5 > 0, L1L4L5 >0
and
(L + Ly)(Lls — Lyls) — Lylyls > 0.

Based on Routh-Hurwitz criterion, if D<1, B+C>1 and pA-D
< mBD, then all real parts of the eigenvalues are negative. So, the

equilibrium point E4(0, y*, z") is a stable point. O

Theorem 4.4. If Eg is the equilibrium point of the system (2.2),
wA > D, mBD<puA-D and (m-1-C)(uA— D) > BD(m —1)2, then Eg
is a stable point if (m—-1-C)(uA—- D) < pAB, m > 2 and uB < 1.

Proof. Jacobian of the equilibrium point Eg(x*, y*, z5) with

mBD * BD

* — =
X' =1-7A-p' ¥ “1A-D
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and
2
5 = B (1—C)(uA—D)—(2m—1) BD
(hA - D)
is
M{ M, O
J(Es)=| M3 My Ms|,
0 Mg O
with
_ (mBD) _ _( mBD ., _BD
Ml_uA—D 1 Mz_m—uA—D 1] M3—(m 2)—HA—D'
[(m-C -1)(uA- D)- (m-1>BD]D HABD
My = A-D " u(rAWA - D))’
p(p ) R(A( )
-D
Mg = ———
T
and
2
m—1) - C](nA - D) - (m -1)°BD
Me=u[( ) - Cl(w )-(m-1)"BD

A
The characteristic equation of J(Eg) is
23— 22(Mg + My) + MMM, — MyM3 — MsMg) + M;MsMg = 0.
If Es(x*, y*, z3) is an equilibrium point, then M;MgMg > 0. Also,
(My + My) > 0 if (m—C —1)(uA — D) < pAB. Thus,
MMy — MaMg — MsMg = My(My — mM3) — MsMg,
if m>2and (m-C -1)(uA - D) < uAB and then

Ml(M4 - mMz)— M5M6 > 0.
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Furthermore,
(M1 + My)(MM4 = MyM3 — MsMg) = MiMsMg > 0
ifm>2 (m-C-1)(uLA- D) < uAB and uB < 1.
Therefore,
M1+M4>O, M1M4—M2M3—M5M6>O, M1M5M6>0
and
(Ml + M4)(M1M4 - M2M3 - M5M6)— M1M5M6 > 0.
Based on Routh-Hurwitz criterion, if m > 2, (m-C -1)(nA—-D) <
pAB and pB <1, then all real parts of the eigenvalues are negative. So, the

equilibrium point Eg(x*, y*, z5) is a stable point. O
5. Numerical Simulations

Dynamics of the predator-prey population can be shown as the curve
of the solution field that describes a population of prey and predator during
certain period. The numerical simulations based on the parameters are
provided in the following Table 1.

Table 1. Equilibrium points, bounded parameters of the existence of the
equilibrium point, parameter values and stability of the equilibrium point

Equilibrium points M A B C D L Stability

Eo 1,5 1 04 07 0,2 0,5 Unstable
E, case 1 221 08 06 07 02 05 Unstable
E, case 2 15 1 04 07 02 05  Stable
E, 221 08 06 07 02 05 Unstable
Es 221 085 06 041 02 0,5 Stable
Ey4 3,1 08 06 041 02 0,5 Stable

Eg 2,1 08 04 03 02 0,5  Stable
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Brdang Solun stem pada Predator — Prey Terhadap Wakfu

1 r ¢ *
.
« WL
0

Fredagor — Frey
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0 . .. . e
] 100 0 0
Baksu

@
Susceptible Prey—— Infected Prey —— Predator I

Figure 1. The solution field of predator-prey system and the phase portrait of
predator-prey system at the equilibrium point Eg, E;, and the equilibrium

E,inCase2, m< C +1.

Figure 1 is phase portrait for system (3.1) which shows that the
equilibrium point Eg is an unstable node. In this case, we can say that both
prey and predator population densities are unstable. In Case 1, the
equilibrium E; is an unstable node. Furthermore, Figure 1 shows the phase
portrait for the equilibrium point E, in Case 1 which indicates that the

equilibrium point E, is a saddle point.

Figure 1(a) shows that in the beginning the infected-prey population and
the predator population declined and then become extinct. While growth rate
of the susceptible-prey population rose significantly and simultaneously with
the decline of the infected-prey population until the extinct. This condition
occurred because the pace of the spread of diseases is not large enough
and predators do not get enough preys which caused the extinction of the
predator population.

Figure 1(b) shows the point of equilibrium Eg is a saddle point, because

it is clearly visible that all the trajectories in the direction space around are
avoiding the equilibrium point Egp, thus the equilibrium Eg is unstable. This
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condition provides the stability of each population number. If m > C +1,

then the equilibrium point E; is a node point, and hence E; is unstable.

Bidang Solusi Sstem pada Predator — Prey Terhadap Waktu
05

04

‘.
.
5 7
03 3
Predator — Prey s |
]
)
0l k

0 00 400 60 800 1000 . e A
Wkt &

(a) (®
}— Susceptible Prey=——Infected Prey ——Predator ‘

Figure 2. Phase portrait for the equilibrium points E;, E,, and E3 for
m>C+1 m>1++2, and (WA— D)(m-1-C) > BD(m - 1)2.

Figure 2(a) shows that in the early stage infected and susceptible prey
grow significantly. When the total number of infected-prey comes close
to 35%, then the population growth rate becomes constant. The number
of experienced susceptible-prey decline to 25% and becomes stable at the
position after representing a significant increase of 50% in the period up to
200 time unit. In the same period, the predator population declined and
afterwards approaches to extinction.

Figure 2(b) indicates the equilibrium point E; with m > C +1,
m>1++/2,and E,(0, 0.3, 0) is the saddle point. All the trajectories in the
direction space avoid the point E; and E,, and then E; and E, become

stable. Furthermore, the equilibrium point E3(0.547162, 0.348337, 0) is a

spiral stable because all the trajectories in the direction space approach the
equilibrium point E3(0.547162, 0.348337, 0). So the equilibrium point Ej

is stable.
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Figure 3(a) shows that in the beginning the infected-prey sub-population
significantly rose and the sub-population growth becomes stable into a
constant rate after reaching more than 50% at the period 100 up to 200 time
units. While the susceptible-prey population approaches to extinction. It is
caused due to the disease spread rate in the prey population, so the predator
populations decline from the very beginning, and then becomes constant in
the value between 5% up to 10%.

Bidang Solusi Sistem pada Fredator — Prey Terhadap Wakfu

Waahtu - '
(@) ®)
Susceptible Prey——— Infected Prey —— Predator

Figure 3. Phase portrait equilibrium E4 for D<1, B+C >1 and pA—-D <
mBD.

This condition caused due to survival of the prey population only around
50% of the total.

Figure 3(b) indicates that the equilibrium point E,(0; 0, 5333; 0, 0755),
is the node point. Clearly, all the trajectories in the direction space are
towards the equilibrium point E4(0; 0, 5333; 0, 0755), and hence the point

E, isstableif D <1, B+ C >1 and pA - D < mBD.

Figure 4(a) shows that in the beginning the infected-prey and the
susceptible prey population rose significantly when the total number of
infected-prey populations declined in the range of 60% when t < 500 of
time units. Then the rate of population growth being constant is not subjected
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to increase or decrease in the value of 40%. These conditions continued until
drive t time unit. Susceptible-prey population rose in the range of 20%, and
then became stable at this value because of the growth rate constant
throughout. In the same period the predator population decreased, and then
rose and became stable at about 15%.

Figure 4(b) indicates that the equilibrium point Es(0.16; 0.4; 0, 316) is
a node point. We conclude that the equilibrium point E5(0.16; 0.4; 0, 316)
is stable if (m—C —1)(uA— D) < pAB, m > 2 and uB < 1.

Brdamg Solun Sem pada Predator — Prey Terhadap Wakn

034

(TR -

034

o

L) ELLY L
Wakny

®)

(a)
)— Susceptible Prey. Infected Prey —— Predator ‘

Figure 4. Phase portrait equilibrium point Es for (m-C —1)(uA - D)
< uAB, m> 2 and uB <1.

6. Conclusions

In Section 2, a modified S-1-P predator-prey model with type Il Holling
functional response has been constructed. The six equilibrium points have
been obtained from the mathematical model described by (2.2) in Section 3.
In Section 4, stability analysis of the equilibrium points is carried out. Routh-
Hurwitz criteria are used to discuss the stability of the critical points. The
numerical simulations for some parameters have been carried out in Section
5 to show the stability of the equilibrium points.
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