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Abstract

We focus on fuzzy graphs with crisp vertex and fuzzy edge sets. A concept of the fuzzy chromatic number of these graphs 
based on fuzzy independent vertex set is used in this paper. A modified algorithm called a fuzzy chromatic algorithm is developed 
to find the fuzzy chromatic number of union of fuzzy graphs. Running time and complexity of the algorithm are also analyzed. 
Furthermore, we investigate some properties of the fuzzy chromatic number of union of fuzzy graphs. Finally, an application of 
the fuzzy chromatic number to determine the number of phases of an integrated traffic light system is proposed. We get different 
phases with different degrees of safety.
© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

In a classical graph G(V, E), connections between vertices in V are precisely known i.e., adjacent or not. Some 
real-life problems have been modelled using the classical graph, such as telecommunication, transportation, electricity, 
and traffic networks. In a traffic network, there are some factors that can result in traffic congestion at an intersection.

Therefore, an interesting research in this network is to determine the number of phases to arrange a traffic light. 
A phase is a part of a signal cycle with a green light allocated to a specific combination of traffic movements [1]. 
To model a traffic network using a classical graph, traffic flows that move from one direction to the others can be 
expressed as vertices. If two traffic flows may collide when they move simultaneously, then both are connected by an 
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edge. The minimum number of phases required on a traffic light system is determined through the chromatic number 
of the classical graph.

In fact, traffic congestion at an intersection is attributable to indeterminate factors such as the number of vehicles, 
the length of cycle time of traffic light, situational conditions, bad attitude of drivers, etc. Hence, a tool is needed to 
deal with vagueness phenomena on the network. Since a fuzzy set theory had been introduced by Zadeh [2], some 
kinds of fuzzy graphs have been proposed by researchers. Kaufmann [3] introduced fuzzy graphs consisting of crisp 
vertex and fuzzy edge sets (type 1 fuzzy graphs). Moreover, Rosenfeld [3] initiated the concept of fuzzy graphs with 
fuzzy vertex and fuzzy edge sets (type 2 fuzzy graphs). Some researchers have generalized several basic theories 
of graphs. For instance, Craine [4] investigated characteristics of fuzzy interval graphs. Furthermore, Blue et al. [5]
classified some types of fuzziness in graphs. Recently, Mathew et al. [6] introduced transitive blocks together with 
their applications in fuzzy interconnection networks. Moreover, Binu et al.[7] proposed a connectivity index of a fuzzy 
graph and its application to human trafficking.

Other concepts in the classical graph that have been generalized are vertex, edge, and total coloring, as well as 
independent sets. Vertex coloring methods in fuzzy graphs have been studied by researchers. Eslahchi and Onagh 
[8] constructed this method for type 2 fuzzy graphs based on strong adjacencies between vertices. In a similar way, 
Kishore and Sunitha [9] investigated strong coloring and chromatic number of type 2 fuzzy graphs based on strong arcs 
between vertices. They also gave an application of strong coloring of fuzzy graphs to solve traffic light problems. On 
type 1 fuzzy graphs, Bershtein and Bozhenuk [10] proposed a vertex coloring method based on maximal independent 
vertex sets and defined fuzzy chromatic number of fuzzy graphs through these sets. Further, Munoz et al. [11] initiated 
a method to color vertices of type 1 fuzzy graphs by means of α-cut coloring of the graphs with α ∈ [0, 1]. Cioban [12]
introduced a method for vertex coloring of fuzzy graphs through δ-fuzzy independent vertex sets with δ ∈ [0, 1] and 
the chromatic number was called δ-chromatic number. Keshavarz [13] established a method to color a type 1 fuzzy 
graph based on incompatibility degrees of adjacent vertices. For more research on fuzzy graphs, readers are referred 
to [14], [15], [16], [17], and [18].

In the year 2015, Rosyida et al. [19] presented a method to determine fuzzy chromatic number of fuzzy graphs 
based on δ-chromatic numbers. An algorithm to determine the number was also constructed. In the recent article, we 
put forward a modified fuzzy chromatic algorithm to find fuzzy chromatic number of union of fuzzy graphs that will 
be a useful tool in solving real-life problems. The running time and complexity of the algorithm are also verified. In 
continuation of the previous work in [19], we are also interested in investigating some properties of fuzzy chromatic 
number of union of fuzzy graphs. For example in classical graphs, there is a property that chromatic number of union 
of graphs is χ(G1 ∪ G2) = max{χ1(G1), χ2(G2)}. We investigate whether or not this property could be generalized 
in fuzzy graphs. This is a new result in the theory of fuzzy graph coloring.

The problem of coloring fuzzy graphs is an interesting one because many real problems can be solved using the 
concept. Keshavarz [13] gave an application of vertex coloring on these graphs to solve a cell site assignment problem 
in a telecommunication network. Munoz et al. [11] discussed the application of α-cut chromatic number in arranging 
traffic flows at an intersection. We differ from the work by Munoz et al. in that we use fuzzy chromatic number and 
its application involving two intersections. We describe traffic flows on two intersections by firstly setting it into one 
integrated traffic light system through union of two fuzzy graphs and determine the number of phases on the system 
by using fuzzy chromatic number of union of fuzzy graphs. To the extent of our knowledge, these problems have not 
been investigated until now.

This paper is organized as follows. Section 2 discusses some basic concepts in: graph coloring, fuzzy set theory, 
and fuzzy graph coloring. In Section 3, an algorithm and some results on properties of fuzzy chromatic number of 
union of fuzzy graphs are given. In Section 4, an application of this number is proposed. Finally, conclusions are given 
in Section 5.

2. Preliminaries

In this section, we recall some definitions in graph theory, fuzzy set theory and fuzzy graph coloring that will be 
used in constructing fuzzy chromatic number of union of fuzzy graphs.
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2.1. Basic concepts of vertex coloring

A graph G(V, E) consists of a nonempty vertex set V = V (G) and an edge set E = E(G). In this paper, we 
consider simple, finite and undirected graphs. An edge e between two vertices u and v is presented as e = uv rather 
than e = (u, v). Two vertices connected by an edge are called adjacent. Given two graphs G1(V1, E1) and G2(V2, E2). 
A graph G(V, E) = G1 ∪ G2 is called union of G1 and G2 if V = V1 ∪ V2 and E = E1 ∪ E2. If V1 ∩ V2 = ∅, then 
G(V, E) = G1 ∪ G2 is called disjoint union of G1 and G2 [20].

A subset I ⊆ V (G) is said to be an independent vertex set of G if uv /∈ E(G) for all u, v ∈ I . A mapping f : V →
{1, 2, . . . , k} is called a k-coloring of graph G(V, E) if it satisfies f (u) 	= f (v) whenever uv ∈ E. As an equivalent 
definition, a k-coloring of graph G can be defined as a partition of V into k-independent vertex sets I1, I2, · · · , Ik

such that the subsets Ii are nonempty (i = 1, 2, . . . , k), Ii ∩ Ij = ∅ for i 	= j , and I1 ∪ I2 ∪ . . .∪ Ik = V . The minimum 
number of colors k in the k-coloring of G is called chromatic number of G. The concept of vertex coloring of crisp 
graph G through partition of the vertex set of G into independent vertex sets has been generalized in fuzzy graphs by 
Cioban [12]. This generalization will be discussed in the next section. Moreover, the chromatic number of union of 
two graphs was given in [21] as follows: χ(G1 ∪G2) = max{χ(G1), χ(G2)}. In this paper, we generalize the property 
in fuzzy graphs by using two methods of ranking discrete fuzzy numbers.

2.2. Basic concepts of fuzzy sets

Zadeh [2] first introduced the concept of fuzzy sets in 1965. Let X be a nonempty universal set. A fuzzy set B̃
on X is a set {(x, μ

B̃
(x))|x ∈ X} where μ

B̃
: X → [0, 1] is called a membership function of fuzzy set B̃. Further, 

we call classical sets as crisp sets. A set S(B̃) = {x ∈ X|μ
B̃
(x) > 0} is said to be a support of fuzzy set B̃ . A set 

h(B̃) = sup{μ
B̃
(x)|x ∈ X} is called a height of fuzzy set B̃. Moreover, fuzzy set B̃ is said to be a normal fuzzy set if 

h(B̃) = 1. Let α ∈ (0, 1], a set Bα = {v ∈ X|μ
B̃
(v) ≥ α} is called an α-cut of fuzzy set B̃.

Given two fuzzy sets Ã1 and Ã2 on X where their membership functions are μ
Ã1

: X → [0, 1] and μ
Ã2

: X →
[0, 1], respectively. A symbol Ã1 ⊆ Ã2 means that fuzzy set Ã1 is a subset of Ã2 with μ

Ã1
(x) ≤ μ

Ã2
(x) for all x ∈ X. 

Furthermore, a union B̃ = Ã1 ∪ Ã2 is a fuzzy set on X with a membership function μ
B̃

: X → [0, 1] which is defined 
as μ

B̃
(x) = max{μ

Ã1
(x), μ

Ã2
(x)} for all x ∈ X. Meanwhile, an intersection D̃ = Ã1 ∩ Ã2 is a fuzzy set on X with a 

membership function μ
D̃

: X → [0, 1] which is defined as μ
D̃

(x) = min{μ
Ã1

(x), μ
Ã2

(x)} for all x ∈ X.

A fuzzy set Ã on real number system R which satisfies the following properties: 1) Ã is normal i.e., ∃x0 ∈ R such 
that μ

Ã
(x0) = 1; 2) Ãα is a closed interval for every α ∈ (0, 1]; and 3) the support S(Ã) is bounded, is called a fuzzy 

number [22].
The concept of discrete fuzzy numbers has been introduced in [23], [24], [25], and [26]. Let R be a real number 

system. A fuzzy set Ã with a membership function μ :R → [0, 1] is said to be a discrete fuzzy number on R if its sup-
port is finite, i.e., there exist a1, a2, . . . , an ∈ R with a1 < a2 < . . . < an such that the support S(Ã) = {a1, a2, . . . , an}, 
and there are natural numbers r, s with 1 ≤ r ≤ s ≤ n such that: 1) μ

Ã
(ai) = 1 for any natural number i with r ≤ i ≤ s

(core); 2) μ
Ã
(ai) ≤ μ

Ã
(aj ) for any ai, aj ∈R with 1 ≤ i ≤ j ≤ r ; 3) μ

Ã
(ai) ≥ μ

Ã
(aj ) for any i, j with s ≤ i ≤ j ≤ n. 

We have verified that fuzzy chromatic number of fuzzy graphs is a discrete fuzzy number in [19].
There are some methods for determining maximum and minimum on fuzzy numbers. Zadeh [2] gave these numbers 

using the extension principle. Other methods were given by some researchers such as Dubois and Prade [27], Wang and 
Kerre [28], and Matarazzo and Munda [29]. As claimed by Casasnovas and Riera ([24], [25]), the previous methods 
might not satisfy the general properties of a discrete fuzzy number. As a result, they gave a method to compare these 
numbers through the α-cut sets and verified that the maximum and minimum between fuzzy numbers satisfy the 
properties of a discrete fuzzy number. In addition, Basirzadeh [30] proposed a method to compare discrete fuzzy sets 
through a defuzzification process depended on a related α-cut set.

Since fuzzy chromatic number is a discrete fuzzy number, we use methods in [24] and [25] to compare the 
numbers. Let Ũ , Ṽ be two discrete fuzzy numbers. For each α ∈ [0, 1], the sets Uα = {xα

1 , . . . , xα
m} and V α =

{yα
1 , . . . , yα

n } are the α-cut sets of Ũ and Ṽ respectively. Let S(Ũ) 
∨

S(Ṽ ) be a set {z| max{minS(Ũ), minS(Ṽ )} ≤
z ≤ max{maxS(Ũ), maxS(Ṽ )}}. It was defined an α-cut set

Aα = {z ∈ S(Ũ)
∨

S(Ṽ )|max{minxα
1 ,minyα

1 } ≤ z ≤ max{maxxα
m,maxyα

n }}.
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The maximum of Ũ and Ṽ is a fuzzy set max{Ũ , Ṽ } = {(z, μmax{Ũ ,Ṽ }(z))} with μmax{Ũ ,Ṽ }(z) = sup{α ∈ [0, 1]|z ∈
Aα}. Further, let S(Ũ) 

∧
S(Ṽ ) be a set {z| min{minS(Ũ), minS(Ṽ )} ≤ z ≤ min{maxS(Ũ), maxS(Ṽ )}}. The α-cut 

set

Bα = {z ∈ S(Ũ)
∧

S(Ṽ )|min{minxα
1 ,minyα

1 } ≤ z ≤ min{maxxα
m,maxyα

n }}.
The minimum of Ũ and Ṽ is a fuzzy set min{Ũ , Ṽ } = {(z, μmin{Ũ ,Ṽ }(z))} with

μmin{Ũ ,Ṽ }(z) = sup{α ∈ [0,1]|z ∈ Bα}.
On the other hand, we also use a method to compare discrete fuzzy sets by using a defuzzification which depends on 

a decision level higher than α as given in [30]. Given a universal set X and v1, v2, . . . , vn ∈ X. Let Ã = {(vi, μÃ
(vi))}

for i ∈ {1, 2, . . . , n} be a discrete fuzzy set. Given a level α ∈ [0, 1]. A quantity Qα(Ã) represents a defuzzification 
of fuzzy set Ã which depends on a decision level higher than α. It is assumed that v1 ≤ v2 ≤ . . . ≤ vn. A method to 
calculate crisp value Qα(Ã) is as follows:

1. If all values of membership functions in Ã are increasing i.e., μ
Ã
(v1) ≤ μ

Ã
(v2) ≤ . . . ≤ μ

Ã
(vn) and 0 ≤ α ≤

μ
Ã
(vn), then Qα(Ã) is defined as:

Qα(Ã) = v1(μÃ
(v1) − α) +

n∑
i=2

vi(μÃ
(vi) − μ

Ã
(vi−1)). (1)

2. If all values of membership functions in Ã are decreasing i.e., μ
Ã
(v1) ≥ μ

Ã
(v2) ≥ . . . ≥ μ

Ã
(vn) and 0 ≤ α ≤

μÃ
(vn), then

Qα(Ã) = vn(μÃ
(vn) − α) +

n−1∑
i=1

xi(μÃ
(vi) − μ

Ã
(vi+1)).

3. For 0 ≤ α ≤ min{μ
Ã
(v1), μÃ

(v2), . . . , μÃ
(vn)}: if there is vt ∈ Ã such that μ

Ã
(v1) ≤ μ

Ã
(v2) ≤ . . . ≤ μ

Ã
(vt ) and 

μÃ
(vt ) ≥ μ

Ã
(vt+1) ≥ . . . ≥ μ

Ã
(vn), then

Qα(Ã) = v1(μÃ
(v1) − α) +

t∑
i=2

vi(μÃ
(vi) − μ

Ã
(vi−1))+

vn(μÃ
(vn) − α) +

n−1∑
i=t

vi(μÃ
(vi) − μ

Ã
(vi+1)).

Let Ã and B̃ be two arbitrary discrete fuzzy sets. Given α ∈ [0, 1]. Basirzadeh et al. [30] used defuzzifications Qα(Ã)

and Qα(B̃) to compare discrete fuzzy sets Ã and B̃ as follows:

Ã ≤α B̃ ⇔ Qα(Ã) ≤ Qα(B̃); Ã =α B̃ ⇔ Qα(Ã) = Qα(B̃);
Ã ≥α B̃ if and only if Qα(Ã) ≥ Qα(B̃); (2)

where Ã ≤α B̃ means Ã is less than or equal to B̃ at a decision level higher than α. If we use different decision level 
α, then we may get different ranking.

2.3. Basic concepts of fuzzy graph coloring

In this section, we discuss some terminologies in fuzzy graphs and fuzzy graph coloring as cited from [10], [12], 
[15], [17], and [18].

Let V be a finite nonempty set and E ⊆ V × V . A fuzzy graph which has a crisp vertex set V and a fuzzy edge set 
Ẽ with membership function μ : V × V → [0, 1] is denoted as G̃(V , Ẽ). Meanwhile, a fuzzy graph which consists 
of a fuzzy vertex set Ṽ with membership function σ : V → [0, 1] and a fuzzy edge set Ẽ with membership function 
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μ : V × V → [0, 1] such that μ(uv) ≤ min{σ(u), σ(v)} for all u, v ∈ V is denoted as G̃(Ṽ , Ẽ). In this paper, we deal 
with fuzzy graph G̃(V , Ẽ). Further, we call classical graph G(V, E) as a crisp graph. The underlying graph of fuzzy 
graph G̃(V, Ẽ) is a crisp graph G∗(V ∗, E∗) with V ∗ = V and E∗ = {uv|μ(uv) > 0, u, v ∈ V }. Let G̃1(V1, Ẽ1) be a 
fuzzy graph with crisp vertex set V1 and fuzzy edge set Ẽ1 with a membership function μ

Ẽ1
: V1 ×V1 → [0, 1]. Fuzzy 

graph G̃1 is said to be a fuzzy subgraph of G̃(V, Ẽ) if V1 ⊆ V and Ẽ1 ⊆ Ẽ.
In this paper, we rewrite the notion of union of fuzzy graphs cited from [15] as presented in Definition 1.

Definition 1. Let V1 and V2 be finite nonempty sets. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs where the 
membership functions of Ẽ1 and Ẽ2 are μ1 and μ2, respectively. A union of G̃1 and G̃2 is a fuzzy graph G̃(V , Ẽ) =
G̃1 ∪ G̃2 which has a vertex set V = V1 ∪ V2 and a fuzzy edge set Ẽ = Ẽ1 ∪ Ẽ2 with

μ
Ẽ
(uv) = max{μ1(uv),μ2(uv)},

for all u, v ∈ V . If V1 ∩ V2 = ∅, then G̃(V , Ẽ) = G̃1 ∪ G̃2 is called disjoint union of fuzzy graphs G̃1 and G̃2.

The concept of fuzzy independent vertex set based on δ ∈ [0, 1] proposed by Cioban [12] is presented in Defini-
tion 2.

Definition 2. Let G̃(V, Ẽ) be a fuzzy graph. Given δ ∈ [0, 1]. A fuzzy independent vertex set S ⊆ V is defined as a 
set where μ(uv) ≤ δ for all u, v ∈ S. The fuzzy independent vertex set S is also called δ-fuzzy independent vertex set 
denoted by Sδ .

A degree of independence of fuzzy independent vertex set Sδ has been given in [18] as follows: α(Sδ) = 1 −
max{μ(xy)|x, y ∈ Sδ}. When δ = 0, fuzzy independent vertex set Sδ has degree of independence α(Sδ) = 1 and it 
becomes a crisp independent vertex set of underlying crisp graph G∗. When δ = 1, fuzzy independent vertex set 
Sδ has degree α(Sδ) = 0. In other words, fuzzy independent vertex set Sδ on δ = 1 does not coincide with a crisp 
independent vertex set of underlying crisp graph G∗. In Definition 3, the concept of k-coloring of fuzzy graph G̃ has 
been rewritten based on δ-fuzzy independent vertex sets given by Cioban [12].

Definition 3. Given δ ∈ [0, 1]. A k-coloring of fuzzy graph G̃(V , Ẽ) is defined as a function f : V → {1, 2, . . . , k}
such that f (u) = f (v) if μ(uv) ≤ δ. The minimum number k in the k-coloring of G̃ is called δ-chromatic number of 
G̃ and denoted by χδ(G̃).

Based on Definition 3, a k-coloring of fuzzy graph G̃(V , Ẽ) can be obtained by partitioning vertex set V into k-sets 
which are δ-fuzzy independent vertex sets {Sδ

1, . . . , S
δ
k } such that Sδ

i ∩ Sδ
j = ∅ for all i 	= j and Sδ

1 ∪ . . . ∪ Sδ
k = V . 

Furthermore, an approach to determine fuzzy chromatic number of fuzzy graph G̃(V, Ẽ) which is cited from [19], is 
presented in Definition 4.

Definition 4. Let G̃(V , Ẽ) be a fuzzy graph with n vertices. A fuzzy chromatic number of G̃, denoted by χ̃(G̃), is a 
fuzzy set

χ̃ (G̃) = {(k,Lχ̃ (k))|k = 1, . . . , n}
where the value Lχ̃(k) = max{1 − δ|δ ∈ [0, 1], χδ(G̃) = k} represents a degree of membership of number k in fuzzy 
chromatic number χ̃ .

Note that if δ ∈ [0, 1] does not exist such that χδ(G̃) = k, then we define Lχ̃(k) = Lχ̃ (k − 1) and this is consistent 
to a property of fuzzy chromatic number in [10]. Let us consider the following example.

Example 1. Given fuzzy graph G̃(V, Ẽ) in Fig. 1 which has vertex set V = {AB, DC, AD, CB, CD, DB} and fuzzy 
edge set Ẽ consists of 7 edges. It can be observed that vertices AD and CD are δ-fuzzy independent for δ = 0.48. 
Meanwhile, vertices AD and CB are δ-fuzzy independent on δ = 0 and are associated with crisp independent vertices 
of underlying crisp graph G∗.
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Fig. 1. A fuzzy graph with 6 vertices.

Table 1
Partitions on V and δ-chromatic numbers of G̃.

δ Partitions on V χδ(G̃)

0 {{DC,AD,DB}, {CD,CB}, {AB}} 3
0.48 {{DC,AD,DB}, {CD,CB}, {AB}} 3
0.53 {{DC,AD,DB}, {CD,CB}, {AB}} 3
0.61 {{AB,DB,CB}, {DC,AD,CD}} 2
0.87 {{AB,DB,CB}, {DC,AD,CD}} 2
0.96 V 1

Some partitions of V and δ-chromatic numbers of G̃ are presented in Table 1. Based on Definition 4 and Table 1, 
we obtain fuzzy chromatic number of G̃ as follows:

χ̃ (G̃) = {(k,Lχ̃ (k))|k = 1, . . . , n} = {(1,0.04), (2,0.39), (3,1), (4,1), (5,1), (6,1)}.

In general, δ-chromatic numbers decrease when values of δ increase [19]. Also, degrees Lχ̃ (k) in fuzzy chromatic 
number χ̃ decrease when values of δ increase.

3. Main results

This section consists of two subsections. We propose a modified fuzzy chromatic algorithm to determine fuzzy 
chromatic number of union of fuzzy graphs in the first subsection. Later, the running time and complexity of the 
algorithm are shown. In the second subsection, we generalize the chromatic number of union of crisp graphs into 
fuzzy chromatic number of union of fuzzy graphs by means of Definition 4. The result is presented in Theorem 1. 
Some related properties are also investigated as presented in Theorems 2 and 3. Moreover, some properties of fuzzy 
chromatic number of a fuzzy subgraph are provided in Lemma 1 and Theorem 4. By using Theorem 1, we are able to 
determine fuzzy chromatic number of union of fuzzy graphs in a simple way.

3.1. Modified fuzzy chromatic algorithm for union of fuzzy graphs

In order to determine fuzzy chromatic number of union of fuzzy graphs, an algorithm (with its complexity), the 
flowchart (in Fig. 2), and the running time (in Fig. 3) are proposed. The algorithm is structured based on the concept 
of fuzzy chromatic number in Definition 4. The first step is to divide vertex set V into fuzzy independent vertex sets 
which depend on δ ∈ [0, 1] as mentioned in Definition 2. The second step is to find δ-chromatic numbers of fuzzy 
graph G̃ based on the partitions used in the first step. Lastly, the third step is to determine fuzzy chromatic number of 
union of fuzzy graphs based on the δ-chromatic numbers.
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Algorithm for fuzzy chromatic number of union of fuzzy graphs.
1 Input n1, n2 number of vertices O(1)

2 V1 = 1 : n1;V2 = 1 : n2 % V1 = {vi |i = 1, . . . , n1}, V2 = {v′
i |i = 1, . . . , n2} O(1)

3 V = V1 ∪ V2 O(1)

4 E1=combination(n1,2) % E1 = {ei |i = 1, . . . ,m1, ei = vj vk, j 	= k, j, k = 1, . . . , n1} O(1)

5 E2=combination(n2,2) % E2 = {ei |i = 1, . . . ,m2, } O(1)

6 for i =1 to m1 O(m)

7 μ1(i)= input weight of edge-i in E1 % μ1 = {μi |i, . . . ,m1,μi = μ1(ei )} O(m)

8 end O(m)

9 for i =1 to m2 O(m)

10 μ2(i)= input weight of edge-i in E2 % μ2 = {μi |i, . . . ,m2,μi = μ2(ei )} O(m)

11 end O(m)

12 E = E1 ∪ E2 ; μ(ei ) = max{μ1(ei ),μ2(ei )} % E = {ei |i = 1, . . . ,m} O(m)

13 δ = sort(μ) O(1)

14 for ind = 1 to m O(m)

15 d=δ(ind); s=0 O(m)

16 for h = 1 to m O(m2)

17 if μ(h) ≤ d O(m2)

18 s=s+1 O(m2)

19 S(s,:)=E(h,:), % S = {ei |i = 1, . . . ,p,μi ≤ d,p ≤ m} O(m2)

20 end O(m2)

21 end O(m2)

22 for i = 1 to p O(m2)

23 T=V-S(i,:); %T = {vi |i = 1, . . . , q, vi /∈ S(i, :), q ≤ m} O(m2)

24 P=S(i,:) O(m2)

25 for j =1 to q O(m3)

26 [r,c] = size(P) O(m3)

27 t=1 O(m3)

28 while t ≤ r O(m4)

29 U = P(t,:); u = 1 O(m4)

30 score = 0 O(m4)

31 while u ≤ length(U) O(m5)

32 Z=sort([U(u) T(j)]) O(m5)

33 if μ(Z) ≤ d O(m5)

34 score=score+1 O(m5)

35 end O(m5)

36 u=u+1 O(m5)

37 end O(m5)

38 if score = length(U) O(m4)

39 P(t,c+1) = T(j) O(m4)

40 r=t O(m4)

41 else O(m4)

42 if t = r O(m4)

43 P(t+1,1)=T(j) O(m4)

44 r = t O(m4)

45 end O(m4)

46 end O(m4)

47 if P = V O(m4)

48 r = t O(m4)

49 end O(m4)

50 t=t+1 O(m4)

51 end O(m3)

52 end O(m3)

53 Q(:,:,i) = P O(m2)

54 end O(m2)

55 PartitionSet = Q ; crom = number of Partition in Partition Set O(m)

56 D(ind) = d; Xc(ind) = min(crom) O(m)

57 end O(m)

58 X = {k|k ∈ Xc}; L = max{1 - D|X = k}; Print χ = {k,L(k)} O(1)
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Fig. 2. A flowchart to find fuzzy chromatic number of union of fuzzy graphs.

Fig. 3 illustrates the plot of running time of the algorithm applied on Matlab R2016a. The running time is elapsed 
time for main looping (step 14-58) on the algorithm or flowchart in Fig. 2. It shows a “worst case” when membership 
degrees are assigned randomly at interval (0,1). The number of vertices varies from 3 to 7 where the membership 
degrees of edges are generated randomly and the number of trials is set to 150. It can be observed that the algorithm 
has a constant running time on all trials. Moreover the higher the number of vertices, the longer the running time.

Let us consider the fuzzy graph in Fig. 1 given in Example 1. By employing fuzzy chromatic algorithm, we get 
output of fuzzy chromatic number χ̃(G̃) = {(1, 0.04), (2, 0.39), (3, 1), (4, 1), (5, 1), (6, 1)} as presented in Fig. 4.

In the next section, we propose fuzzy chromatic number of union of fuzzy graphs which will be used later in an 
application.
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Fig. 3. Running time of modified fuzzy chromatic algorithm.

Fig. 4. An output of fuzzy chromatic algorithm for fuzzy graph in Fig. 1.

3.2. Fuzzy chromatic number of union of fuzzy graphs

In this paper, union of fuzzy graphs is used in modelling two consecutive traffic lights into one integrated traffic 
light system. After that, fuzzy chromatic number of union of fuzzy graphs is needed to determine the number of phases 
used in setting up traffic lights on the integrated system. One of new results in this subsection is a generalization of 
crisp chromatic number of union of two crisp graphs into fuzzy chromatic number of union of two fuzzy graphs 
as presented in Theorem 1. Meanwhile, the result given in [19] which is construction of a fuzzy chromatic number 
concept of fuzzy graphs is used in getting the result in Theorem 1. Other new results are comparisons between fuzzy 
chromatic numbers χ̃1(G̃1), χ̃2(G̃2), and fuzzy chromatic number of union χ̃(G̃1 ∪ G̃2) in Theorem 2 and Theorem 3
by using two methods of comparisons between discrete fuzzy numbers.

Theorem 1. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs with |V1| = n1 and |V2| = n2. Let χ̃1 and χ̃2 be 
fuzzy chromatic numbers of G̃1 and G̃2, respectively. If G̃ = G̃1 ∪ G̃2, then χ̃(G̃) = {(k, Lχ̃ (k))} where

Lχ̃ (k) =

⎧⎪⎪⎨
⎪⎪⎩

min{Lχ̃1(k),Lχ̃2(k)}, if 1 ≤ k ≤ min{n1, n2},
Lχ̃1(k), if min{n1, n2} < k ≤ n1 = max{n1, n2},
Lχ̃2(k), if min{n1, n2} < k ≤ n2 = max{n1, n2},
1, if max{n1, n2} < k ≤ n = n1 + n2.

Proof. Let V1 = {v1, v2, . . . , vn1} and V2 = {u1, u2, . . . , un2}.
Let χ̃1 = {(k, Lχ̃1(k))|k = 1, 2, . . . , n1} and χ̃2 = {(k, Lχ̃2(k))|k = 1, 2, . . . , n2} be fuzzy chromatic numbers of G̃1

and G̃2, respectively. We consider the following 3 cases:

Case 1. For 1 ≤ k ≤ min{n1, n2}.
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It follows from Definition 4 that for each k, there exists a δk ∈ [0, 1] such that we can form a partition 
{Sδk

1 , Sδk

2 , . . . , Sδk

k } on V1 which gives χδk (G̃1) = k and Lχ̃1(k) = 1 − δk . In similar way, there exists a δk′ ∈ [0, 1]
such that we can construct a partition {P δk′

1 , P
δk′
2 , . . . , P

δk′
k } on V2 which gives χδk′ (G̃2) = k and Lχ̃2(k) = 1 − δk′ .

Further, we choose δ = max{δk, δk′ } and construct a partition

Q = {Qδ
1 = S

δk

1 ∪ P
δk′
1 ,Qδ

2 = S
δk

2 ∪ P
δk′
2 , . . . ,Qδ

k = S
δk

k ∪ P
δk′
k }

which gives χδ(G̃1 ∪ G̃2) = k and

Lχ̃ (k) = 1 − δ = 1 − max{δk, δk′ }. (3)

Thus, Lχ̃ (k) = min{Lχ̃1(k), Lχ̃2(k)} can be obtained directly from (3).

Case 2. For min{n1, n2} < k ≤ max{n1, n2}.
Without loss of generality, assume that max{n1, n2} = n1. We consider two subcases as follows:

1. Maximum clique of underlying graph (G1 ∪G2)
∗ is contained in G∗

1. In this case, there exists δ1 ∈ [0, 1] such that 
we can construct a partition {Sδ1

1 , Sδ1
2 , . . . , Sδ1

k } on V1 which gives χδ1(G̃1) = k and Lχ̃1(k) = 1 − δ1. Further, we 
choose δ = δ1 and construct a partition Q = {Qδ1

1 = S
δ1
1 ∪{u1}, Qδ1

2 = S
δ1
2 ∪{u2}, . . . , Qδ1

n2 = S
δ1
n2 ∪{un2}, Qδ1

n2+1 =
S

δ1
n2+1, . . . , Q

δ1
k = S

δ1
k } on V = V1 ∪ V2 which gives χδ(G̃) = k and Lχ̃(k) = Lχ̃1(k) = 1 − δ1.

2. Maximum clique of underlying graph (G1 ∪ G2)
∗ is contained in G∗

2 and max{n1, n2} = n1. In this case, we 
obtain Lχ̃(k) = 1 = Lχ̃1(k) = Lχ̃2(k) for min{n1, n2} < k ≤ max{n1, n2}.

Case 3. For max{n1, n2} < k ≤ n = n1 + n2.

Since n1 = max{n1, n2}, we get Lχ̃(n1) = 1. It follows from Theorem 4.3 in [19] that Lχ̃(i) = Lχ̃ (j) = 1 for any i, j
with n1 ≤ i ≤ j ≤ n. If we assume max{n1, n2} = n2, we will get the result in a similar way. �

As a consequence of Theorem 1, we give a remark as follows.

Remark 1. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs.
If G̃1 ⊆ G̃2, then G̃ = G̃1 ∪ G̃2 = G̃2. Hence, fuzzy chromatic number of union G̃ = G̃1 ∪ G̃2 is χ̃(G̃) =

{(k, Lχ̃ (k))}, where Lχ̃(k) = Lχ̃2(k), for 1 ≤ k ≤ n = |V2|.

In crisp graphs, if G1 and G2 have chromatic numbers χ1 and χ2, respectively, then the chromatic number of 
union G = G1 ∪ G2 is χ = max{χ1, χ2}. We are interested in investigating this problem on fuzzy graphs, as stated in 
Theorem 2. In this paper, we use two methods to compare fuzzy chromatic numbers.

Firstly, we make use of the method to compare discrete fuzzy sets given in [30]. The symbol Qα(χ̃) stands for 
defuzzification of fuzzy set χ̃ for a decision level higher than α.

Theorem 2. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs with fuzzy chromatic numbers χ̃1 and χ̃2, respec-
tively. Let G̃(V , Ẽ) = G̃1 ∪ G̃2 be a union of G̃1 and G̃2 with |V1| = n1, |V2| = n2, and |V | = n1 + n2.

If G̃(V, Ẽ) = G̃1 ∪ G̃2 has fuzzy chromatic number χ̃(G̃) as given in Theorem 1, then Qα(χ̃) ≥ max{Qα(χ̃1),

Qα(χ̃2)} for all decision levels α ∈ [0, 1].

Proof. Let 0 ≤ α ≤ 1 and n = n1 + n2. Without loss of generality, we assume max{n1, n2} = n1. Since the values of 
membership functions of the fuzzy chromatic numbers χ̃ , χ̃1, and χ̃2 are increasing, it follows from equation (1) that:

Qα(χ̃1) = 1
(
Lχ̃1(1) − α

) + 2
(
Lχ̃1(2) − Lχ̃1(1)

) + 3
(
Lχ̃1(3) − Lχ̃1(2)

)+
. . . + n1

(
Lχ̃1(n1) − Lχ̃1(n1 − 1)

)
,

= −L (1) − α − L (2) − L (3) − . . . − L (n − 1) + n (1),

(4)
χ̃1 χ̃1 χ̃1 χ̃1 1 1
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Qα(χ̃2) = 1
(
Lχ̃2(1) − α

) + 2
(
Lχ̃2(2) − Lχ̃2(1)

) + 3
(
Lχ̃2(3) − Lχ̃2(2)

)+
. . . + n2

(
Lχ̃2(n2) − Lχ̃2(n2 − 1)

)
,

= −Lχ̃2(1) − α − Lχ̃2(2) − Lχ̃2(3) − . . . − Lχ̃2(n2 − 1) + n2(1),

(5)

Qα (χ̃) = 1
(
Lχ̃ (1) − α

) + 2
(
Lχ̃ (2) − Lχ̃ (1)

) + 3
(
Lχ̃ (3) − Lχ̃2(2)

) + . . .

+n1
(
Lχ̃(n1) − Lχ̃ (n1 − 1)

) + (n1 + 1)
(
Lχ̃ (n1 + 1) − Lχ̃(n1)

)+
. . . + n(Lχ̃ (n) − Lχ̃ (n − 1)).

Since max{n1, n2} = n1 and Lχ̃(k) = 1 for n1 < k ≤ n, we get

Qα(χ̃) = −Lχ̃ (1) − α − Lχ̃ (2) − Lχ̃ (3) − . . . − Lχ̃ (n1 − 1) + n1(1) + . . . + n(0).

Based on Theorem 1, it is obvious that

Qα(χ̃) = −α + max{−Lχ̃1(1),−Lχ̃2(1)} + max{−Lχ̃1(2),−Lχ̃2(2)}+
max{−Lχ̃1(3),−Lχ̃2(3)} + . . . + max{−Lχ̃1(n1 − 1),−Lχ̃2(n1 − 1)} + n1.

Thus, Qα(χ̃) ≥ max{Qα(χ̃1), Qα(χ̃2)}. If we assume max{n1, n2} = n2, we will get the result in a similar way and 
the theorem is proved. �

Secondly, we employ the method to compare discrete fuzzy numbers given in [24] and [25], as stated in Theorem 3.

Theorem 3. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs with V1 ∩ V2 = ∅. The fuzzy chromatic numbers of 
G̃1 and G̃2 are χ̃1 and χ̃2, respectively. If G̃ = G̃1 ∪ G̃2 is the union of G̃1 and G̃2, then fuzzy chromatic number 
χ̃(G̃) satisfies

χ̃ (G̃) ⊇ max{χ̃1, χ̃2}.

Proof. Given χ̃1 = {(k, Lχ̃1(k))} and χ̃2 = {(k, Lχ̃2(k))}.
Let α ∈ [0, 1], χα

1 = {xα
1 , . . . , xα

m} and χα
2 = {yα

1 , . . . , yα
n } are α-cut sets of χ̃1 and χ̃2 respectively. It is clear that 

S(χ̃1) = {1, 2, . . . , n1} and S(χ̃2) = {1, 2, . . . , n2}. We get S(χ̃1) 
∨

S(χ̃2) = {1, 2, . . . , max{n1, n2}}.
For each k ∈ {1, 2, . . . , min{n1, n2}}, αmin(k) = min{Lχ̃1(k), Lχ̃2(k)}, and the set αmax(k) = max{Lχ̃1(k), Lχ̃2(k)}. 

Without loss of generality, assume that min{Lχ̃1(k), Lχ̃2(k)} = Lχ̃1(k) or vice versa. The αmin and αmax-cut sets are

χ
αmin
1 = {k, k + 1, . . . , n1} = χ

αmin
2 ; χ

αmax
2 = {k′, k′ + 1, . . . , n2} and χ

αmax
1 = {k + 1, k + 2, . . . , n2} with k′ ≤ k.

Therefore,

Aαmin = {z ∈ {1,2, . . . ,max{n1, n2}}|k ≤ z ≤ max{n1, n2}}
= {k, k + 1, . . .max{n1, n2}}.

Aαmax = {z ∈ {1,2, . . . ,max{n1, n2}}|k + 1 ≤ z ≤ max{n1, n2}}
= {k + 1, . . .max{n1, n2}}.

Let max{χ̃1, χ̃2} = {(z, μmax{χ̃1,χ̃2}(z))}. We obtain

μmax{χ̃1,χ̃2}(k) = αmin = min{Lχ̃1(k),Lχ̃2(k)}.
Without loss of generality, we assume that min{n1, n2} = n1 and the value α′ = Lχ̃2(k) for n1 + 1 ≤ k ≤ n2. It is 

obvious that χα′
1 = {n1} and χα′

2 = {k, . . . , n2}.
We get

Aα′ = {z ∈ {1,2, . . . ,max{n1, n2}}|k ≤ z ≤ n2} = {k, . . . n2}.
Furthermore, μmax{χ̃1,χ̃2}(k) = α′ = Lχ̃2(k), for n1 + 1 ≤ k ≤ n2.

Since we assume max{n1, n2} = n2, we get

A1 = {z ∈ {1,2, . . . ,max{n1, n2}}|n2 ≤ z ≤ n2} = {n2}.
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Fig. 5. Fuzzy graphs G̃1 and G̃2 (left and right).

Thus,

max{χ̃1, χ̃2} = {(1,min{Lχ̃1(1),Lχ̃2(1)}), (2,min{Lχ̃1(2),Lχ̃2(2)}), . . . ,
(min{n1, n2},min{Lχ̃1(min{n1, n2}),Lχ̃2(min{n1, n2})}),
. . . , (max{n1, n2},1)} ⊆ χ̃ ,

and the proof is complete. �
A corollary can be obtained directly from Theorem 1 and Theorem 3 as follows:

Corollary 1. If V1 ∩ V2 	= ∅ and G̃1 ⊆ G̃2, then max{χ̃1, χ̃2} = χ̃2.

According to Theorem 1, Theorem 2, and Theorem 3, we have remarks as follows.

Remark 2. If G̃1 and G̃2 degenerate into underlying crisp graphs G∗
1 and G∗

2, then union G̃ = G̃1 ∪ G̃2 degenerates 
into underlying crisp graph G∗ = G∗

1 ∪ G∗
2. According to (2) and the value Qα(χ̃) ≥ max{Qα(χ̃1)Qα(χ̃2)} for a 

decision level α = 0, we obtain a comparison of crisp numbers χ(G∗) = max{χ(G∗
1), χ(G∗

2)}. Hence, chromatic 
number of union of crisp graphs is a special case of fuzzy chromatic number of union of fuzzy graphs.

Remark 3. Based on Theorem 3, we get

A
min{Lχ̃1

(1),Lχ̃2
(1)} = {1,2,3, . . . , (n1 + n2)} = χ̃

min{Lχ̃1
(1),Lχ̃2

(1)}
,

A
min{Lχ̃1

(2),Lχ̃2
(2)})} = {2,3, . . . , (n1 + n2)} = χ̃

min{Lχ̃1
(2),Lχ̃2

(2)}
, . . . ,

A
min{Lχ̃1

(min{n1,n2}),Lχ̃2
(min{n1,n2})}

= {min{n1, n2},min{n1, n2} + 1, . . . , (n1 + n2)}
= χ̃

min{Lχ̃1
(min{n1,n2}),Lχ̃2

(min{n1,n2})}, . . . ,
A1 = {max{n1, n2},max{n1, n2} + 1, . . . , (n1 + n2)} = χ̃1.

Hence, max{max{χ̃1, χ̃2}, χ̃} = χ̃ . According to [25], B̃ � Ã if and only if max{Ã, B̃} = B̃ for any discrete fuzzy 
numbers Ã and B̃ .

Thus, χ̃ � max{χ̃1, χ̃2}.

Example 2. We give an illustration of Theorem 1. Let us consider a union of two fuzzy graphs G̃1 ∪ G̃2 in Fig. 5.

Fuzzy chromatic numbers of fuzzy graphs G̃1 and G̃2 are:

χ̃1 = χ̃(G̃1) = {(1,0.3), (2,0.5), (3,0.9), (4,1)} and

χ̃2 = χ̃(G̃2) = {(1,0.2), (2,0.5), (3,1), (4,1), (5,1), (6,1)}, respectively.

We can derive fuzzy chromatic number of χ̃(G̃) in a simple way by using Theorem 1 as follows:

χ̃ (G̃) = {(1,0.2), (2,0.5), (3,0.9), (4,1), (5,1), (6,1), (7,1), (8,1), (9,1), (10,1)}.
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Furthermore, we can compare χ̃, χ̃1, and χ̃2 in a crisp mode by using Qα(χ̃i) for i = 1, 2, and Qα(χ̃) for any 
decision level 0 ≤ α ≤ 1 as follows:

Qα(χ̃1) = 1(0.3 − α) + 2(0.5 − 0.3) + 3(0.9 − 0.5) + 4(1 − 0.9) = 2.3 − α,

Qα(χ̃2) = 1(0.2 − α) + 2(0.5 − 0.2) + 3(1 − 0.5) + 4(1 − 1) + 5(0) + 6(0)

= 2.3 − α,

Qα(χ̃) = 1(0.2 − α) + 2(0.5 − 0.2) + 3(0.9 − 0.5) + 4(1 − 0.9) + 5(0)+
. . . + 10(0) = 2.4 − α.

Thus, Qα(χ̃) > max{Qα(χ̃1), Qα(χ̃2)} for decision level 0 ≤ α ≤ 1.
Another way to compare χ̃ , χ̃1, and χ̃2 in a fuzzy mode is by using maximum between discrete fuzzy numbers as 

follows:

A0.2 = {z ∈ {1,2, . . . ,6}|1 ≤ z ≤ 6} = {1,2,3,4,5,6},
A0.3 = {z ∈ {1,2, . . . ,6}|2 ≤ z ≤ 6} = {2,3,4,5,6},
A0.5 = {z ∈ {1,2, . . . ,6}|2 ≤ z ≤ 6} = {2,3,4,5,6},
A0.9 = {z ∈ {1,2, . . . ,6}|3 ≤ z ≤ 6} = {3,4,5,6}, and

A1 = {z ∈ {1,2, . . . ,6}|3 ≤ z ≤ 6} = {4,5,6}.
Thus, max{χ̃1, χ̃2} = {(1, 0.2), (2, 0.5), (3, 0.9), (4, 1), (5, 1), (6, 1)} ⊆ χ̃ .

Further, we compare max{χ̃1, χ̃2} and χ̃ . It is clear that

A0.2 = {z ∈ {1,2, . . . ,10}|1 ≤ z ≤ 10} = χ̃0.2,

A0.5 = {z ∈ {1,2, . . . ,10}|2 ≤ z ≤ 10} = χ̃0.5,

A0.9 = {z ∈ {1,2, . . . ,10}|3 ≤ z ≤ 10} = χ̃0.9,

A1 = {z ∈ {1,2, . . . ,10}|4 ≤ z ≤ 10} = χ̃1.

Hence, max{max{χ̃1, χ̃2}, χ̃} = χ̃ ⇔ χ̃ � max{χ̃1, χ̃2}.
Also, we investigate fuzzy chromatic number of a fuzzy subgraph of G̃(V, Ẽ). We give the properties in Lemma 1

and Theorem 4.

Lemma 1. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs with |V1| = n1 and |V2| = n2. Fuzzy chromatic 
numbers of G̃1 and G̃2 are χ̃1 and χ̃2, respectively. If G̃1 ⊆ G̃2, then Lχ̃1(k) ≥ Lχ̃2(k) for 1 ≤ k ≤ n1.

Proof. It follows from definition of fuzzy subgraphs that μ
Ẽ1

(uv) ≤ μ
Ẽ2

(uv) for u, v ∈ V1. Let 1 ≤ k ≤ n1. There 

exists δ′ ∈ μ
Ẽ1

(V1 × V1) such that we can construct a partition {Sδ′
1 , Sδ′

2 , . . . , Sδ′
k } which gives χδ′

(G̃1) = k. There 

also exists δ′′ ∈ μ
Ẽ2

(V2 × V2) where δ′′ ≥ δ′, such that we can construct a partition {Sδ′′
1 , Sδ′′

2 , . . . , Sδ′′
k } which gives 

χδ′′
(G̃2) = k. Thus, Lχ̃1(k) = 1 − δ′ ≥ 1 − δ′′ = Lχ̃2(k). �

Theorem 4. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs as described in Lemma 1 where |V1| = n1 and 
|V2| = n2, respectively. If G̃1 ⊆ G̃2, then Qα(χ̃1) ≤ Qα(χ̃2) for all decision levels α ∈ [0, 1].

Proof. Let 0 ≤ α ≤ 1. Since G̃1 ⊆ G̃2, it is obvious that n1 ≤ n2. Let us consider Qα(χ̃1) and Qα(χ̃2) as presented 
in Equations (4) and (5). Based on Lemma 1, we have Lχ̃1(k) ≥ Lχ̃2(k) for 1 ≤ k ≤ n1. According to Equations (4)
and (5), we obtain Qα(χ̃1) ≤ Qα(χ̃2) and the theorem is proved. �

We discuss further in the forthcoming section, an application of fuzzy chromatic number of union of fuzzy graphs 
on an integrated traffic light system in determining the number of phases needed as regards different traffic intensities. 
We model two traffic lights on two consecutive intersections into one integrated system which is needed to reduce 
cycle time of traffic light between both intersections.
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Fig. 6. A traffic light system on two intersections.

Table 2
Data of traffic flows (vehicles/hour).

CF FD EF FE ED CD DC DF AB AD DB CB
ν 316 474 437 472 217 248 467 445 476 255 253 261
Degree(l) 0.07
Degree(m) 0.84 0.17 0.48 0.55 0.53 0.61
Degree(h) 0.94 0.59 0.92 0.87 0.67 0.96

4. An application

Some terminologies in traffic light systems used in this paper are as follows [1]:

1. A phase is a part of a signal cycle with a green light allocated to a specific combination of traffic movements.
2. An approach is the area of an intersection arm for vehicles to queue before being discharged across the stop line.
3. A traffic flow is the number of traffic elements passing a point on a road per unit of time (vehicles/hour or 

passenger car units/hour).
4. Conflict is traffic movements arriving from intersecting approaches.

Let us consider a four-way intersection (crossroads) on two intersections as illustrated in Fig. 6. There are four 
approaches on the first (left side) intersection, i.e., A on the south, B on the north, C on the east, and D on the west. 
Also, there are four approaches on the second (right side) intersection, i.e., E, F, C, and D. Therefore, there are traffic 
movements in different directions, i.e., CD, DC, DF, CF, FD, EF, FE, ED, CB, AB, AD, and DB . We represent 
the two signalized intersections through union of fuzzy graphs.

A traffic movement that goes from one approach to another is represented as a vertex. Two vertices which represent 
conflicting traffic movements should be connected with an edge. A membership degree assigned to an edge indicates 
a degree of conflict, that is a possibility for accidents to occur between vehicles from both movements. In the first 
step, we change data of traffic flows into three levels of fuzzy sets i.e., low, mid, or high flows. Let us take a look at 
data of traffic flows in Table 2.

Notation l, m, and h mean low, mid, and high. Symbol ν represents the number of vehicles on a traffic movement. 
We present: fuzzy set of low traffic flow by using a trapezoidal membership function at interval [0, 225], fuzzy set of 
mid traffic flow by using a triangular membership function at interval [200, 400], and high traffic flow by a trapezoidal 
membership function at interval [375, 600]. Fuzzification of traffic flow data in Table 2 is illustrated on Fig. 7.

In the second step, we determine degrees of membership of all edges (degrees of conflict) by using a rule as follows:

a) If traffic movements XY and UV are in conflict, then there is an edge XY −UV . Further, we choose a maximum 
value between the number of vehicles on XY and UV to determine the flow on the edge XY − UV and calculate 
its membership degree.

b) If movements XY and UV are not in conflict, then there is no XY − UV edge. This means that the membership 
degree of the edge XY − UV is zero.
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Fig. 7. Membership functions of low, mid, and high traffic flows.

Table 3
Fuzzy edge set Ẽ1.

Movements CF FD EF FE ED CD DC DF
CF – 0.94 0.59 0.92 – – 0.87 –
FD 0.94 – 0.94 – – 0.94 0.94 –
EF 0.59 0.94 – – – 0.59 0.87 0.67
FE 0.92 – – – – 0.92 0.92 –
ED – – – – – 0.48 – –
CD – 0.94 0.59 0.92 0.48 – – –
DC 0.87 0.94 0.87 0.92 – – – –
DF – – 0.67 – – – – –

Fig. 8. Fuzzy graph models for traffic light system in Fig. 6.

By using the given rule, traffic flows on the first and second intersection in Fig. 6 can be modelled as two 
fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2), respectively, where the vertex sets are V1 = {CD, DC, DF, CF, FD, EF,

FE, ED} and V2 = {CD, CB, AB, AD, DB, DC}. Membership degrees of edges in fuzzy edge set Ẽ1 is presented 
in Table 3. Whereas, fuzzy edge set Ẽ2 can be obtained similarly. Fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) are shown 
in Fig. 8.

By using fuzzy chromatic algorithm, we get fuzzy chromatic numbers of fuzzy graphs G̃1 and G̃2 as follows:

χ̃ (G̃1) = {(1,0.06), (2,0.13), (3,0.41), (4,1), (5,1), (6,1), (7,1), (8,1)} and

χ̃ (G̃2) = {(1,0.04), (2,0.13), (3,1), (4,1), (5,1), (6,1)}.
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Fig. 9. The model of union of fuzzy graphs in Fig. 8.

Table 4
Traffic light arrangements by using k-phases.

δ k Lχ̃ (k) Arrangements (partitions of vertex set V )
0 4 1 {DC,CD,DB,DF }, {EF,FE,AD,CB}, {CF,ED,AB}, {FD}
0.59 3 0.41 {CF,EF,ED,AB}, {CD,DC,DB,AD}, {FE,DF,FD,CB}
0.87 2 0.13 {CF,EF,DC,CD,ED,AD,CB,DB}, {FD,FE,DF,AB}
0.96 1 0.04 V = V1 ∪ V2

Furthermore, two intersections in Fig. 6 can be modelled into an integrated traffic light system by using union of 
fuzzy graphs G̃ = G̃1 ∪ G̃2 as illustrated in Fig. 9. According to Theorem 1, we get fuzzy chromatic number of union 
G̃ = G̃1 ∪ G̃2 in Fig. 9 as follows:

χ̃ (G̃) = {(1,0.04), (2,0.13), (3,0.41), (4,1), (5,1), (6,1), . . . , (12,1)}. (6)

Fuzzy chromatic number of union of fuzzy graphs χ̃(G̃) = {(k, Lχ̃ (k))} can be interpreted as follows: the number 
k represents the number of phases needed on the integrated system and degree of membership Lχ̃(k) represents 
possibility that there are no accidents (degree of safety) when we use k phases.

Based on fuzzy chromatic number in (6) and δ-chromatic numbers k, traffic flows in Fig. 6 could be arranged 
in particular patterns as shown in Table 4. For example, when we make use of k = 2 phases, then 0.13 degree 
of safety is reached. Traffic flows allowed to move simultaneously (get the green light) on the first phase are 
CF, EF, DC, CD, ED, AD, CB , and DB . Whereas, those allowed on the second phase are FD, FE, DF , and AB .

The objective is to get an optimal arrangement. The optimality is reached when the degree of safety is high while 
the number of phases is small.

5. Conclusions

A modified fuzzy chromatic algorithm to determine fuzzy chromatic number of fuzzy graphs has been developed 
in this paper. The algorithm applied on Matlab shows a constant running time over 150 trials. Also, the algorithm has 
been presented with its complexity. Further, we have generalized chromatic number of union of crisp graphs into fuzzy 
chromatic number of union of fuzzy graphs. Moreover, we have characterized a connection between fuzzy chromatic 
number of union of fuzzy graphs χ̃(G̃) = χ̃ (G̃1 ∪ G̃2) and maximum of fuzzy chromatic numbers {χ̃1(G̃1), χ̃2(G̃2)}
by using two approaches. The first approach is comparing fuzzy chromatic numbers through defuzzification on all 
decision levels α ∈ [0, 1], while the second approach is comparing fuzzy chromatic numbers through their α-cuts.

Finally, we have proposed an application of fuzzy chromatic number of union of fuzzy graphs to determine the 
number of phases of an integrated traffic light system (consisting of two signalized intersections). We might use 
different phases with different degrees of safety depending on traffic intensities at the intersections.
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In our upcoming research, we will examine an algorithm to model an integrated traffic light system while consid-
ering green light durations. Also, we will verify some properties of fuzzy chromatic number of union of fuzzy graphs 
based on α-cut graph coloring.

Acknowledgements

This work is one of the output of PDUPT-UGM research project by contract number: 89/UN1/DITLIT/DITLIT/
LT/2018 and PDUPT-UGM project 2019. The authors highly appreciate to the editor and referees for their valuable 
comments.

References

[1] S. Sumadji, D. Asmoro, S. Sastrosoegito, Indonesian Highway Capacity Manual: Urban Roads, Directorate General of Highways, Jakarta, 
1993.

[2] L.A. Zadeh, Fuzzy sets, Inf. Control 33 (1965) 338–353.
[3] A. Rosenfeld, Fuzzy graphs, in: L.A. Zadeh, K.S. Fu, M. Shimura (Eds.), Fuzzy Sets and Their Applications to Cognitive and Decision 

Processes, 1975, pp. 77–95.
[4] W. Craine, Characterizations of fuzzy interval graphs, Fuzzy Sets Syst. 68 (2) (1994) 181–193, https://doi .org /10 .1016 /0165 -0114(94 )90044 -

2.
[5] M. Blue, B. Bush, J. Puckett, Unified approach to fuzzy graph problems, Fuzzy Sets Syst. 125 (3) (2002) 355–368, https://doi .org /10 .1016 /

S0165 -0114(01 )00011 -2.
[6] S. Mathew, N. Anjali, J. Mordeson, Transitive blocks and their applications in fuzzy interconnection networks, Fuzzy Sets Syst. 352 (2018) 

142–160, https://doi .org /10 .1016 /J .FSS .2017 .10 .004.
[7] M. Binu, S. Mathew, J. Mordeson, Connectivity index of a fuzzy graph and its application to human trafficking, Fuzzy Sets Syst. 360 (2019) 

117–136, https://doi .org /10 .1016 /J .FSS .2018 .06 .007.
[8] C. Eslahchi, B.N. Onagh, Vertex-strength of fuzzy graphs, Int. J. Math. Math. Sci. 2006 (2006) 1–9, https://doi .org /10 .1155 /IJMMS /2006 /

43614.
[9] A. Kishore, M.S. Sunitha, Strong chromatic number of fuzzy graphs, Ann. Pure Appl. Math. 7 (4) (2014) 543–551.

[10] L.S. Bershtein, A.V. Bozhenuk, Fuzzy graphs and fuzzy hypergraphs, in: Encyclopedia of Artificial Intelligence, IGI Global, 2011, 
pp. 704–709.

[11] S. Muñoz, M.T. Ortuño, J. Ramírez, J. Yáñez, Coloring fuzzy graphs, Omega 33 (3) (2005) 211–221, https://doi .org /10 .1016 /j .omega .2004 .
04 .006.

[12] V. Cioban, On independent sets of vertices in graphs, Stud. Univ. Babeş-Bolyai Inform. LII (1) (2007) 97–100.
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