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Abstract. The traditional maximum cut problem assumes that the edge weights are
crisp values or random variables. However, the edge weight in maximum cut problem
has real and concrete implications in real life application, so it is more suitable to char-
acterize the edge weights as uncertain variables. In this paper, the maximum cut problem
in uncertain environment is considered. We originally propose a belief degree constrained
programming model for uncertain maximum cut problem. Furthermore, we convert the
model into its equivalent deterministic form which can be solved by classic programming
methods. Finally, a numerical example is presented to show the application of the model.
Keywords: Maximum cut problem, Belief degree constrained programming, Uncertain-
ty theory, Uncertain variable

1. Introduction. The maximum cut problem is one of the most important and well-
known combinatorial optimization problems. The maximum cut problem can be described
as below. For an undirected edge-weighted graph with nonnegative weights, the goal of
this problem is to find a partition of vertices into two disjoint sets such that the sum weight
of the edges that join the two sets is as large as possible. This problem has been intensively
studied not only for the theoretical interests but also due to its wide applicability in various
fields such as statistical physics [1], layer assignment [2], and wireless sensor network [3].
For relevant literature and recent results about the maximum cut problem, the reader is
referred to Poljak and Tuza [4] and references therein.

In early years, maximum cut problem has been investigated in a deterministic environ-
ment, in which the edge weights are crisp values. With being applied in various real-world
fields, the weight of the edge in the maximum cut problem has real and concrete impli-
cations. In these cases, it is unsuitable to regard these indeterminacy factors as fixed
quantities and to employ classical methods to study the maximum cut problem. Hence,
much recent work introduced stochastic factors to maximum cut problem. For example,
Poljak and Tuza [5] studied the expected relative error of a linear relaxation of the maxi-
mum cut problem in the random graph. After that, Feige and Schechtman [6] investigated
the optimality of the random hyperplane rounding technique for maximum cut problem.
Recently, Kardoš et al. [7] considered the maximum edge-cuts in cubic random graphs.
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Most literature on maximum cut problem characterized the involving uncertainty as
randomness. In real life, due to the lack of historical data, describing the uncertainty as
randomness is not reasonable. In this case, we have to invite some domain experts to
evaluate their belief degree about the edge weight. It has been demonstrated by Liu [8]
that if we insist on dealing with the belief degree by using probability theory, some coun-
terintuitive phenomena may happen. In order to deal with such indeterminacy factors,
Liu [9] founded uncertainty theory, which has become a branch of axiomatic mathematics
for dealing with human uncertainty.
As a useful tool to describe imprecise quantities in human systems, uncertainty theo-

ry has gained considerable achievement in practical aspect. Uncertain programming was
pioneered by Liu [10] to deal with optimization problems with uncertain parameters. As
an application, uncertain programming has been well developed and applied widely. For
instance, Qin and Kar [11] presented a single-period inventory problem with uncertain
demands. Chen et al. [12] discussed the minimum weight vertex covering problem in un-
certain environment. Liu et al. [13] investigated the location problem of multi-product
logistics distribution centers in uncertain environment. Lan et al. [14] studied the compet-
itive logistics distribution center location problem instead of logistics distribution center
location problem in uncertain environment. Yang et al. [15] established a furniture pro-
duction planning model under uncertain environment for investigating how the loss averse
customer’s psychological satisfaction affects the company’s furniture production planning.
The interested readers can consult the book of Liu [16] for the comprehensive development
of uncertainty theory.
The remaining sections are as follows. Section 2 describes some preliminary concepts

of uncertainty theory for examining the present problem. Then in Section 3, we present
the problem considered in this paper. In Section 4, a chance-constrained programming
model for uncertain maximum cut problem is presented. Section 5 illustrates the proposed
method by an example. Final conclusions and future researches are presented in Section
6.

2. Preliminaries for Uncertainty Theory. As this paper will investigate the maxi-
mum cut problem with uncertain edge weights under the framework of uncertainty theory,
we briefly introduce some basic concepts and preliminary results in this field.

Definition 2.1. (Liu [9]) Let L be a σ-algebra on a nonempty set Γ. A set function
M : L → [0, 1] is called an uncertain measure if it satisfies the following three axioms :
Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ;
Axiom 2. (Duality Axiom) M{Λ}+M{Λc} = 1 for any event Λ;
Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1,Λ2, . . . ,
we have

M

{
∞∪
i=1

Λi

}
≤

∞∑
i=1

M{Λi}.

The triplet (Γ, L,M) is called an uncertainty space. In order to obtain the uncertain
measure of compound event, the product uncertain measure M on the product σ-algebra
L was defined by Liu [17] as the following product axiom.
Axiom 4. (Product Axiom) Let (Γk, Lk,Mk) be uncertainty spaces for k = 1, 2, . . ..
The product uncertain measure M is an uncertain measure satisfying

M

{
∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.
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Definition 2.2. (Liu [9]) An uncertain variable ξ is a measurable function from an uncer-
tainty space (Γ, L,M) to the set of real numbers, i.e., for any Borel set B of real numbers,
the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}
is an event.

The uncertainty distribution of an uncertain variable is defined by Φ(x) = M {ξ ≤ x}
for any real number x. The zigzag uncertain variable ξ ∼ Z(a, b, c) has an uncertainty
distribution

Φ(x) =


0, if x ≤ a

(x− a)/2(b− a), if a < x ≤ b
(x+ c− 2b)/2(c− b), if b < x ≤ c

1, if x < c

where a, b, and c are real numbers with a < b < c.

Theorem 2.1. (Liu [18]) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with regular
uncertainty distributions Φ1,Φ2, . . . ,Φn, respectively. If the function f(x1, x2, . . . , xn) is
strictly increasing with respect to x1, x2, . . . , xm and strictly decreasing with respect to
xm+1, xm+2, . . . , xn, then

ξ = f(ξ1, ξ2, . . . , ξn)

has an inverse uncertainty distribution

Ψ−1(α) = f
(
Φ−1

1 (α), . . . ,Φ−1
m (α),Φ−1

m+1(1− α), . . . ,Φ−1
n (1− α)

)
.

3. Problem Formulation. Given an edge-weighted undirected and simple graph G =
(V,E) with vertex set V = {v1, v2, . . . , vn} and edge set E = {eij = (vi, vj) | vi ∈ V, vj ∈
V }, each edge eij ∈ E being associated with a weight ωij, and all the weights are presented
by ω = {ωij|eij ∈ E}. We say that the two nonempty subsets S and S partition a set V
if V = S ∪ S, and S ∩ S = ∅. A partition of a set V into two subsets S and S is denoted
by the unordered pair

(
S, S

)
(i.e.,

(
S, S

)
and

(
S, S

)
represent the same partition). A

partition of a graph G(V,E) is a partition of its vertex set V . An edge eij ∈ E is said to
be cut by a partition

(
S, S

)
of G if its ends belong to two different subsets of the partition.

A cut is denoted by δ(S) =
{
eij ∈ E, vi ∈ S, vi ∈ S

}
. Given a cut δ(S), the weight of

the cut is the sum of the weights of the edges in the cut. Thus, the weight of a cut δ(S)
is defined as

W (δ(S)) =
∑

eij∈δ(S)

ωij.

The maximum cut problem asks for the cut that maximizes the sum of the weights of
its edges. It is well known that maximum cut problem can be formulated as follows:

max
S⊆V

∑
eij∈δ(S)

ωij. (1)

By introducing cut vector x = (x1, x2, . . . , xn) with xi = 1 if vi ∈ S and xi = −1 if
vi ∈ S, Helmberg [19] stated that the problem (1) is equivalent to the following problem

max
x∈{−1,1}n

∑
i<j

ωij
1− xixj

2
. (2)

Then the weight of a cut δ(S) can be rewritten as

W (δ(S)) =
1

4

n∑
i=1

n∑
j=1

ωij(1− xixj).
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More formally, the maximum cut problem can be written as the following quadratic
programming problem, 

max
x

1

4

n∑
i=1

n∑
j=1

ωij(1− xixj)

subject to:

xi ∈ {−1, 1}, i = 1, 2, . . . , n.

(3)

In the classic maximum cut problem, we always assume that the edge weights are crisp
values. They are often not deterministic because decision makers are usually faced with
some uncertain situations. If there is enough historical data of each edge weight, we can
characterize the weight as a random variable and may create probability distributions
of edge weight through statistic method. Unfortunately, sometimes we cannot obtain
probability distributions of edge weights due to lack of historical data. In this situation,
the edge weight data can be only obtained from the decision-makers’ empirical estimation
in a practical way. Therefore, it is inappropriate to regard subjective estimation weight
data as random variables. Hence, in this paper, we assume that edge weights are all
independent uncertain variables. That is, each edge weight wij is replaced by an uncertain
variable ξij, and all the weights can be presented by ξ = {ξij|eij ∈ E}.

Definition 3.1. Let G = (V,E) be an undirected and simple graph with uncertain edge
weights. A cut δ∗(S) is called uncertain α-maximum cut if

max
{
W | M

{
W (δ∗(S)) ≥ W

}
≥ α

}
≥ max

{
W | M

{
W (δ(S)) ≥ W

}
≥ α

}
holds for any cut δ(S) of G, where α ∈ (0, 1) is a predetermined confidence level.

4. The Belief Degree Constrained Programming Model. The philosophy of belief
degree constrained programming, which was introduced by Peng et al. [20], is a powerful
tool to deal with an indeterminacy system. Now we apply the belief degree constrained
programming model to maximum cut problem in uncertain environment, and shall for-
mulate an uncertain α-maximum cut model, which is shown as follows:

max
x

W

subject to:

M

{
1

4

n∑
i=1

n∑
j=1

ξij(1− xixj) ≥ W

}
≥ α

xi ∈ {−1, 1}, i = 1, 2, . . . , n.

(4)

Theorem 4.1. Let G = (V,E) be an undirected and simple graph with edge weights
ξij which are independent uncertain variables with regular uncertainty distributions Φij,
i, j = 1, 2, · · · , n, respectively. Then the model (4) is equivalent to the following model

max
x

1

4

n∑
i=1

n∑
j=1

Φ−1
ij (1− α)(1− xixj)

subject to:

xi ∈ {−1, 1}, i = 1, 2, . . . , n,

(5)

where Φ−1
ij is the inverse uncertainty distributions of ξij.

Proof: It is assumed that ξij are independent uncertain variables with regular uncer-
tainty distributions Φij, i, j = 1, 2, . . . , n, respectively. Then, using the inverse uncertainty
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distribution, we can transform the constraint

M

{
1

4

n∑
i=1

n∑
j=1

ξij(1− xixj) ≥ W

}
≥ α

into a deterministic constraint

1

4

n∑
i=1

n∑
j=1

Φ−1
ij (1− α)(1− xixj) ≥ W.

Then we can easily prove that the model (4) can be equivalently transformed into the
following deterministic model:

max
x

W

subject to:

1

4

n∑
i=1

n∑
j=1

Φ−1
ij (1− α)(1− xixj) ≥ W

xi ∈ {−1, 1}, i = 1, 2, . . . , n.

(6)

Clearly, model (6) is equivalent to model (5). The theorem is proved.

5. Numerical Example. In this section, we consider a numerical example to illustrate
the proposed uncertain α-maximum cut model. The example is shown in Figure 1; there
are totally 8 vertices and 13 edges. Assume that all edge weights are zigzag uncertain
variables ξij. The distributions of ξij are listed in Table 1.

When α=0.9, we can calculate Φ−1
ij (0.1) for each ξij. The values are listed in Table 2.

According to the model (4), the 0.9-maximum cut problem can be formulated as follows:

max
x

W

subject to:

M

{
1

4

8∑
i=1

8∑
j=1

ξij(1− xixj) ≥ W

}
≥ 0.9

xi ∈ {−1, 1}, i = 1, 2, . . . , n.

(7)

It follows from Theorem 4.1 that the model (7) is equivalent to the deterministic qua-
dratic programming model:

max
x

1

4

8∑
i=1

8∑
j=1

Φ−1
ij (0.1)(1− xixj)

subject to:

xi ∈ {−1, 1}, i = 1, 2, . . . , n.

(8)

l l2 5ξ12
ξ25

ξ23 ξ58l l l l1 3 6 8
ξ13

ξ14 ξ37

ξ56
ξ36 ξ68

l l4 7
ξ47

ξ46
ξ78
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Figure 1. Uncertain weighted graph G for the numerical example (adopt-
ed from [21])
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Table 1. The distributions of weights ξij in Figure 1

ξij Φij ξij Φij

ξ12 Z(2, 3, 4) ξ46 Z(5, 7, 8)

ξ13 Z(3, 4, 5) ξ47 Z(3, 5, 7)

ξ14 Z(2, 3, 5) ξ56 Z(2, 4, 5)

ξ23 Z(2, 5, 7) ξ58 Z(4, 6, 7)

ξ25 Z(5, 6, 7) ξ68 Z(7, 8, 9)

ξ36 Z(5, 7, 9) ξ78 Z(2, 4, 6)

ξ37 Z(2, 3, 6)

Table 2. List of Φ−1
ij (0.1)

ξij Φ−1
ij (0.1) ξij Φ−1

ij (0.1)

ξ12 2.2 ξ46 5.4

ξ13 3.2 ξ47 3.4

ξ14 2.2 ξ56 2.4

ξ23 2.6 ξ58 4.4

ξ25 5.2 ξ68 7.2

ξ36 5.4 ξ78 2.4

ξ37 2.2

Table 3. List of α-maximum cut

α 1− α optimal solution x∗ maximum weight

0.9 0.1 (1,−1,−1,−1, 1, 1, 1,−1)T 43.2

0.8 0.2 (1,−1,−1,−1, 1, 1, 1,−1)T 46.4

0.7 0.3 (1,−1,−1,−1, 1, 1, 1,−1)T 49.6

0.6 0.4 (1,−1,−1,−1, 1, 1, 1,−1)T 52.8

0.5 0.5 (1,−1,−1,−1, 1, 1, 1,−1)T 56

0.4 0.6 (1, 1,−1,−1,−1, 1, 1,−1)T 59.6

0.3 0.7 (1, 1,−1,−1,−1, 1, 1,−1)T 63.2

0.2 0.8 (1, 1,−1,−1,−1, 1, 1,−1)T 66.8

0.1 0.9 (1, 1,−1,−1,−1, 1, 1,−1)T 70.4

The optimal solution of the model (8) can be obtained as x∗ = (1,−1,−1,−1, 1, 1, 1,
−1)T by using the values listed in Table 2 and LINGO solver. Then S = {v1, v5, v6, v7},
S = {v2, v3, v4, v8}. So 0.9-maximum cut is {e12, e13, e14, e25, e36, e37, e46, e47, e58, e68, e78},
and the maximum weight is 43.2. In order to investigate the influence of this parame-
ter, the numerical example is further considered for different confidence levels. Choosing
different α, we obtain Table 3. It can be seen from Table 3 that α has an effect on the
optimal solutions, and the total weight of the maximum cut increases while the confidence
level is decreasing.

6. Conclusions. This research proposed a belief degree programming model to handle
the uncertain maximum cut problem, in which the edge weights were assumed to be
uncertain variables. It has proved that there exists an equivalence relation between the
uncertain maximum cut problem and the corresponding classic deterministic programming
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problem under the framework of uncertainty theory. To test and verify the application of
the proposed model, a numerical example was given in the end.

Our paper could also be used to incorporate other stylized facts and suggest several
directions for future research. (1) It can investigate the maximum cut problem in other
mixed indeterminate application environments, like uncertain random and random uncer-
tain backgrounds. (2) This paper assumes that the vertex set is divided into two disjoint
parts, but the dimensions of the two subsets are no extra constraint. Thus, it would be
attractive to discuss the maximal bisection problem, where the dimensions of the two
subsets are the same.
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