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Abstract
Purpose – In this study, the hybrid Taguchi genetic algorithm (HTGA) was used to optimize the
computer numerical control-printed circuit boards drilling path. The optimization was performed by
searching for the shortest route for the drilling path. The number of feasible solutions is exponentially
related to the number of hole positions. The paper aims to discuss these issues.
Design/methodology/approach – Therefore, a traveling cutting tool problem (TCP), which is
similar to the traveling salesman problem, was used to evaluate the drilling path; this evaluation
is considered an NP-hard problem. In this paper, an improved genetic algorithm embedded in the
Taguchi method and a neighbor search method are proposed for improving the solution quality.
The classical TCP problems proposed by Lim et al. (2014) were used for validating the performance of
the proposed algorithm.
Findings – Results showed that the proposed algorithm outperforms a previous study in robustness
and convergence speed.
Originality/value – The HTGA has not been used for optimizing the drilling path. This study shows
that the HTGA can be applied to complex problems.
Keywords Drilling path, Hybrid Taguchi genetic algorithm, Travelling cutting tool problem
Paper type Research paper

1. Introduction
In recent decades, printed circuit boards (PCBs) have become a crucial product because
of a sharp increase in demand for electronic devices. However, the time consumed by
computer numerical control (CNC) during PCB drilling poses a serious problem:
it reduces the efficiency of the drilling process. To enhance the efficiency and obtain the
minimum trace, the movement of the drilling tool on the CNC should be controlled.
In a single case of two-dimensional CNC PCB drilling, all hole points have the same
priority; to improve the efficiency of the drilling process, the hole points should be
assigned priorities.

A simple method for searching for the shortest drilling path is to list all feasible routes
for the path and then choose the minimum trace. This technique may take a long time
because the number of solutions increases exponentially with the number of holes. For
instance, five hole positions correspond to 120 (5!) feasible sequences, but for six hole
positions, the number of feasible sequences increases sharply to 720 (6!) (Lim et al., 2014).
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Several researchers have studied the problem of determining the minimal sequence of
CNC drill movements by using stochastic methods. Nevertheless, stochastic methods do
not guarantee the optimal solution; they only provide a solution close to the optimal
solution. However, they continue to be used because they are not time consuming.

To determine the optimal drilling path, the traveling salesman problem (TSP)
should be used to solve the CNC path problem, which is named the traveling
cutting tool problem (TCP), because of the similarity between these two problems
(Qudeiri et al., 2013). In solving the TSP, the final path must return to the initial city.
In the TCP, the path need not return to the first point; the only objective is to
determine the shortest path. For instance, assuming that the shortest path for
drilling five points is [4 5 2 3 1], for the subsequent processes, the paths are [1 4 5 2 3],
[3 1 4 5 2], and so on.

Many methods of TCP optimization have been studied by several researchers. Zhu
and Zhang (2008) employed the particle swarm method to minimize the CNC drilling
path. Furthermore, Lim et al. (2012, 2014) used cuckoo search (CS), which was inspired
by the egg selection method of the cuckoo, for searching for the shortest CNC drilling
path. Genetic algorithms (GAs), which are classical searching methods, have been
developed for obtaining the optimal path (Al-Sahib and Abdulrazzaq, 2014; Mansour
et al., 2013; Qudeiri et al., 2006, 2013).

Many types of techniques, including a hybrid GA (Gupta et al., 2011), parallel ant
colony (Montiel-Ross et al., 2012), and hybrid ant colony together with a GA (Abbas
et al., 2014), have been used in previous studies. Research on path optimization has been
inspired by not only biological phenomena but also physical phenomena. Omar et al.
(2014) proposed the gravitational search algorithm for solving the path optimization
problem. The Euclidean TSP (Qudeiri et al., 2013) and simulated annealing hybrid GA
(Ye and Rui, 2013) have also been used for optimizing the path of a drilling tool.
Additionally, Route Optimizer 3, which is based on an evolutionary algorithm,
was used by Sigl and Mayer (2005) to optimize the drill route.

In this study, three problem cases were considered to analyze the efficiency of the
hybrid Taguchi genetic algorithm (HTGA) in obtaining an optimal PCB drilling path.
These three problems are worth studying because they are based on real problems
related to PCB drilling and many previous researchers have used them to verify
the efficiency of path optimization methods. Lim et al. (2012) solved Workpiece 1
(with nine hole positions) by using CS as the optimizer; Zhu and Zhang (2008)
had previously studied the same problem case by using particle swarm optimization
(PSO) as the solver. Workpiece 2 has been solved using gravitational search
(Omar et al., 2014), CS (Lim et al., 2012), the firefly algorithm (Ismail et al., 2012),
and PSO (Zhu and Zhang, 2008). Workpiece 3 was solved using a GA (Wei et al.,
2008). Lim et al. (2014) considered these three problems for optimizing the PCB
drilling path by using CS. Therefore, in the current study, the performance of the
HTGA (Tsai et al., 2004) in optimizing a two-dimensional PCB drilling path was
compared with that of CS (Lim et al., 2014).

The CS algorithm, developed by Yang and Deb (2009), was inspired by the unique
proliferation pattern of the cuckoo bird. A cuckoo lays its egg in other birds’ nests for
breeding. CS requires three idealizations: first, each cuckoo lays an egg in a randomly
selected nest; second, the superior cuckoo egg, which has superior chromosomes compared
with those of the host birds’ eggs, hatches and the young cuckoo becomes part of the next
generation; third, the cuckoo’s egg may fail to hatch if detected by the host bird; the
detection probability is denoted by pa (∈ [0,1]). When pa¼ 0, means host bird never found
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cuckoo egg; while if pa¼ 1, means host bird always found cuckoo egg. The cuckoo egg and
host birds’ eggs compete to be the best egg. The egg with the best chromosomes
for achieving the highest fitness wins this competition. To create eggs superior to the
host birds’ eggs, the chromosomes of cuckoo egg are produced using Levy’s flight
(Yang and Deb, 2009).

Levy’s flight was inspired by the jumping of animals and insects from one point to
another. The distance of a jump is ascertained by determining a previous point in
accordance with the Markov chain law (Yang, 2010). Levy’s flight is affected by the
host birds’ eggs, which serve as the baseline (Yang and Deb, 2009). The number of
cuckoo eggs is equal to the number of nests. Hence, the performance of CS is affected by
the number of nests and pa. The number of population members in the next generation
produced in each iteration is twice that in the present generation, which ranks lower
than the next generation.

According to the preceding discussion, new superior chromosomes (eggs) quickly
adapt to the selection process and probability ( pa) to change. If a new chromosome is
superior to the existing chromosome and has a probability ( pa), it is replaced
immediately. This procedure may be risky if the chromosome has high diversity,
possibly being trapped in local optima because of a concise selection process.

The HTGA uses a different strategy to produce the best chromosome. This
method is similar to the traditional GA. The algorithm starts by creating a parent
chromosome. This step is based on the number of population members, and it is
similar to a step in CS. Subsequently, several chromosomes of the population are
produced in crossover and mutation operations, and finally, in the elimination step,
chromosomes are selected according to their fitness rank. In the HTGA, in addition to
the original GA, two levels of the Taguchi orthogonal array (OA) are introduced
between crossover and mutation for minimizing the error value and limiting the
effect of unsuccessful target search during the crossover operation as an exploitation
function. Only two chromosomes from the offspring population are analyzed.
The number of generated chromosome candidates depends on the number of genes in
a chromosome. Thus, more complex genes will be evaluated in more experiments.
As a complement, a chromosome is mutated by using a neighbor method for
preventing the algorithm from being trapped in local optima. Therefore, a complex
chromosome or a function with many local optima produces a highly feasible
superior chromosome (Tsai et al., 2004).

This paper is organized as follows: it begins with a background of the study and a
rough comparison between CS and the HTGA. Next, the problem of this study is
defined and the application of the HTGA to it is described. The procedure of the HTGA
is explained in the subsequent section. A discussion and conclusion regarding the
experimental procedure are then presented. Finally, a comprehensive reference list
is provided.

2. Problem definition
In real applications, the work table used for CNC drilling can move in the x and y
directions. The movement in each direction is controlled by a stepper motor, and the
drilling tool position is fixed. The drilling tool moves only vertically during the drilling
process. The table is appropriately moved to set the hole positions underneath the
drilling tool during the drilling process. The table movement cannot be calculated
precisely because of the motor switching among acceleration, full speed, and
deceleration; the table movement is therefore time dependent.
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Lim et al. (2014) used the CS algorithm to optimize the CNC PCB drilling hole
position sequence for three workpieces (WPs). The velocities in the x and y directions,
which are controlled by two stepper motors, are assumed constant. The assumptions in
this study were as follows:

(1) the rotation speed of the stepper motors is constant;

(2) all holes have the same diameter (no drilling change);

(3) the distances from the initial point to the first hole position and from the final
hole position to the initial point are neglected;

(4) there is no time delay between the stepper motor and drilling movement; and

(5) the drilling tool passes through each hole position only once.

In this study, two cases of stepper motor movement were considered. In Case 1, two
work table stepper motors operate separately. The movement is initially in the x
direction and then in the y direction. Figure 1 shows the drill moving from 1 to 2; the
drill moves from Point 1 to the midpoint between Points 1 and 2, finally halting at
Point 2. In Case 2, two stepper motors operate simultaneously if the coordinates of the
initial and destination points are such that movements along both axes are required.
Figure 2 shows the drill shifting from Point 1 to 2; it moves from Point 1 to the
midpoint between Points 1 and 2 because of the combined operation of the two
stepper motors. Finally, the movement of the drill from the midpoint between Points 1
and 2 to Point 2 results from the operation of the stepper motor in the x direction
(Lim et al., 2014).

The time taken for all work table movement in the two cases was determined
as follows:

Case 1: t ¼
Xn�1

i¼1

 
xi�xiþ 1
�� ��

vx
þ yi�yiþ 1

�� ��
vy

!
(1)

3

12

101

7

2

5

mid 2 and 3

mid 1 and 2

y

x

Figure 1.
Work table
movement for case 1
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Case 2: t ¼
Xn�1

i¼1

max

 
xi�xiþ 1
�� ��

vx
;
yi�yiþ 1

�� ��
vy

!
(2)

These equations describe the total time of a route job. The parameter t is the total time
taken for covering the entire route for n hole positions (second), i is the number
sequence of a hole, xi and xi+1 are the x coordinates of the initial and destination points
in millimeters, yi and yi+1 are the y coordinates of the initial and destination points in
millimeters, and vx and vy are the drill velocities in the x and y directions (mm/s).
Because vx and vy are set to be 1 mm/s, the distance and the time taken (TR) have the
same value, but different units (Lim et al., 2014).

3. Use of HTGA for TCP optimization
The HTGA was shown to be an effective method for searching for real optimal or
optimal solutions with high robustness and quick convergence (Tsai et al., 2004). In this
study, the HTGA was applied to optimize the CNC drilling path for two-dimensional
PCB drilling. The following paragraphs explain Taguchi’s experimental design and the
HTGA stepping procedure.

The Taguchi design of experiment (DOE) was along with an OA to reduce the
number of experiments. The OA has a power ability for determining the optimal setting
of input parameters on the base of a number of experiments less than the full factorial.
The signal-to-noise ratio (SNR) formulation in the Taguchi OA is used to verify the
robustness of the parameter setting in the array and to recommend the optimal setting
if the setting in the array is not sufficiently optimal (Tsai et al., 2004).

For instance, 34 (81) experiments are required to analyze three levels in four input
parameters by using the full factorial. However, if the variable problem is evaluated
using an OA, only nine experiments (L9) are required. This is because of fractional
DOE, which is used in the OA method (Fowlkes and Creveling, 1995).

In this study, two levels of an OA were employed. A hole position was described as a
gene, while a route or path was denoted as a chromosome. Many OAs were selected

y

3

1

10

x

12

mid 2 and 3

mid 1 and 2
2

7

Figure 2.
Work table

movement for case 2

111

Path
optimization

of CNC
PCB drilling



using many genes, with the number of genes being equal or greater than the number of
OAs. For instance, if it is assumed that a WP has seven points, then eight OA
experiments (L8) are chosen. Generally, Taguchi’s OA procedure can be formulated as
Ln¼ 2(n−1), implying that for n experiments, (n−1) parameters in two levels can be
analyzed. Table I shows an L8 OA. The column run provides the number of
experiments. The numbers 1 and 2 in each column denote the parameter level, and the
letters A to G denote the parameter set in each experiment.

The SNR is presented as a complement of the Taguchi DOE. The SNR is used to
determine a robust parameter setting. There are three criteria for the SNR: the smaller
the better, nominal is the best, and the larger the better. This study used the smaller the
better for determining the optimal TR for CNC PCB drilling. This criterion involves the
following formula:

Z ¼ �10log
1
n

Xn
t¼1

y
2

t

 !
(3)

where η is the SNR, n is the number of samples, and yt denotes the data (Fowlkes and
Creveling, 1995).

This procedure was used along with the SNR criteria to determine a robust setting;
a more robust setting has a higher SNR. In Taguchi’s OA, the number of chromosomes
is equal to the number of experiments. Whole chromosomes are compared to determine
the high SNR. Sometimes, the best chromosome is not present in the OA because of the
OA not being the full factorial of the DOE. If this situation occurs, then a new
chromosome will be proposed based on the higher of SNR.

Figure 3 describes the procedure for optimizing the TCP by using the HTGA:

Step 0 Parameter setting. Input: data on hole position coordinates, number of
population members (NP), number of offspring (NO), crossover rate (CR),
mutation rate (MR), and number of generations (GN). Output: the best
chromosome is the path route sequence having the smallest fitness value.

Step 1 Determining the total time route (TR) for each pair of positions by using
Equation (1) or (2), depending on the chosen case.

Step 2 Initializing or generating the parental chromosome. In this step, each parental
chromosome is produced using a random gene permutation. Each chromosome
has a unique gene sequence (drilling point route), and therefore, the chromosomes
are distinct from each other. The chromosome production process continues until
the NP of the chromosomes is reached.

Run A B C D E F G

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

Table I.
L8 orthogonal array
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Step 3 Selection process involving a roulette wheel. In this process, the cumulative
probability contribution of each chromosome is evaluated. Summation
accumulation is described by a roulette wheel that is rotated to select the
chromosome. This selection step is terminated when the number of
chromosomes equals the NO. Chromosomes are selected in pairs and should
be distinct from each other.

Step 4 Crossover process using a set partition method. This step is applied to each
chromosome pair chosen in Step 3, but it depends on the random number.
If the random number is lower than the CR, this pair is crossed.

Step 5 Taguchi DOE (explained in the next section).
Step 6 Mutation by conducting neighbor search. Every chromosome obtained from

Step 5 is mutated if the random number is lower than the MR.
Step 7 A new superior chromosome is produced.
Step 8 Eliminating the best NP chromosomes for maintaining high fitness. Steps 3-8

are repeated until the GN is reached.
Step 9 Displaying the best chromosome and fitness value.
These steps are explained as follows:

1. Initialization: three data problem cases containing data on hole coordinates in two
dimensions are considered. Each datum is used as an input for the HTGA. A
chromosome represents a drilling route, whereas a gene denotes a hole coordinate.
First, the TR should be calculated. The TR value depends on the case used (Case 1 or 2).
The chosen case affects the time taken for moving the drill from one position to
another. The TR calculation result is a square matrix (NP×NP) and is used to
determine the TR for each position.

Next, a parental chromosome is produced using a random permutation of hole position
numbers. The number of parent chromosomes is the NP, and hole positions are
represented by genes. A higher NP renders the solution more precise, but requires a longer
processing time. The TR of each chromosome is determined to create a roulette wheel
representing the probabilities of chromosomes contributing to the overall probability.

2. Selection: the TR of each chromosome produced through the preceding process is
used for creating the roulette wheel, which describes the probability of each
chromosome that contributes to the overall probability. The highest value of the
cumulative sum of probabilities is 1 (100 percent).

Selection refers to the process of selecting several chromosomes until the number of
chromosomes selected equals the NO. In this study, the NO was determined as 0.8×NP.
Pairs of chromosomes were formed from the selected chromosomes by using a random
number, which was used for determining the chosen chromosome from the position of
the roulette wheel. The random number generated value (0-1), such that correlated with
position in roulette wheel. The pairing of identical chromosomes must be avoided.
Figure 4 shows the roulette wheel that determines the selected chromosome. In this
figure, the NP is assumed to be eight chromosomes, and each chromosome contributes
to the overall probability.

3. Crossover: the partition method was used for crossover. This method begins with
a random permutation of four genes in each chromosome pair. Figure 5 shows the
parental chromosomes P1 and P2 having ten genes. U1 and U2 are created by choosing
four genes randomly from each chromosome. A gene (U1) is randomly chosen from P1.
This randomly chosen gene is used along with the sequence in P2 to create a child
chromosome (C1). Finally, a gene is randomly chosen from P2 and used together with
the sequence in P1 to create C2.
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4. Taguchi DOE: the Taguchi OA is used between crossover and mutation to
generate superior chromosomes. This step begins with randomly choosing two
chromosomes from the chromosomes produced in the crossover operation; and
the two chromosomes are then considered to represent two levels of experimental
parameters. Otherwise, the number of chromosomes (hole position sequence) becomes
the input parameter of the DOE. The complete procedure of the Taguchi DOE
algorithm is as follows:

Step 1 An adequate OA is selected on the basis of the number of genes (hole
positions). The two levels of the OA are correlated, and the number of
experiments should be equal to a power of 2 and equal to or more than the
number of parameters. For example, for L16 (2

15), sixteen experiments could be
used for analyzing two levels of 9-15 parameters.

P1=9 1 6 7 8 4 5 2 3

P2=6 1 5 7 3 8 2 4 9

Parent chromosome

U1=8 7 4 2

C1=6 1 5 7 8 4 3 2 9

P1=9 1 6 7 8 4 5 32

U2=5 4 8 3

C2=9 1 5 7 3 8 6 4 2

P2=6 1 5 7 3 8 2 4 9

Child chromosome 1

Child chromosome 2

Figure 5.
Set partition

crossover

8

20%

18%

17%

16%

12%

7

6

5

4
3

8%6%3%

1 2

Figure 4.
Roulette wheel

used for
chromosome

selection
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Step 2 A pair of chromosomes from the crossover operation is randomly chosen, and
each element of the pair is used to represent Level 1 and Level 2 in the OA.

Step 3 The fitness value is determined using the OA Ln (2n−1) in n experiments.
The number of chromosomes produced in this step is equal to the number
of experiments.

Step 4 The chromosome is evaluated by considering the SNR to either choose the best
chromosome in the OA design or create a superior chromosome with a high SNR
that is recommended by the OA. This step generates a single optimal chromosome.

Step 5 The new superior chromosome produced by the Taguchi orthogonal array is
added to the chromosomes produced in the crossover operation. The fitness
function is then used for sorting the offspring.

5. Mutation: mutation is necessary as an exploration strategy to maintain diversity
(Simon, 2013). In the current study, neighbor search mutation was used for the
mutation operation. In this step, all the chromosomes obtained from crossover and the
Taguchi OA are processed. Each chromosome is mutated if the random number is
lower than the MR. Figure 6 shows three genes chosen randomly from a parental
chromosome (U) with nine genes. In this figure, the permutation of U (containing [1 4 9])
leads to the creation of six (3!) sequences of genes. These six genes are used to create six
offspring by using the parental chromosome, except the three genes generated from U1
to U6. Thus, this process generates six offspring chromosomes for each parental
chromosome. Next, the six offspring are selected to choose the one with the best
chromosome, based on their fitness value. Finally, the number of chromosomes
produced in the mutation step is identical to that produced in crossover.

U=1 4 9

Random 3 genes from Parent

P=6 8 5 9 4 1 3 7 2

Parent chromosome

9 4 1
9 1 4
4 9 1
4 1 9
1 4 9
1 9 4

Permutation of 3 random genes

C1=6 8 5 9 4 1 3 7 2
C2=6 8 5 9 1 4 3 7 2
C3=6 8 5 4 9 1 3 7 2
C4=6 8 5 4 1 9 3 7 2
C5=6 8 5 1 4 9 3 7 2
C6=6 8 5 1 9 4 3 7 2

Child chromosome

Figure 6.
Neighbor search
mutation
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6. Elimination: in the elimination step, all chromosomes from parents and the
chromosomes obtained in the previous step are combined, and NP chromosomes are
chosen on the basis of the rank and fitness of all chromosomes. The processes from
selection to elimination are performed in cycles until the target GN is reached.

4. Experimental results and discussion
The objective of this study was to minimize the path along which the work table is
moved to increase the efficiency of the drilling process. For examining the efficiency of
the HTGA as a path optimizer, this study considered three problem cases. These three
problem cases contained information on the coordinates of hole positions and were
used in a control study. In a previous study, Lim et al. (2014) used these three problem
cases for analyzing the efficiency of CS as a path drilling optimizer. The three
problem cases, namely WP1, WP2, and WP3, have 9-, 14-, and 49-hole positions,
respectively. Tables II-IV show the coordinates for each problem case.

The HTGA was embedded in a program code on Matlab R2012a software and run
on a computer (Intel(R) Core(TM) i7-2600 CPU at 3.40 GHz and 8 GB RAM).
Furthermore, the implementation and verification results of Lim et al. (2014) were used
for comparing the results of the current study.

Table V shows the parameter setting in CS and the HTGA. Three parameters – pa,
αc, and αh – were used only in CS. The CR and MR were used in the HTGA.

4.1 Verification of WP1
WP1 has nine hole coordinates. The NP was set to 50, and the GN was set to 10,000.
The HTGA was run 1,000 times.

Table VI shows the results of the HTGA for the optimal sequence and optimal time
required in the CS case examined by Lim et al. (2014). For the remaining four criteria,
CS reached convergence faster. By contrast, the HTGA has more processes for
producing superior chromosomes, through selection, crossover, the use of the OA,
and finally mutation. This problem case was too simple and easy solved by the
HTGA, whereas a higher number of iterations was required for CS.

No. X (mm) Y (mm) No. X (mm) Y (mm)

1 12.75 69.75 6 62.25 69.75
2 0.00 45.00 7 99.50 82.00
3 12.75 20.25 8 90.04 58.53
4 62.25 20.25 9 99.50 8.00
5 76.88 39.64

Table II.
Coordinates for

problem case WP1
(nine positions)

No. X (mm) Y (mm) No. X (mm) Y (mm)

1 10.00 10.00 8 62.29 43.60
2 10.00 60.00 9 62.29 26.40
3 18.00 53.50 10 90.00 10.00
4 18.00 42.50 11 82.00 16.50
5 32.32 12.66 12 82.00 27.50
6 37.71 26.40 13 72.59 55.75
7 37.71 43.60 14 90.00 60.00

Table III.
Coordinates for
problem case

WP2 (14 positions)
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Table VII shows that the HTGA obtained the same optimal solution as that obtained by
CS. However, the HTGA requires a lower average number of iterations to converge,
while requiring a higher number of iterations for global convergence. This result
indicates that the HTGA outperforms CS in searching for a solution. The searching
speed of these cases is shown in Figures 7 and 8.

No. X (mm) Y (mm) No. X (mm) Y (mm)

1 40.607 87.376 26 273.248 260.548
2 50.767 87.376 27 228.724 273.502
3 47.724 71.501 28 235.922 273.502
4 44.290 71.247 29 231.767 289.377
5 54.922 71.501 30 221.607 289.377
6 44.290 58.547 31 137.396 313.626
7 127.236 111.625 32 127.236 313.626
8 137.396 111.625 33 130.279 329.501
9 133.713 127.754 34 133.713 329.755

10 130.279 127.500 35 123.081 329.501
11 123.081 127.500 36 133.713 342.455
12 133.713 140.454 37 50.767 289.377
13 221.607 87.376 38 40.607 289.377
14 231.767 86.376 39 44.290 273.248
15 228.724 71.501 40 47.724 273.502
16 225.290 71.247 41 54.922 273.502
17 235.922 71.501 42 44.290 260.548
18 225.290 58.547 43 304.081 329.501
19 308.236 111.625 44 311.279 329.501
20 318.396 111.625 45 314.713 329.755
21 314.713 127.754 46 342.455 329.755
22 311.279 127.500 47 318.396 313.626
23 304.081 127.500 48 308.236 313.626
24 314.713 140.454 49 30.000 −5.000
25 225.29 260.548

Table IV.
Coordinates for
problem case WP3
(49 positions)

Parameter CS HTGA

For all WP
pa 2/(number of holes-2) na
αc 3/number of holes na
αh 1 na
CR na 0.6
MR na 0.2
Run times 1,000 1,000

For WP1 and WP2
PN 50 50
GN 10,000 10,000

For WP3
PN 100 100
GN 20,000 20,000

Table V.
Parameter setting
for CS and HTGA
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4.2 Verification of WP2
WP2 consists of 14 hole positions. The NP was set to 50, and the GN was set to 10,000;
the HTGA was run for 1,000 times.

WP2 is more complex than WP1. Thus, for this WP, the stability of the HTGA is
more evident.

Tables VIII and IX show that the HTGA obtains the same optimal solution as CS
obtains. Additionally, the HTGA shows superior performance in the lowest number of
iterations, average number of iterations, and highest number of iterations during global
convergence for both problem cases. The searching convergence of these problems case
is shown in Figures 9 and 10.

Criteria CS HTGA

Optimal sequence [3 2 1 6 7 8 5 4 9] [3 2 1 6 7 8 5 4 9]
The least iteration number during global convergence 1 4
The average iteration number during global convergence 18 24
The most iteration number during global convergence 57 264
The optimal time required 322.5 322.5

Table VI.
Comparison between

CS and HTGA for
WP1 (case 1)

Criteria CS HTGA

Optimal sequence [3 2 1 6 7 8 5 4 9] [1 2 3 6 7 8 5 4 9]
The least iteration number during global convergence 1 1
The average iteration number during global convergence 13 10
The most iteration number during global convergence 40 33
The optimal time required 235.2 235.2

Table VII.
Comparison between

CS and HTGA for
WP1 (case 2)
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4.3 Verification of WP3
WP3 contains 49 hole positions. The NP was set to 100, and the GN was set to 20,000;
the HTGA was run 1,000 times.

WP3 was the most complex problem in this study, and it has 6.0828× 1062 (49!)
feasible sequences. Therefore, the effectiveness of the HTGA was confirmed.

The second columns of Tables X and XI show the optimal sequences for WP3 in the
study of Lim et al. (2014). In the two sequences, for Case 1, Gene 2 appears twice but
Gene 42 is missing; for Case 2, Gene 6 appears twice but Gene 46 is missing. If the
fitness functions of these sequences are obtained, a different result is derived
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Criteria CS HTGA

Optimal sequence [1 5 6 4 2 3 7 9
11 10 12 8 13 14]

[14 13 8 12 10 11
9 7 3 2 4 6 5 1]

The least iteration number during global convergence 30 18
The average iteration number during global convergence 375 86
The most iteration number during global convergence 2,092 343
The optimal time required 220 220

Table IX.
Comparison between
CS and HTGA for
WP2 (case 2)

Criteria CS HTGA

Optimal sequence [10 11 12 9 6 5 1
2 3 4 7 8 13 14]

[1 5 6 9 12 11 10
14 13 8 7 4 3 2]

The least iteration number during global convergence 23 20
The average iteration number during global convergence 429 38
The most iteration number during global convergence 2,349 148
The optimal time required 280 280

Table VIII.
Comparison between
CS and HTGA for
WP2 (case 1)
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(the original results are written in brackets). To improve upon the poor result of Lim
et al. (2014), two possible sequences were proposed for each case.

Tables X and XI show that the HTGA requires a shorter optimal time than CS does.
However, for the remaining criteria, the HTGA cannot be compared with CS because of
unavailable data.

According to the number of possible solutions and error percentage, the HTGA has
been shown to be stable for obtaining the optimal solution. This performance is
supported by many solutions generated through OA analysis. This stability improves
the performance of the HTGA, thereby preventing it from being trapped in local optima.
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The aforementioned result indicates that the HTGA can be used and improved as an
optimization method for complex problems. This statement is supported by the
ability of the HTGA to analyze feasible solution candidates by using an OA.
The combination of the HTGA and OA does not merely provide a solution; it provides
the optimal alternative solution. The search performance of these problems case is
presented in Figures 11 and 12.

Criteria Original CS Feasible 1 CS Feasible 2 CS HTGA

Optimal sequence [2 39 40 41 37
38 32 31 34 33
35 36 30 29 27
28 25 26 48 47
45 44 43 46 24
21 22 23 19 20
14 15 16 17 18
13 8 7 10 9 11
12 2 1 4 3 5 6 49]

[42 39 40 41 37
38 32 31 34 33
35 36 30 29 27
28 25 26 48 47
45 44 43 46 24
21 22 23 19 20
14 15 16 17 18
13 8 7 10 9 11
12 2 1 4 3 5 6 49]

[2 39 40 41 37 38
32 31 34 33 35
36 30 29 27 28
25 26 48 47 45
44 43 46 24 21
22 23 19 20 14
15 16 17 18 13 8
7 10 9 11 12 42 1
4 3 5 6 49]

[42 39 40 41 37
38 32 35 33 34
36 31 30 29 28
27 25 26 48 43
44 45 46 47 24
21 22 23 20 19
14 17 15 18 16
13 8 9 12 10 11
7 2 1 3 5 4 6 49]

The least time required 1,489.742 na na 1,499.258
The average time required 1,805.262 na na 1,531.017
The most time required 2,037.243 na na 1,487.248
Percentage error for the
least time required

2.02% na na 1.12%

Percentage error for
average time required

23.63% na na 3.27%

Percentage error for most
time required

39.52% na na 0.3%

The optimal time required 1,750.381
(1,460.216)

1,570.732 1,990.569 1,482.604

Table X.
Comparison between
CS and HTGA for
WP3 (case 1)

Criteria Original CS Feasible 1 CS Feasible 2 CS HTGA

Optimal sequence [6 45 44 43 48
47 26 25 27 28
29 30 31 32 33
34 35 36 37 38
39 40 41 42 1 2
3 4 5 6 49 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24]

[46 45 44 43 48
47 26 25 27 28
29 30 31 32 33
34 35 36 37 38
39 40 41 42 1 2
3 4 5 6 49 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24]

[6 45 44 43 48
47 26 25 27 28
29 30 31 32 33
34 35 36 37 38
39 40 41 42 1 2
3 4 5 46 49 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24]

[49 6 4 3 5 1 2 11
12 9 10 7 8 13
14 15 16 18 17
19 20 23 22 21
24 26 48 47 46
45 44 43 28 25
27 29 30 31 32
33 34 36 35 37
38 41 40 39 42]

The least time required 1,119.706 na na 1,133.494
The average time required 1,338.65 na na 1,163.198
The most time required 1,487.126 na na 1,127.248
Percentage error for the least
time required

1.06% na na 0.55%

Percentage error for average
time required

20.82% na na 3.19%

Percentage error for most time
required

34.23% na na 0%

The optimal time required 1,454.229
(1,107.927)

1,210.7630 2,000.016 1,127.248

Table XI.
Comparison between
CS and HTGA for
WP3 (case 2)
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5. Conclusion
The HTGA was used for optimizing a two-dimensional CNC PCB drilling path. Three
classic TCPs examined by Lim et al. (2014) were considered to analyze the effectiveness
of the HTGA. The procedure of the HTGA is similar to that of traditional GAs.
The HTGA is a hybrid algorithm, and a Taguchi OA is introduced between crossover
and mutation to improve chromosomes.

The results of the proposed algorithm were compared with those of the CS algorithm,
which was used by Lim et al. (2014) for optimizing the drilling path, to verify the efficiency
of proposed algorithm. The HTGA was more robust and showed faster convergence in
reaching the optimal solution for WP2 and WP3. In particular, the HTGA obtained a
superior solution for WP3, which was the most complex position problem in this study.
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