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Abstract: An inverted pendulum is a sensitive system of highly coupled parameters, in laboratories, it is popular for modelling

nonlinear systems such as mechanisms and control systems, and also for optimizing programmes before those programmes are applied

in real situations. This study aims to find the optimum input setting for a double inverted pendulum (DIP), which requires an

appropriate input to be able to stand and to achieve robust stability even when the system model is unknown. Such a DIP input

could be widely applied in engineering fields for optimizing unknown systems with a limited budget. Previous studies have used

various mathematical approaches to optimize settings for DIP, then have designed control algorithms or physical mathematical models.

This study did not adopt a mathematical approach for the DIP controller because our DIP has five input parameters within its

nondeterministic system model. This paper proposes a novel algorithm, named UniNeuro, that integrates neural networks (NNs) and

a uniform design (UD) in a model formed by input and response to the experimental data (metamodel). We employed a hybrid UD

multiobjective genetic algorithm (HUDMOGA) for obtaining the optimized setting input parameters. The UD was also embedded in

the HUDMOGA for enriching the solution set, whereas each chromosome used for crossover, mutation, and generation of the UD was

determined through a selection procedure and derived individually. Subsequently, we combined the Euclidean distance and Pareto

front to improve the performance of the algorithm. Finally, DIP equipment was used to confirm the settings. The proposed algorithm

can produce 9 alternative configured input parameter values to swing-up then standing in robust stability of the DIP from only 25

training data items and 20 optimized simulation results. In comparison to the full factorial design, this design can save considerable

experiment time because the metamodel can be formed by only 25 experiments using the UD. Furthermore, the proposed algorithm

can be applied to nonlinear systems with multiple constraints.

Keywords: Double inverted pendulum (DIP), UniNeuro-hybrid UD multiobjective genetic algorithm (HUDMOGA), uniform design

(UD), metamodel, euclidean distance.

1 Introduction

In accordance with improvements in the industrial sys-

tem, Industry-4.0 has recently exhibited rapid growth in in-

dustry, and has evolved from using traditional production

technologies to integrating automation and data exchange,

as well as mechanical, electronic, and manufacturing tech-

nologies, thereby bringing together cyber-physical systems

and the Internet of services. For this reason, robotics and

automation technologies continue to be developed to sup-

port these systems.

In addition to its complexity and because of the con-

sequence of multiple connections between several compo-

nents, a typical automation system has control properties

that are nonlinear and cannot be neglected. Furthermore,

simple individual systems are highly coupled with others.

Sometimes, the output quality can be improved by op-

Research Article
Manuscript received May 22, 2016; accepted September 29, 2016;

published online May 24, 2017
This work was supported by Indonesian Government (No. BPPLN

DIKTI 3+1).
Recommended by Associate Editor Veljko Potkonjak
c© Institute of Automation, Chinese Academy of Sciences and

Springer-Verlag GmbH Germany 2017

timizing the intangible mechanism to control a nonlinear

system[1]. Nonlinear systems have been applied in various

domains, e.g., almost all robotic mechanisms use nonlinear

control. Solving nonlinear systems is a challenge, but sen-

sitivity engendered by high-frequency pulse signals for use

in mechatronics systems enables the adoption of a model

with conditions similar to those of complex real problems

within a utopian system, such as unlimited uncontrolled

noise within the system itself. The model formed by the

input and output of the experimental data (metamodel)

in this study is originated as a popular solver bridge used

for unknown models or noise. It developed to become an

adaptive optimization controller that can be used a flexible

model[2, 3].

Nonlinearity and physical phenomena are strongly con-

nected. One can argue that nonlinearity is ubiquitous, e.g.,

fluid phenomena, dynamism, elasticity, relativity, combus-

tion, heat transfer, and thermodynamics are all approached

by nonlinear equations, except for quantum mechanics.

With this attention, research in this field has recently grown

dramatically, mostly in the form of analysing all aspects,

concepts, and applications of nonlinearity in both the micro

and the macro scales. Understanding nonlinearity requires
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an understanding of the basic concept of linearity as the

simplest point of access for an ideal system, even in purely

theoretical terms. By contrast, when such a system is al-

ready known as a linear regime, it faces nonlinearity as a

perturbation of itself[4].

The inverted pendulum is a classic model that is typically

strongly coupled, contains multiple variables, and has been

used in many previous studies regarding nonlinear control

systems to validate control theory. A consequence of the

nonlinear system is that even if the model is determined,

any controlled disturbance may modify the main model.

The inverted pendulum system implies a highly nonlinear

and unstable device because it is easily influenced by both

elements within the system and by outside interference.

The two types of inverted pendulum based on cart move-

ment are the rotary and horizontal types. Moreover, single-

link and multiple-link types exist. According to various pre-

liminary steps, the inverted pendulum can be controlled in

two states: swing-up, which uses the control energy in the

pendulum to swing into an upward position, and balancing,

which controls the stable position of the pendulum[5].

Some previous studies on double inverted pendulum

(DIP) optimization have used proposed control system as

the fitness function. Liu et al.[6] optimized the parame-

ters for evaluating preferences for the DIP using a genetic

algorithm (EPGA). This approach adopts the traditional

genetic algorithm (GA), however, search solutions are not

improved by limited searches with Pareto dominance. The

EPGA sensory-motor intelligent schema approach is used

to control and optimize the DIP. A coded number is used

as a chromosome that is optimized to find the most fa-

vorable setting for 16 parameters. In another study, Liu

et al.[6] used simulation for the design of the DIP con-

troller. A human-simulated intelligent control method was

used as an approach controller that was applied in four-

phase control positions. An inequalities-based multiobjec-

tive GA (MOGA) was used to determine the displacement

over the rail boundary, the number of swings, settling time,

overshoot of the total energy, and control effort (multi-

objective). Finally, the chromosome was applied in the

form of real number coding with 16 parameters. Other

researchers have used Matlab-Simulink for modelling the

inverted pendulum[7] and applied the analysis approach in

the dynamic-web for presenting the inverted pendulum to

model unstable systems[8].

A fuzzy GA with six weighted parameters and multi-

ple input − single output was employed to optimize DIP

parameters. Weighting decreased the number of param-

eters from six to two, thus reducing the degree of fuzzy

logic[9]. A linear quadratic regulator was used to con-

trol the stabilisation of the DIP. Jacobian, Eulerian and

Lagrangian methods were used in the linearization proce-

dure. The mathematical modelling of the present study

used Lagrangian decomposition of kinetic energy and po-

tential energy to determine a feedback value composed of

six parameters[10]. In internet-based Java simulations, the

DIP was controlled by a decoupled sliding mode controller

with multiobjective particle swarm optimization[11]. Fur-

thermore, a spherical inverted pendulum was studied to

improve the solutions for standing up to control the output

regulation. The spherical inverted pendulum was employed

by using an NN (UniNeuro) approach for forming the new

model[12, 13]. This study used the DIP of a horizontally-

moving cart. The cart was driven by a servo motor that

produced rotary movement that was converted to hori-

zontal movement through a double link belt mechanism.

Five-parameter input was processed in a signal controlling

unit, which was affected by the control pulse input on a

servo motor. That motor was influenced by 3 feedback

signals from the decoder when the mathematical control

system was unknown. This condition occurred when uti-

lization time has elapsed and the system configuration has

changed from its initial condition. In accordance with this,

the main objective of this study was to determine several

new feasible optimal input settings for the DIP. Although

this problem can be solved by traditional methods, parame-

ter input value settings were performed by time-consuming

trial-and-error repetition, and were tuned on the basis of

instinct and intuition. The present paper explains how

UniNeuro-hybrid uniform design multiobjective genetic al-

gorithm (HUDMOGA) can optimize the input DIP con-

trol settings automatically. In this case, the uniform design

(UD) is employed to capture training data from the UD

hybrid in NN, and the HUDMOGA is used to generate the

optimized parameter settings.

The remainder of this paper is organised as follows.

Section 2 discusses the scope of the problem. The proposed

method is described in detail in Section 3. The results and

a discussion are presented in Section 4. A conclusion is

offered in Section 5, and references are listed in the bibli-

ography.

2 Problem definition

An inverted pendulum is an underactuated instrument

with an unstable open loop within a highly dynamic non-

linear system. Thus, it is a perfect system for arrange-

ments of both classical and advanced controls. The in-

verted pendulum′s approach can be applied to a wide range

of signal control processes such as robotic processes, or

even rocket field processes. The system was initially pro-

posed for modelling such nonlinear phenomena. Because of

highly coupled interactions, the nonlinear effect cannot be

neglected within the systems response, thus it is useful for

studying nonlinear modern control[14].

In an inverted pendulum, the objective equilibrium point

is its upright position stability. This condition occurs

through the control of such parameters that produce the

cart movement for swinging the pendulum from a dead po-

sition into a standing position. Meanwhile, the cart move-

ment is controlled in a particular position because of limi-

tations of the rail length. All the mentioned conditions are
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achieved through horizontal movement of the cart. Hence,

the inverted pendulum is classified as an underactuated me-

chanical system with fewer control inputs than degrees of

freedom. This status proves that this classical system has

the ability to evaluate all control strategies[14] .

This paper explains the optimization of the five DIP in-

put parameters that are changed from the initial condition

because of elapsed utilization time. The initial model of

the system changed in an undetermined fashion, causing

difficulty in controlling the DIP using the standard equip-

ment settings. This problem became more complex because

a large amount of information within the product was lost.

Thus, conducting this study was similar to conducting blind

optimization. In a real setting with a limited budget, engi-

neers must optimize the frequency of an unclear model with

similar blind optimization.

The cart of the DIP system is driven horizontally by a

servo motor that couples a frictionless link and a belt mech-

anism used for conversion from a rotary movement to a hor-

izontal movement. The motors amplifier is used to amplify

the input signal combined with signals from three encoders

for controlling the rotation action of the motor. The mo-

tors action is processed by a digital signal processor (DSP).

The three encoders serve to capture the reaction of the mo-

tor and the pendulum motion, and subsequently deliver the

feedback signal to the DSP. Three decoders are placed at

three points. The first point is in the motor. This decoder

is used for detecting the reaction of the motor to its input.

The second decoder is positioned on a joint between the

cart and Pendulum 1, and the third is mounted in a joint

between Pendulums 1 and 2. These two left decoders serve

to identify the movement of the pendulum in each joint.

The movement of the pendulum is a rotary swinging mo-

tion caused by inertia horizontal relative movement of the

cart coupled with the effect of feedback signals from the

aforementioned three decoders. The enumerated reaction

to the decoder motion is displayed on three curves, called

displacement, velocity, and output signal. Finally, for secur-

ing and limiting the motion of the cart, two limit switches

are placed on each side. To visualise the principle of the

DIP, Figs. 1 and 2 show the DIP controlling system and

mechanism, respectively.

Table 1 shows the DIP specifications, including mass,

dimensions, moving coefficient, and moment.

Five input parameters are employed to control the DIP

system, which has a tiny step (10−4) numerical setting

that affects its sensitivity (Table 2). Therefore, a powerful

method is required to determine the feasible combination

values.

In response to the aforementioned problem, this study

aimed to determine suitable input parameter settings for

the DIP for driving the pendulum to stand up and main-

tain stability for a certain period, during which the external

pendulum may be subjected to disturbances while the re-

lationship between the five input parameters is unknown.

Thus, in this paper, the UniNeuro-HUDMOGA is proposed.

Fig. 1 DIP′s controlling system

Fig. 2 DIP′s mechanism

Table 1 DIP specification

Parameters Values

Mass of cart (M) 1.32 kg

Mass of encoders (m0) 0.208 kg

The center position of each pendulum (l1, l2) 0.2m

Length of each pendulum (L) 0.4m

Displacement range of cart (x) (−0.3, 0.3)m

Mass of each pendulum (m1, m2) 0.108 kg

Friction coefficient of cart (fo) 22.915N·s/m
Friction coefficient of pendulums (f1, f2) 0.775 6 N·s·m
Moment of inertia of pendulums (Jl, J2) 0.001 44 kg·m2
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Table 2 DIP′s parameters input

Input parameters Lower bound Upper bound

Initial acceleration 0.4 0.9

Feedback coefficient direction 2.0 2.5

Negative feedback coefficient direction 2.0 2.5

Pull acceleration 5.0 7.0

3 Uniform neuro multi-objective ge-

netic algorithm

The proposed method combines the UD, NNs, and

MOGA. Principally, the model for the fitness function of

the MOGA programme is created by NNs using the UD to

manage the number of experiments for generating model.

The complete procedure is explained below.

3.1 Assemble data using UD

Various experimental designs have been developed to

minimize the number of experiments for obtaining a re-

sult close to the optimal solution within the full factorial

design of experiment, or through a selected a number of

samples that represent the whole population[15, 16]. The

number of experiments had to be reduced in consideration

of the costs, e.g., to examine six parameters with six levels,

66 experiments traditionally using the full factorial design

are required. With the advancement of the experimental

design method, the experiments can be reduced to 62 or

even less. However, the result manages to come close to the

most favorable result using the full factorial design. Some

researchers have attempted to develop evolutionary experi-

mental designs for reducing the number of samples by frac-

tions of full factorials, such as the central composite design,

hypercube, and orthogonal arrays which is developed into

Taguchi design and the UD[15, 17].

In this study, the UD is used for determining sample data

for developing a model in an NN (UniNeuro) through the

training data, the result was embedded in a GA to increase

searching performance.

Using the UD, the number of experiments can be de-

creased considerably from the result of the complete full

factorial design because the UD is a space filling design

that seeks a point that can be randomly positioned in the

domain. Furthermore, the UD can explore the relationships

between the underlying model specifications. By using the

UD to consider the patterns of the data spread and uniform

density, the training sample data represents the true model

of the system.

The UD was developed by Fang and Yang, they pub-

lished their research online, and made the UD open access

and easily downloadable (http://www.math.hkbu.edu.hk/

UniformDesign/) (UD-web)[17,18]. The UD-web provides a

high number of appraisals for a UD with three classifications

for discrepancy of uniformity, as well as 2 to 29 parameters,

enabling each design to be applied to an n+1 parameter

experiment. Optionally, if the UD-web is not appropriate

to the problem, the UD can be developed flexibly using

the uniformity of an experimental design with L2-centered

discrepancy (CD), which can be calculated using (1):
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where s is number of parameters, n is number of exper-

iments, k is rows′ number, j is columns′ number, i is

parameter′s number. The better UD has the smaller CD

value that concludes its uniformity quality. UD has the

smaller CD value that concludes its uniformity quality.

Using CD criteria, we can develop a new suitable UD,

e.g., we can initially use a Latin square design as the base

structure, and then optimize it through an optimization

design with a smaller, more favorable CD as the fitness

criterion[17, 18].

For a study that only requires five parameters, the UD-

web can be sufficient if the following steps are followed:

1) Determine the number of parameters by considering

the level of each parameter. The experiment has a minimum

number of (number of parameter + 1), and the total level

is equal to the number of experiments.

2) Select the appropriate table from UD-web for use in

the experiment. In this case, we selected 52 experiments.

Table 3 shows the UD table from UD-web for five param-

eters with six experiments. The number of rows represents

the number of experiments performed, and the number of

columns denotes the number of parameters (A, B, C, D, E).

Table 3 UD′s table of five parameters (U6(65))

Run A B C D E

1 3 1 6 5 4

2 5 2 2 2 5

3 6 5 3 6 3

4 4 4 5 1 1
5 2 6 4 3 6

6 1 3 1 4 2

This study used a UD table for five parameters, with 25

experiments researched. The UD table was used for data

collection. Each parameter was evenly divided into a num-

ber of levels from the lowest level to the highest level. Sub-

sequently, each parameter was used for data retrieval ob-

jectives for standing and stability while standing. Standing

success offered a score of 0 to 1 through observation, and

seconds were employed as the unit of duration for stability

while standing. The standing measurement was performed

with some external excitation from Pendulum 2.
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3.2 Uniform design embedded in neural
network

An NN uses such correlation method of the input–output

data layer through a neural mechanism for developing a

model of the model (metamodel) as the approach model,

and the amount of training data for determining the data

distribution is one of the main factors of the NNs success.

An NN that processes large quantities of data tends to yield

an accurate prediction for gain time consumption, hence,

several researchers have focused on the critical issue of de-

termining the efficiency of training data[19]. Therefore, to

enrich the quality of the model by conducting an appropri-

ate number of experiments, in this study, the UD is used to

determine the number of setting experiments for training

data. Finally, the NN introduced the model by calculating

the distribution of the weighted learning rate and the de-

viation for each point neuron using the sigmoid activation

function[19]. There is no fixed rule for building the con-

nections in the NN or for determining the approach proce-

dure. Moreover, as a prediction method, the NNs forecast-

ing should be controlled to avoid overfitting or excessive

confidence. Therefore, the UD used in this study to dis-

tribute the collection of data uniformly with a small num-

ber of experiments. UD also generated the potential data

that had primary effects for building a metamodel of the

NN. This is named UniNeuro.

Before assignment into the NN, the data result from the

experiment requires normalization through (2):

xnorm =
x − xmin

xmax − xmin
(2)

where xnorm is a value that has been normalized on this

parameter. x is the value of data in each experimental run.

xmax and xmin are the maximum and minimum values in

each parameter[19]. Normalization generates a data value

between 0 and 1. This procedure fairly compares all pa-

rameters that can be connected to each other without any

difference in criteria or unit. The procedure is subsequently

used to develop a metamodel in the NN (Fig. 3).

Fig. 3 Neuralnetwork schema

To build the metamodel, this research uses one hidden

layer with two neurons. Fig. 3 shows points 1 to 5 denoted

five input parameters determined in the UD design of ex-

periments (DOE). Points 6 and 7 are two neurons in a sin-

gle hidden layer, serving as prediction points derived from

neuron information from the input, including weight infor-

mation. Finally, points 8 and 9 are two objectives (multi-

objective) based on the experimental results.

The NN is employed through the following steps:

Step 1. Determine the design of the NN, the number of

neurons and hidden layers, the objective, learning rate (α),

initial weight at each point neuron, and error criteria using

the mean square error (MSE) for objectives 1 and 2. The

MSE is used for constraining model overfitting.

Step 2. Arrange the normalized training data that are

collected in the UD in the input and output of the NN.

Step 3. Calculate the weight factor, which in this case

is calculated using the sigmoid activation function.

Step 4. Build the linear metamodel for the two ob-

jectives, the linear metamodel consists of several specific

weights implemented through parameters for constructing

a value close to that of a real solution.

Step 5. Check the MSE for the two fitness values of the

two objectives in the metamodel using part of the training

data. If the result is higher than the standard, return to

Step 3, otherwise, move on to Step 6.

Step 6. The metamodel is formed, and subsequently

used as a fitness function in the HUDMOGA.

3.3 Hybrid uniform design multi-objective
genetic algorithm

After the metamodel is formed by the UniNeuro, the op-

timal parameter settings are achieved through the HUD-

MOGA, which is applied through the following steps:

Step 1. Determine the parameters of the HUDMOGA,

population number (PN), selection number (SN), genera-

tion number (GN), and Euclidean number (EN).

Step 2. Initialization is performed to generate a parent

chromosome by initially using the UD for five parameters

and 25 experiments obtained from the UD-web as real set-

tings that have already been confirmed. Subsequently, the

remainder of the population is generated randomly to ac-

celerate the optimization procedure. Considering that the

fitness function comes from the metamodel established by

the UniNeuro, the value of the parameter is set between 0

and 1. Furthermore, the fitness value is calculated using the

metamodel. The fitness value is the sum of the successful

standing periods (the larger the better) and the steadiness

duration (the larger the better). Finally, the sum of these

outputs is evaluated (the smaller the better).

Step 3. The selection process involves a roulette wheel.

All the parent chromosomes occupy the roulette wheel

based on its probability for the whole result. The roulette

wheel is then rotated to select chromosome pairs. Selec-

tion of the same chromosome pair more than once must be
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avoided to maximise the diversity of the solution set[20].

Step 4. The crossover process is used to set the parti-

tion crossover that is applied to all the selected chromosome

pairs. This method is initiated by determining a number for

the genes position, which is subsequently used as the genes

fixed position, finally replacing the unfixed gene with an-

other gene from the paired chromosomes. The same proce-

dure is then carried out for the remaining chromosomes[20] .

Step 5. All chromosomes from Step 3 are mutated in

this step through a neighbor search. This method is ap-

plied to chromosomes individually by randomly determin-

ing two genes, then generating 4 permutations from these

2 genes, and using the permutation results to develop four

new chromosomes in the same gene positions[20] .

Step 6. To increase variety among the children, the

chromosomes from the crossover and mutation are com-

bined and then selected for 2 chromosomes randomly. Sub-

sequently, the selected chromosomes are generated by ex-

periments using a unique combination of a two − level UD

for five parameters and 25 combinations[17, 18]. A total of 21

unique combinations are obtained. Because of its flexibil-

ity, the UD can be set according to the combination of the

two levels and the number of available experiments[17, 18].

Principally, this procedure is similar to the hybrid Taguchi

GA[20], but with the two levels of the Taguchi DOE replaced

with the two levels of the unique UD.

Step 7. The chromosomes from Steps 4−6 are combined

in each child′s chromosome, and the parents′ and children′s
chromosomes are combined. The chromosome with the

shortest fitness value is stored as the most favourable chro-

mosome and updated every generation. The remaining

NP−1 chromosomes are subjected to Darwinian selection

(survival of the fittest).

Step 8. For maintaining diversity among the solution

sets in each generation, the remaining chromosomes for the

iteration described in Step 7 are filtered using Euclidean dis-

tance and selected for NP−1 chromosomes. The Euclidean

distance method is used as a vector distance between each

pair of chromosomes in sequence. Through this method, the

various solution sets are proofed for their diversity based on

the solution combination positions. In this case, because we

have five solution sets, five solution dimensions are formed.

The higher the Euclidean distance value, the higher the di-

versity among the solutions produced. An excessively high

Euclidean distance only produces one single solution be-

cause of its distinct nature.

Step 9. Selected results from Step 8 are ranked using

the Pareto method. As a multiobjective problem, the two

objectives trade off. In this case, we first chose the most

feasible solution for each running programme, and then con-

firmed the solution with the automatic system. Alterna-

tive solutions were selected by Pareto front as the most fa-

vorable alternatives based on their abilities to update each

generation[21, 22].

Step 10. This study uses the number of iterations as a

stopping criterion. If the iterations performed are lower

than the GN, the process is repeated from Step 3. If the

iteration is met, continue to Step 11.

Step 11. The most favorable result is displayed. This

result is checked with the DIP equipment to verify its reli-

ability.

The global procedure of the UniNeuro-HUDMOGA is

shown in Fig. 4.

4 Result and discussion

To examine the proposed algorithm, the UniNeuro-

HUDMOGA was programmed in Matlab that was run on an

Intel R© Core TM i7-2600 CPU at 3.40 GHz and 8GB RAM.

The UniNeuro used the following parameters: learning rate

(α)=0.1, mean square error (MSE) = 0.01, initial weight

for wn=1−5,m=6,7 = −0.5 to 0.5 (selected randomly), initial

weight for wn=6−7,m=8,9 = −1 to 1 (selected randomly); θ

n=6−9 = −0.5 to 0.5 (selected randomly). The HUDMOGA

parameters were set as follows: PN = 100, SN (selection

number) = 0.8×PN, GN = 1000, and EN = 0.2. In addi-

tion, to confirm that this method could stably obtain the

right solution, the algorithm was run 20 times.

In this study, data was retrieved by dividing the range

of each parameter setting into 25 level sections, and then

applying the settings on the UD table obtained from the

UD-web. The data obtained served as training data for the

UniNeuro to form the metamodel. Subsequently, the meta-

model was used as a fitness function of the HUDMOGA. Fi-

nally, the settings results were confirmed by the DIP equip-

ment (Table 4).

Table 4 Optimized results by using UniNeuro-HUDMOGA

A B C D E Swing Steady

time (s) time (s)

0.590 4 2.115 2 2.115 2 5.451 2 5.964 8 8.0 900

0.778 3 2.021 7 2.035 7 5.250 0 5.272 7 6.5 900

0.886 3 2.031 4 2.037 5 5.145 0 5.123 6 7.0 900

0.900 0 2.500 0 2.481 1 5.125 0 5.866 0 5.5 900

0.900 0 2.499 9 2.478 2 5.125 1 5.920 9 5.0 900

0.900 0 2.500 0 2.481 1 5.125 0 5.866 9 5.5 900

0.438 5 2.023 8 2.020 0 5.117 6 5.166 7 11.0 900

0.900 0 2.026 4 2.055 6 5.125 0 6.321 5 7.0 900

0.439 5 2.001 5 2.020 2 5.124 5 5.182 0 11.0 120

Notes: A: Initial acceleration, B: Feedback coefficient direction, C:

Negative feedback coefficient direction, D: Pull acceleration, E: Re-

verse acceleration.

Table 4 shows the DIP optimized result set obtained from

running the UniNeuro-HUDMOGA 20 times. After running

the algorithm, nine setting parameters were selected ac-

cording to their success in confirming the DIP. Swing time

denotes the time taken to swing followed by standing up,

steady time denoted the time period for standing with inter-

ruptions from any excitations on the outside of Pendulum 2.
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Fig. 4 UniNeuro-HUDMOGA design

Steady time was judged for 900 s to conclude the optimized

settings.

The proposed algorithm has nine setting values that can

be chosen, previous studies have used only one setting,

which can be determined as the optimization target caused

by the rigid approach model[5, 6, 9−11, 21]. Moreover, the fea-

sible solution may still only be available by running this

programme, and subsequently updating the training data

by using 20 confirmed settings. Hence, because of the arti-

ficial learning method, this development training data may

increase the probability of obtaining the optimized result.

The result of the optimization procedure can be rendered

more precise if the model is closer to its real condition. Be-

cause of space limitations in this paper, only one parameter

setting result is shown for each of displacement, velocity,

and the output signal curve (Figs. 5–7). Fig. 5 DIP′s displacement curve
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Fig. 6 DIP′s velocity curve

Fig. 7 DIP′s signal curve

The result proved that the UniNeuro is able to modify a

metamodel that is used as a fitness function for the HUD-

MOGA. In other words, using the UD for determining the

experiment training data set in the UniNeuro is extremely

efficient for capturing or predicting the model of the DIP.

Nine optimal settings can be produced from only 25 ex-

periments. For future research, some modifications would

be required to verify the robustness of the UniNeuro and

improve its probability of success, similar to the adaptive

fuzzy model used to obtain vital information for improving

the auto-error correction model[3, 23, 24], and to a modified

NN as a wavelet[25].

The optimization procedure was finalised using the meta-

model from the UniNeuro as the fitness function of the

HUDMOGA. In the optimization procedure, the HUD-

MOGA proved its performance by generating the true re-

sult for the optimal setting of the DIP, demonstrating this

step as being able to obtain several true result settings, and

also as being able to avoid being trapped in local optima.

While the 11 failure settings from 20 simulations may have

been caused by an incorrect metamodel produced by the

UniNeuro as the prediction method, common sense suggests

that it belonged to a limited amount of training data.

The results indicate that the proposed algorithm can

solve this problem effectively and efficiently, if it is run

20 times using the 25 real data from the UD. It is evi-

dent that the proposed algorithm represents an outstanding

trial-and-error method that makes the setting process sim-

ple, and saves experimentation time. However, the reliabil-

ity of the proposed algorithm must be improved to increase

the performance of the optimization procedure. Further-

more, some particular aims such as standing time could be

constrained.

Using the UD in assigning the training data experiment

for NN is proven to be effective. In this case, information

regarding the model could have been suggested even with-

out the trend of the graphic result. Instead, the UD can

promote a small sample that represents the entire feasible

setting of the DIP. This is the intention of the UD: to be

assigned to serve as the CD as the criteria of uniformity

qualities. A lower CD denotes higher uniformity, which also

implies that the UD is easy to use for solving any problem

anywhere that requires capturing the whole system with

limited data because of constraints such as limited time,

manpower, and budget. The UD can be developed person-

ally by the user, especially if the number of parameters is

not available from the UD-web (maximum: 29 parameters).

Through employing CD considerations as criteria (fitness

function) and then using this method for optimization de-

signs such as cost functions or smaller-the-better targets,

this solution can be highly popular in terms of DOE effec-

tiveness and the corresponding optimization problems.

In comparison to a Taguchi design and an optimiza-

tion design, the UD is more efficient in many parameters.

Whereas a Taguchi design focuses on the level to determine

the experiment, the UD does not. The UD can be easily

developed by the user, whereas a Taguchi design cannot be,

because the aim of a Taguchi design is to propose robust-

ness settings from the appropriate combinations shown by

the signal-to-noise ratios, and to analyse the mean effect of

each parameter[26].

5 Conclusions

This study intended to determine the most favorable set-

tings for DIP input for swing-standing up, and then stable

robust in standing position against any outside interference.

The model control system function was unknown, thus op-

timizing the parameters required an NN metamodel, which

in turn was formed by training data retrieved by the UD,

named UniNeuro. Furthermore, the HUDMOGA embed-

ded in the UD was used to optimize the DIP′s parameter

settings based on the metamodel as the fitness function.

The HUDMOGA begins with initialization by the UD, then

does roulette wheel selection, then partition crossover, and

finally neighbor search for mutation. The Euclidean dis-

tance used for maintaining diversity in the solution is fil-

tered by the Pareto front.

The results of this study show the nine most favorable
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parameter settings that influencing the DIP′s to swing and

then stand up robustly in a time period determined by out-

side interference. In comparison to using a trial-and-error

method, this method proved to be considerably faster be-

cause it only requires 25 data as the training data for the

UniNeuro to develop the metamodel. This method is a

novel method that can be performed in more than one set-

ting, as concluded in previous studies[6, 9−11, 21]. Further-

more, it is more closely based on real situations than the

simulation approach[7, 8, 14]. The UD is highly efficient for

generating UniNeuro training data in DOE, because this

search can be spread uniformly on the solution search space,

and can also obtain results close to those of a full factorial

design with an extremely low number of experiments. The

accuracy of the model requires improvement by adaptive

arrangement of the structures of the metamodel[3]. Objec-

tive criteria could also be affected by multiple constraints

and various disturbances.

This research is appropriately useful for optimizing a sys-

tem undetermined by such model information. This method

can achieve the advanced prediction of a metamodel that

deals with input and response for forming the linear ap-

proach function. The DIP model is generally nonlinear, but

this approach uses linear regression. Therefore, it makes

sense that the proposed method is worthwhile for applica-

tion in real situations. Sometimes, the information of the

system model is unknown, and the optimal solution is only

close to itself, thus trial-and-error searches would be pro-

hibitively expensive, but the proposed method can find a

solution after a small number of experiments. For exam-

ple, in this study, the method succeeded in optimizing and

obtaining five DIP inputs of the undetermined model for

the targets of standing and remaining stable in the upright

position. Only 45 experiments were required for generating

the advanced settings. If either the trial-and-error or full

factorial design were used, the experiment time would in-

crease dramatically because of the tiny level range in each

parameter.
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