
A
U

TH
O

R
 C

O
P

Y

Journal of Intelligent & Fuzzy Systems 39 (2020) 1073–1080
DOI:10.3233/JIFS-191982
IOS Press

1073

On construction of fuzzy chromatic
number of cartesian product of path
and other fuzzy graphs

Isnaini Rosyidaa,∗, Widodob, Ch. Rini Indratib and Diari Indriatic
aDepartment of Mathematics, Universitas Negeri Semarang, Semarang, Indonesia
bDepartment of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia
cDepartment of Mathematics, Universitas Sebelas Maret, Surakarta, Indonesia

Abstract.We use the notion of fuzzy chromatic number (FCN) of fuzzy graphs based on fuzzy independent vertex sets
introduced in 2015. Let G̃1 be a path fuzzy graph and G̃2 be any fuzzy graphs where their vertex sets are disjoint. Let
G̃ = G̃1�G̃2 be a cartesian product of G̃1 and G̃2. In this paper, we construct formula for FCN of G̃1�G̃2 and verify
connection between maximum of FCN of both fuzzy graphs and FCN of their cartesian product. Also, we create an algorithm
to determine FCN of the cartesian product according to the properties obtained. The last two statements show novelties of
the present work. Evaluation of the algorithm is presented in the experimental results.
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1. Introduction

A graph was used to model many real problems
where vertices represent objects and edges represent
connection between two objects on a network ([1, 2,
5, 11]). In real world, connection between two objects
is uncertain. For example, a conflict between two
traffic movements in traffic networks is an indetermi-
nate phenomenon. Also, signal interferences between
two transmitters in telecommunication networks are
imprecise phenomena. Therefore, we need another
type of graph that can model these phenomena. This
is one of the reasons why fuzzy graph is needed.
The research on fuzzy graph has developed rapidly.
Recently, Poulik and Ghorai [20] have proposed
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detour g-interior nodes and detour g-boundary nodes
in bipolar fuzzy graph with applications. Further,
they also have investigated certain indices of graphs
in bipolar fuzzy environment [21]. In [22], Poulik
and Ghorai have established an updated version of
definition and theorem in bipolar fuzzy graphs and
demonstrated some numerical examples. Further-
more, Sahoo et al. [24] provided certain types of
edge irregular intuitionistic fuzzy graphs. Also, they
discussed covering and paired domination in intu-
itionistic fuzzy graphs in [25].

Kaufmann initiated a fuzzy graph with fuzzy edge
set in 1973 [26]. Whereas, Rosenfeld introduced a
fuzzy graph where fuzziness appears in both ver-
tex and edge sets [26]. After that, many concepts in
fuzzy graphs were generalized, such as dominating
set, clique, and independent vertex set. For more con-
cepts in fuzzy graphs, readers may refer to [4, 16],
and [17]. Further, the concept of coloring of fuzzy
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graph was introduced by several researchers ([3, 4,
9, 10, 13, 14, 19]). However, some of the methods
of fuzzy graph coloring still involved crisp chromatic
number.

Papers related to generalization of chromatic num-
ber can be found in [3, 4, 12, 19], and [27]. Munoz
et al. [19] provided fuzzy chromatic number (FCN)
of fuzzy graphs based on α-cut graphs coloring.
Meanwhile, Bershtein and Bozhenuk ([3, 4]) defined
FCN by means of maximal independent vertex sets.
Keshavarz [12] gave an FCN of fuzzy graphs through
incompatibility degrees of adjacent vertices. In 2015,
we established FCN of fuzzy graphs based on fuzzy
independent vertex sets [27] which is different to the
works in [3, 4 and 19]. We also initiated a concept of
an uncertain chromatic number by means of uncer-
tainty theory in [28]. Recently, we have constructed
FCN of join and union of fuzzy graphs ([29, 30]). In
2019, we have constructed FCN of cartesian product
of path and complete fuzzy graphs and designed an
algorithm ([31, 32]).

Cartesian product of fuzzy graphs has been used
to model real problems, such as in the product of
DNA structure [18], in computer science, geometry,
algebra, number theory [23], also in combinato-
rial bayesian optimization [8]. Therefore, we are
interested in investigating some problems related to
cartesian product of fuzzy graphs. The problem to
find FCN of cartesian product of any two fuzzy graphs
has not been solved until now. Also, properties of
FCN of the cartesian product have not been verified.
We are interested to investigate FCN of the cartesian
product of fuzzy graphs because the FCN is more
suitable to handle indeterminate phenomena in real
problems. Furthermore, the result in [32] is a general
algorithm to find FCN of cartesian product of any
fuzzy graphs based on FCN algorithm in [30] and the
cartesian product concept. In other words, an algo-
rithm to find FCN of cartesian product of path and
other fuzzy graphs which is constructed based on the
properties of FCN has not been created. In order to
complete the work in [31] and [32], the aims of this
research are to construct FCN of cartesian product of
path and other fuzzy graphs, to investigate properties
of the FCN, to develop an algorithm based on the
properties obtained, and to verify ranking between
FCN of the cartesian product G̃1�G̃2 and FCN of
G̃1 and G̃2 based on the concept of ranking between
discrete fuzzy numbers.

This paper is organized as follows: Section 2 dis-
cusses basic theories needed to solve the problems.
Construction of FCN of cartesian product of path and

other fuzzy graphs is presented in Section 3. More-
over, an algorithm to determine FCN of the cartesian
product is described in Section 3. Finally, conclusions
are given in Section 4.

2. Theoretical background

In this section, we recall some basic concepts in
fuzzy sets, fuzzy numbers, and fuzzy graphs which
are needed to solve the problems.

Let X be a universal set (nonempty). A set

{(x, μB̃(x))|x ∈ X}
is called a fuzzy set B̃ on X with a membership func-
tion μB̃ : X → [0, 1] [34]. We then call the classical
sets as crisp sets. In this paper, we use the concepts of
support, height, α-cut of fuzzy sets, and fuzzy num-
bers as in [15]. Further, the concept of discrete fuzzy
number is cited from [6] and [33].

Given two discrete fuzzy numbers Ã and
B̃. Let α ∈ [0, 1]. The α-cut sets of Ã and B̃

are Aα = {xα
1 , . . . , xα

m} and Bα = {yα
1 , . . . , yα

n},
respectively. The supports of Ã and B̃ are sym-
bolized as S(A) and S(B), respectively. The sets
S(A)

∨
S(B) = {z| max{min S(A), min S(B)} ≤ z ≤

max{max S(A), max S(B)}. It was defined in [6]
that Pα = {z ∈ S(A)

∨
S(B)| max{xα

1 , yα
1 } ≤ z ≤

max{xα
m, yα

n}}. The maximum of discrete fuzzy
numbers Ã and B̃ is defined as follows [7]:
max{Ã, B̃} = {(z, μmax{Ã,B̃}(z))} with

μmax{Ã,B̃}(z) = sup{α ∈ [0, 1]|z ∈ Pα}.
Further, the set

S(A)
∧

S(B) = {z| min{min S(A), min S(B)} ≤ z ≤
min{max S(A), max S(B)}}. Given Qα = {z ∈ S(A)∧

S(B)| min{xα
1 , yα

1 } ≤ z ≤ min{xα
m, yα

n}}. The mini-
mum of Ã and B̃ is as follows [7]: min{Ã, B̃} =
{(z, μmin{Ã,B̃}(z))} with

μmin{Ã,B̃}(z) = sup{α ∈ [0, 1]|z ∈ Qα}.
For any discrete fuzzy numbers Ã and B̃, B̃ � Ã ⇔

max{Ã, B̃} = B̃. Otherwise, B̃ � Ã if and only if
max{Ã, B̃} = Ã [7].

Given fuzzy graph G̃1(V1, Ẽ1) where V1 is a vertex
set and Ẽ1 is a fuzzy edge set with the membership
function μẼ1

: V1 × V1 → [0, 1]. We call G̃1 as a
fuzzy subgraph of G̃(V, Ẽ) if V1 ⊆ V and Ẽ1 ⊆ Ẽ.

Given fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2)
where V1 ∩ V2 = ∅, and Ẽ1, Ẽ2 have mem-
bership functions μ1 and μ2, respectively. A
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cartesian product G̃1�G̃2 is a graph consisting
of a vertex set V = V1 × V2 and an edge set
Ẽ defined as {(x, y1)(x, y2)|x ∈ V1; y1y2 ∈ Ẽ2} ∪
{(x1, y)(x2, y)|y ∈ V2; x1x2 ∈ Ẽ1}, with member-
ship functions μẼ((x, y1)(x, y2)) = μ2(y1y2), and
μẼ((x1, y)(x2, y)) = μ1(x1x2).

Cioban [9] proposed a method to color fuzzy
graphs which is based on a value δ. Given δ ∈ [0, 1].
A fuzzy independent vertex set (FIVS) Ind ⊆ V is
a subset of V that satisfies μ(x, y) ≤ δ, ∀x, y ∈ Ind.
It is also denoted as Indδ. The k-coloring of G̃ is
defined through partitioning vertex set V into δ-FIVS
{Indδ

1, Indδ
2 . . . , Indδ

k} such that Indδ
i ∩ Indδ

j =
∅, ∀i /= j and Indδ

1 ∪ Indδ
2 . . . ∪ Indδ

k = V . The δ-
chromatic number of G̃ is the minimum k needed in
the k-coloring, symbolized as χδ(G̃). Furthermore,
the concept of fuzzy chromatic number (FCN) was
given in [27]. The FCN of fuzzy graph G̃(V, Ẽ)
with n vertices is a fuzzy set χ̃(G̃) = {(k, Lχ̃(k))|k =
1, 2, . . . , n} with

Lχ̃(k) = max{1 − δ|δ ∈ [0, 1], χδ(G̃) = k}. (1)

The value Lχ̃(k) in (1) denotes a membership degree
of k in χ̃.

3. Construction FCN of cartesian product of
path and other fuzzy graphs and its
algorithm

In this section, we discuss properties and algo-
rithm of FCN of cartesian product of path and other
fuzzy graphs. The properties are shown on two the-
orems. First theorem depicts construction of FCN of
the cartesian product. On the second theorem, we
give ranking between FCN of the two fuzzy graphs
and their cartesian product. Following Theorem 1, we
establish an algorithm (Table 2) in determining FCN
of the cartesian product.

3.1. Properties of FCN of cartesian product of
path and other fuzzy graphs

Theorem 1. Given path fuzzy graph G̃1(V1, Ẽ1) and
any fuzzy graphs G̃2(V2, Ẽ2) with FCN χ̃1 and χ̃2,
respectively. Let |V1| = n1 and |V2| = n2. If G̃ is the
cartesian product G̃1�G̃2, then FCN of G̃ is χ̃(G̃) =
{(k, Lχ̃(k))}, where

Lχ̃(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min

{
Lχ̃1 (k), Lχ̃2 (k)

}
, if 1 ≤ k < k′;

k′ = min{1 ≤ n′ ≤ n2, Lχ̃2 (n′) = 1};
1, if k′ ≤ k ≤ n1 × n2.

Proof. Let V1 = {u1, u2, . . . , un1} and V2 = {v1, v2,

. . . , vn2}. Since G̃1 is a path fuzzy graph, mem-
bership degree of edge μ(uiui+1) > 0 for each
edge (uiui+1, μ(uiui+1) ∈ (Ẽ)1) with 1 ≤ i ≤ n − 1.
Hence, FCN of G̃1 is

χ̃1(G̃1) = {(1, Lχ̃1 (1)), (2, 1), (3, 1), . . . , (n1, 1)}. (2)

We prove the theorem through mathematical
induction on k.

1. For k = 1: let δ ∈ [0, 1]. Let μmax1 =
max{μ(uiuj)|ui, uj ∈ V1} and μmax2 =
max{μ(vivj)|vi, vj ∈ V2}. It is obvious that
Lχ̃1 (1) = 1 − μmax1 and Lχ̃2 (1) = 1 − μmax2.

Let δmax = max{μmax1, μmax2}. Based on
Equation (1), Lχ̃(1) = max{1 − δ|χδ(G̃) =
1} = 1 − δmax = min

{
Lχ̃1 (1), Lχ̃2 (1)

}
and

the theorem is true for k = 1.
2. Further, we assume that the theorem is fulfilled

when k = r (1 < r < k′) with k′ = min{1 ≤
n′ ≤ n2, Lχ̃2 (n′) = 1}. It means that Lχ̃(r) =
min

{
Lχ̃1 (r), Lχ̃2 (r)

}
. We will proof the theo-

rem for k = r + 1.
3. If G̃2 is a cycle fuzzy graph with even number

of vertices, then FCN of the cartesian pro-
duct G̃ has the number r = 2 with the degree
Lχ̃(r) = 1 = min

{
Lχ̃1 (r), Lχ̃2 (r)

}
. Otherwise,

it is impossible that r = 2 in χ̃(G̃) has Lχ̃(r) =
1. According to Equation (2), we have:

Lχ̃(r) = Lχ̃2 (r) = min
{
Lχ̃1 (r), Lχ̃2 (r)

}
Further, based on Equation (1):

Lχ̃(r) = max{1 − δ|χδ(G̃) = r} = Lχ̃2 (r).

To find the value δ such that Lχ̃(r) = Lχ̃2 (r),
we verify all clique fuzzy subgraphs of G̃2 with
orders r + 1, namely Q1

r+1, Q
2
r+1, . . . , Q

m′
r+1.

Let

δr = max
{

min{μ2(Q1
r+1)}, min{μ2(Q2

r+1)},
. . . , min{μ2(Qm′

r+1)}}.

It is obvious that Lχ̃(r) = Lχ̃2 (r) = 1 − δr.
By using the same way, we verify clique
fuzzy subgraphs of G̃2 with orders r + 2 to
find Lχ̃(r + 1). Let Q1

r+2, Q
2
r+2, . . . , Q

l
r+2 be
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clique fuzzy subgraphs of G̃2 with orders r + 2
that contain cliques Q1

r+1, Q
2
r+1, . . . , Q

m′
r+1

with l < m′. Set

δr+1 = max
{

min{μ2(Q1
r+2)}, min{μ2(Q2

r+2)},
. . . , min{μ2(Ql

r+2)}}.
It is clear that Lχ̃2 (r + 1) = 1 − δr+1. Since
G̃1 is path fuzzy graph, Lχ̃1 (r + 1) = 1 for
r > 1. Therefore,

Lχ̃(r + 1) = 1 − δr+1 = min{1, 1 − δr+1} =
min

{
Lχ̃1 (r + 1), Lχ̃2 (r + 1)

}
and the proof is complete. �

Theorem 2. Given path fuzzy graph G̃1(V1, Ẽ1) and
any fuzzy graph G̃2(V2, Ẽ2) with FCN χ̃1 and χ̃2,
respectively. Let n1 be the number of vertices in G̃1
and n2 be the number of vertices in G̃2. If FCN of the
cartesian product G̃ = G̃1�G̃2 is χ̃ = {(k, Lχ̃(k))},
then

χ̃ � max{χ̃1, χ̃2}. (3)

Proof. We know that G̃1 is a path fuzzy graph.
Hence, FCN of G̃1 is shown in Equation (2).
Whereas, χ̃2(G̃2) = {(k, Lχ̃2 (k))}. We verify maxi-
mum of χ̃, χ̃1, χ̃2 based on the concept of maximum
of discrete fuzzy numbers through α-cut sets as in [7].
Given α ∈ [0, 1], the α-cut sets of χ̃1 and χ̃2 are χα

1 =
{lα1 , . . . , lαm} and χα

2 = {kα
1 , . . . , kα

n}, respectively.
The supports of χ̃1 and χ̃2 are presented as S(χ1)

and S(χ2), respectively. We provide the set

S(χ1)
∨

S(χ2) = {z| max{min S(χ1), min S(χ2)} ≤
z ≤ max{max S(χ1), max S(χ2)}}.
= {1, 2, 3, . . . , max{n1, n2}}.

In one hand, we can check the inequality (3) by
comparing the maximum of max{χ̃1, χ̃2} and χ̃ as
follows:
Let Pα = {z ∈ S(χ1)

∨
S(χ2)| max{lα1 , kα

1 } ≤ z ≤
max{lαm, kα

n}}. Let αk
min = min{Lχ̃1 (k), Lχ̃2 (k)} for

k ≥ 1. It is visible that

χ
α1

min
1 = {1, 2, 3, . . . , n1};

χ
α2

min
1 = {2, 3, . . . , n1}; . . . ;

χ1
1 = {k ∈ χ̃1|Lχ̃1 (k) = 1} = {l′, . . . , n1},

l′ = min{1 ≤ k ≤ n1|Lχ̃1 (k) = 1}.

χ
α1

min
2 = {1, 2, 3, . . . , n2};

χ
α2

min
2 = {2, 3, . . . , n2}; . . . ;

χ1
2 = {k′, . . . , n2},

k′ = min{1 ≤ k ≤ n2|Lχ̃2 (k) = 1}.
Based on Equation (2), we get l′ = 2 ≤ k′. It means
that max{l′, k′} = k′. Therefore,

Pα1
min = {1, 2, 3, . . . , max{n1, n2}};

Pα2
min = {2, 3, . . . , max{n1, n2}};

Pα3
min = {3, . . . , max{n1, n2}}; . . . ;

P1 = {k′, . . . , max{n1, n2}}.

Thus,

max{χ̃1, χ̃2} = {(1, α1
min), (2, α2

min), (3, α3
min), . . . ,

(k′, 1), . . . , (max{n1, n2}, 1)}.

In addition, FCN of the cartesian product G̃ can be
obtained through Theorem 1 as follows:
χ̃ = {(1, α1

min), (2, α2
min), (3, α3

min), . . . (k′, 1), . . . ,
(n1 × n2, 1)}.

Further, we compare max{χ̃1, χ̃2} and χ̃. We
obtain:

Pα1
min = {1, 2, 3, . . . , n1 × n2};

Pα2
min = {2, 3, . . . , n1 × n2};

Pα3
min = {3, . . . , n1 × n2}; . . . ;

P1 = {k′, . . . , n1 × n2}.

Hence,
max{max{χ̃1, χ̃2}, χ̃}
= {(1, α1

min), (2, α2
min), (3, α3

min), . . . , (k′, 1), . . . ,

(n1 × n2, 1)} = χ̃.

Thus, χ̃ � max{χ̃1, χ̃2}.
In other hand, we can prove the inequality (3) by

comparing the minimum of max{χ̃1, χ̃2} and χ̃ as
follows:

S(max{χ̃1, χ̃2})
∧

S(χ)

= {z| min{min S(max{χ̃1, χ̃2}), min S(χ)} ≤ z ≤
min{max S(max{χ̃1, χ̃2}), max S(χ)}.
= {1, 2, 3, . . . , max{n1, n2}}.

It is clear that S(max{χ̃1, χ̃2}) = {1, 2, 3, . . . ,

max{n1, n2}} and S(χ) = {1, 2, . . . , n1 × n2}.
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Fig. 1. Path fuzzy graph G̃1 and fuzzy graph G̃2.

Let Qα = {z ∈ S(max{χ̃1, χ̃2})
∧

S(χ)| min{lα1 , kα
1 }

≤ z ≤ min{lαm, kα
n}}. By the same way, we get

Qα1
min = {1, 2, 3, . . . , max{n1, n2}};

Qα2
min = {2, 3, . . . , max{n1, n2}};

Qα3
min = {3, . . . , max{n1, n2}}; . . . ;

Q1 = {k′, . . . , max{n1, n2}}.

Thus,
min{max{χ̃1, χ̃2}, χ}
= {(1, α1

min), (2, α2
min), (3, α3

min), . . . , (k′, 1),

. . . , (max{n1, n2}, 1)}
= max{χ̃1, χ̃2}

We also have χ̃ � max{χ̃1, χ̃2} and the theorem is
proved. �

Furhermore, a remark related to Theorem 1 and
Theorem 2 is given as follows.

Remark 1. Given G̃1, G̃2 with the underlying crisp
graphs G∗

1, G
∗
2, respectively and their chromatic

numbers are χ∗
1, χ

∗
2. When the degree Lχ̃(k) = 0

for 1 ≤ k < max{χ∗
1, χ

∗
2} and Lχ̃(k) = 1 for k =

max{χ∗
1, χ

∗
2}, then FCN of the cartesian product

χ̃(G̃1�G̃2) becomes chromatic number of the carte-
sian product of crisp graphs χ∗(G∗

1�G∗
2). In other

words, the equality χ = max{χ∗
1, χ

∗
2} is fulfilled in

the chromatic number of cartesian product of crisp
graphs, but we only get the inequality in the FCN of
the cartesian product.

An illustration of Theorem 1 is given in
Example 1.

Example 1. Given two fuzzy graphs G̃1(V1, Ẽ1) and
G̃2(V2, Ẽ2) in Fig. 1 and the cartesian product is
shown in Fig. 2.

FCN of fuzzy graphs G̃1 and G̃2 are shown in Table
1 (column 3 of rows 1 and 2). Meanwhile, FCN of the
cartesian product that determined through Theorem
1 is also presented in Table 1 (column 3 of row 3).

Further, we compare FCN χ̃1, χ̃2, and χ̃ by using
ranking of discrete fuzzy numbers through α-cut
which is proved in Theorem 2. Based on Table 1:
α1

min = 0.1, α2
min = 0.4, α3

min = 0.8, α4
min = 0.9,

α1
min = 1. Further,

Fig. 2. The cartesian product G̃1�G̃2 of fuzzy graphs in Fig. 1.
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Table 1
FCN of G̃1, G̃2, and the cartesian product G̃1�G̃2 of fuzzy

graphs in Fig. 1

No. Fuzzy graph FCN

1 G̃1 χ̃1(G̃1) = {(1, 0.3), (2, 1), (3, 1)}
2 G̃2 χ̃2(G̃2) = {(1, 0.1), (2, 0.4), (3, 0.8),

(4, 0.9), (5, 1), (6, 1)}
3 G̃ = G̃1�G̃2 χ̃(G̃) = {(1, 0.1), (2, 0.4), (3, 0.8),

(4, 0.9), (5, 1), (6, 1),
(7, 1), . . . , (18, 1)}.

S(χ̃1)
∨

S(χ̃2) = {1, 2, 3, . . . , 6},
P0.1 = {1, 2, 3, 4, 5, 6}; P0.3 = {2, 3, 4, 5, 6};
P0.4 = {2, 3, 4, 5, 6}; P0.8 = {3, 4, 5, 6};
P0.9 = {4, 5, 6}; P1 = {5, 6}.

Therefore, max{χ̃1,χ̃2}={(1, 0.1), (2, 0.4), (3, 0.8),
(4, 0.9), (5, 1), (6, 1)} = χ̃2.

Moreover, we compare max{χ̃1, χ̃2} and χ̃ as fol-
lows:

S(max{χ̃1, χ̃2})
∨

S(χ̃) = {1, 2, 3, . . . , 18}.
P0.1 = {1, 2, 3, . . . , 18}; P0.3 = {2, 3, . . . , 18};
P0.4 = {2, 3, . . . , 18}; P0.8 = {3, 4, . . . , 18};
P0.9 = {4, 5, . . . , 18}; P1 = {5, 6, . . . , 18}.

We get max{max{χ̃1, χ̃2}, χ̃}={(1, 0.1), (2, 0.4),
(3, 0.8), (4, 0.9), (5, 1), (6, 1), (7, 1), . . . , (18, 1)} =
χ̃. Thus, χ̃ � max{χ̃1, χ̃2}.

We can also get FCN of the cartesian product χ̃(G̃)
in Table 1 (row 3, column 3) by using an algorithm
discussed in Section 3.2.

3.2. A proposed algorithm to find FCN of
cartesian product of path and other fuzzy
graphs

An algorithm to find FCN of cartesian product of
path and other fuzzy graphs is designed as shown in
Table 2. Step 1 until Step 6 (in Table 2) are input-
ing vertices and edges of fuzzy graphs G̃1, G̃2 and
G̃ = G̃1�G̃2. Steps 7–8 are finding fuzzy chromatic
number of G̃1, G̃2 by using FCN function in Matlab
[30]. Furthermore, Step 9 until Step 16 are calcu-
lating degrees of k in FCN of the cartesian product
χ̃ = {(k, Lχ̃(k))} based on Theorem 1. Finally, Step
17 and Step 18 are to print the FCN.

The algorithm has been evaluated on many
cartesian product of path and other fuzzy graphs. In

Table 2
Algorithm to find FCN of cartesian product of path and other

fuzzy graphs

Steps Commands

1 Input E1, μ1 %edges in G̃1 and its
membership function

2 Input E2, μ2 %edges in G̃2 and its
membership function

3 V1 = unique(E1);V2 = unique(E2) % define vertex sets
of G̃1 and G̃2

4 set n1 = numel (V1) % cardinality of V1

5 set n2 = numel (V2 ) % cardinality of V2

6 set n = n1.n2 % cardinality of
V1 × V2

7 set [k1 L1] = FCN (E1, μ1) %find FCN of G̃1

8 set [k2 L2] = FCN (E2, μ2) %find FCN of G̃2

9 set L(1) = min(L1(1), L2(1)) % calculate degree
of k = 1 in FCN χ̃

10 if k′ = min k ∈ {1, 2, . . . , n2} % calculate degree of
k > 1 in FCN χ̃

11 for j=1 to k′ − 1
12 L(j) = min(L1(j), L2(j))
13 end
14 else
15 L(j) = 1
16 end
17 set k = 1 : n

18 Print χ̃ =[k L] % display FCN of
G̃1�G̃2

the next section, we present one of the experimental
results related to the algorithm.

3.3. Experimental results

Let us consider path fuzzy graph G̃1, fuzzy graph
G̃2 in Fig. 1, and the cartesian product G̃1�G̃2 is
depicted in Fig. 2. FCN of G̃1, G̃2, and FCN of the
cartesian product G̃1�G̃2 are presented in Table 1.
Whereas, the cartesian product obtained by compu-
tation using algorithm in [32] is presented in Fig. 3.
FCN of the cartesian product in Table 1 (row 3)
which is obtained from the proposed algorithm and
the algorithm in [32] are displayed in Figs. 4 and 5,
respectively.

Representation of FCN of G̃1�G̃2 in Fig. 2 by
using the proposed algorithm is given in Fig. 4. The
algorithm is evaluated using Matlab R2016a. The
average running time for finding FCN of the cartesian
product through the proposed algorithm is 0.80978
seconds (Fig. 4). When we determine FCN of the
cartesian product by means of general algorithm in
[32], we get average running time 48.5936 seconds
as shown in Fig. 5. The inputs to be proceed in the
proposed algorithm are the edge sets E∗

1, E
∗
2 with
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Fig. 3. The cartesian product G̃ = G̃1�G̃2 in Fig. 2 represented
by Matlab.

Fig. 4. Output of finding FCN of the cartesian product in Fig. 2 by
the proposed algorithm.

Fig. 5. Output of finding FCN of the cartesian product in Fig. 2 by
the general algorithm in [32].

the cardinality m1, m2, respectively, and the sets of
degree of membership of edges μ1, μ2. Whilst, the
edge set to be proceed in the previous algorithm [32]
has the cardinality m1 × |V2| + m2 × |V1|. There-
fore, the size of inputs in the proposed algorithm (in
Table 2) is smaller than the size of inputs in the pre-
vious algorithm [32]. Finally, the proposed algorithm
always give less average running time compared with
the general algorithm in [32].

4. Conclusions

We have constructed fuzzy chromatic number
(FCN) of cartesian product of path and other fuzzy
graphs in a theorem. Also, we have compared FCN
of both fuzzy graphs and their cartesian product
through the maximum concept of discrete fuzzy
numbers. We show lower bound of FCN of the carte-
sian product in a theorem. Further, we have given
the algorithm of constructing FCN of the carte-
sian product and the evaluation of the algorithm
is shown in the experimental results. In upcoming
research, we will construct FCN of cartesian prod-
uct of any two fuzzy graph, examine the properties
on it, design an algorithm, and verify complexity
of the algorithm. Also, we will investigate FCN of
strong product of fuzzy graphs, verify properties of
the FCN, create an algorithm to find it, and show it
complexity.
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