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Potassium Alum [KAI(SO4)2-12H20] Solid Catalyst for
Effective and Selective Methoxylation Production of Alpha-Pinene Ether Products
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UTM Johor Bahru, Malaysia
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Abstract. Methoxylation is among the technologically relevant processes for producing
high-value a-pinene derivative compounds. Consequently, methoxylation of a-pinene
catalyzed by potassium alum [KAI(SO4)2-12H20] is preferable on account of its lower
cost and eco-friendliness. In this study, influence of the volume ratio of reactants (a-
pinene:methanol = 1:4, 1:7, 1:10), mass of catalyst (0.5, 1, and 1.5 g) and temperature
(50, 55, 60, 65°C) on a-pinene methoxylation by the prepared KAI(SO4).-12H,0 was
assessed, and the generated products were characterized by GC-MS and FT-IR. The study
aimed to identify the best reaction condition that warrants the highest selectivity and
percentage conversion of a-pinene by the KAI(SOa)2-12H,0 solid catalyst. The study
discovered that KAI(SO4).-12H,0O catalyzed an exceptional 98.18% methoxylation
production of a-pinene derivatives, viz. terpinyl methyl ether (TME), fenchyl methyl
ether (FME), and bornyl methyl ether (BME), with the use of 1 g of catalyst and 1:10
volume ratio of reactant, while requiring 360 min of reaction at 65°C. Reaction selectivity
was maximum under the aforesaid condition to yield 59.59%, 8.87% and 7.13% of TME,
FME and BME, respectively. In a nutshell, the research demonstrated the promising
applicability of KAI(SO4)2-12H,0 for a more effective methoxylation of a-pinene to
obtain reasonable yields of different ether derivatives.

Keywords: a-pinene; methoxylation; postassium alum; catalyst
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1. Introduction

The organic compound a-pinene belongs to the terpene group endowed with a
reactive ring following the presence of double bonds. The compound is a commonplace
constituent in various coniferous tree oils, particular the pine tree [1,2]. The use of a-
pinene becomes interesting and highly diverse when the compound is chemically
transformed via various chemical processes, into an array of high value compounds [3].
Transformations of a-pinene can be conducted beforehand by using different acid
catalysts, e.g. activated carbon, AI** ion exchanger clay, acid oxide, zeolite, activated
clays, ion exchange resin, and TCA/ZrO,.nH,0O [4-13]. Among the chemical reactions,
methoxylation by addition of methoxide ions, is the frequent choice of reaction to modify
functional groups of a-pinene, as well as its applicability. Literature have shown that the
a-terpinyl methyl ether compound predominates the a-pinene methoxylation products,
alongside minor products, for instance, a-terpinyl methyl ether, B-terpinyl methyl ether,
terpinolene, limonene, endo-bornyl methyl ether, B-fenchyl methyl ether, exobornyl
methyl ether, bornilene, and camphene [14]. The a-terpinyl methyl ether notably exudes
fresh and citrus-like aroma, which makes it desirable as a component in flavors and
aromas of perfumes and cosmetic products, plus as aromatic additives for topical
medicines and agricultural chemicals, as well as in the food industry [5].

The conventional process of a-pinene methoxylation to produce the a-terpinyl
methyl ether involves certain kinds of catalysts, including AI** ion exchanger clays,
mesoporous/microporous carbon, poly(vinyl alcohol) (PVA) containing sulfonic, B-
zeolite, MCM-41, PMO, and heteropolyacids immobilized on silica [4,5,14-16].
Nonetheless, it is a well-known fact that the chemical synthetic route of a-terpinyl methyl
ether by the aforementioned catalysts is far from efficient, while being environmentally
unfriendly [5,17]. There is much to be done with regards to improving the selectivity of
the catalytic process, as well as guaranteeing a higher methoxylation production yield of
this very much popular derivative of the a-pinene. This study believes that the issue can
be resolved with the use of suitable heterogeneous catalysts, in order to facilitate a more
benign synthesis of the ether product.

A noteworthy point to indicate here, a heterogeneously catalyzed metoxylation
reaction averts the shortcomings typically observed in homogenous catalysis. This is
because the former is more environmentally friendly and, its solid form advantageously

permits the facile separation of the catalyst from the reaction mixture upon completion



of the reaction. Moreover, specific pore sizes of heterogeneous catalysts can selectively
adsorb the reactant molecules for a rapid transformation into products [18-21].
Pertinently, adsorption of a molecule into the cavity of the catalyst occurs more rapidly
when their sizes and shapes are similar and compatible [9,10]. A matter of fact, the
KAI(SO4)2.12H,0 is a promising heterogeneous acid catalyst to catalyze the
methoxylation of a-pinene into the value-added a-terpinyl methyl ether.

The KAI(SO4)2:12H20, or called potassium alum, or potash alum acid, exists in
solid form. This solid catalyst has been commonly utilized for several kinds of reactions,
such as the synthesis of mono and bis-2-amino-4H-pyrans by reaction of three or five
pseudo components from 4-hydroxycoumarin. The catalyst has also been examined for
the reaction of malononitrile and aldehyde in ethanol/water media at room temperature
and for the Erlenmeyer synthesis, as well as for the transesterification of palm oil
[19,22,23]. Considering the relatively versatility of this solid catalysts to mediate a
relatively wide variety of reactions, the study believes it may be useful for the
methoxylation of a-pinene to produce a-terpinyl methyl ether. Thus, the study aimed to
assessed the influence of the volume ratio of reactants, mass of catalysts, and reaction
temperature on KAI(SO4)2-12H,O to catalyze the selective and high percentage
methoxylation production of a-pinene derivatives. This study details the first attempt to
carry out methoxylation of a-pinene by the KAI(SOa4)2-12H,0 solid catalyst. The study
objectively wishes to identify the best methoxylation conditions, as well as qualitatively
and quantitatively characterize the reaction products using Fourier-Transform infrared
spectroscopy and gas chromatograph-mass spectrometry, respectively.

2. Materials and Methods
2.1. Materials

The compound was obtained from Sigma Aldrich, Germany and turpentine oil from
KBM Perhutani Pine Chemical Industry Pemalang, Indonesia. Analytic grade methanol
and potassium alum [KAI(SOa4)2:12H20] were both procured from Merck. Potassium

alum catalyst was prepared in the lab.

2.2.  Instrumentations

Quantitative and qualitative analyses of the isolated a-pinene and the corresponding
methoxylation products were conducted for GC 23 Agilent 6820 (Version A. 01. 03), HP-
5 column and FID detector (detector temperature of 300°C), with Helium as carrier gas.



Injection temperature was 280°C. Column temperature was 70-300°C with initial
temperature of 70°C for 10 minutes, increasing gradually until 280°C (5°C/min), and until
300°C (20°C/min). The GC-MS (Shimadzu QP-2010 Plus) equipped with a AOC-20i+s
autosampler that operated under the following conditions: column temperature 70°C,
injection temperature 200°C with split injection mode, pressure 13.7 kPa, flow column
0.50 mL/min, ion source temperature 200°C and interface temperature 240°C. In this
analysis, helium (He) gas was used as the carrier with a constant flowrate of 0.1puL/min.
The study would like to note that estimation of the methoxylation products of a-pinene
were based on the area beneath each peak. The percentage of each ether product where
obtained by dividing the peak area of each a-pinene ether product with that of isolated a-
pinene and multiplied by 100. For the qualitative analysis of the reaction products,
Fourier-transform spectroscopy was performed on prepared KBr pellets and analyzed on
a Perkin Elmer Spectrum Version 10.4.00 for wavenumber region between 4000—400 cm’
1 were used to quantify the produced ether products.

For catalyst preparation, potassium alum was spray coated over AuPd plates under
Argon flow for 90 s to give KAI(SO4)2-12H,0. The gas pressure set to 0.5 bar, and the
analysis was conducted at at 20 mA for the duration of 5-10 mins in AuPd solvent.
Scanning electron micrographs (SEM) of the prepared KAI(SO4)2:12H,0 was obtained
on a Pro X Scanning Desktop Electron Microscope with Energy Dispersive X-Ray
(EDX). The catalysts were characterized by X-Ray Diffractometer(D-Max Il (Rigaku)
dengan radiasi Cu Ka (o = 1.5378 A,40kV, 30mA).

2.3.  General Procedures

Fractional distillation of turpentine oil under reduced pressure was used to prepare
the a-pinene starting material in the methoxylation reaction. The catalytic experiments
were carried out in a stirred batch reactor with reflux, at different temperatures (50-65°C)

and ambient pressure. In a typical experiment, the reactor was loaded with 20 mL of
methanol and 1 g of catalyst, followed by the addition of 5 mL of a-pinene and the
mixture was stirred for a further 360 min. Samples were taken periodically and analyzed
by GC, GC-MS and FTIR. The KAI(SO4)2-12H,O methoxylation of a-pinene was
assessed for the variables of reaction temperature (50, 55, 60 and 65°C), mass of catalyst

(0.5; 1; and 1.5 g), and volume ratio of reactants (a-pinene : methanol= 1:4, 1:7, 1:10).

3. Results and Discussions



3.1 Characterization of catalyst

The potassium alum catalyst (KAI(SO4)2:12H20 is an inexpensive, non-toxic,
water-soluble, and commercially available compound that can be used in the laboratory
without special precautions [19, 22,23]. Alum was characterized using FT-IR, SEM, and
XRD. The following Figure 1 illustrates the SEM micrograph of KAI(SO4)2:12H>0 solid
catalyst prepared by this study. It appears that KAI(SO4)2:12H,0 has a micro structure
that is reasonably similar to ammonium aluminum sulfate dodecahydrate
[NH4AI(SO4)2:12H,0], except the latter has a more rounded shape, showing sizes of
between 100-200 pum. However, when heated at a at higher temperatures of 1100-

1200°C, the overall construct is altered and adopt an elongated oval shape [24].

Figure 1. SEM micrograph of KAI(SO4)2:12H>0 magnified 2000 x

Composition of the prepared KAI(SO4)2-12H20 was subjected to FT-IR analysis
for confirmation. The emergence of absorptions at 3553-3108 cm™ and 1640 cm™
indicated the presence of an O—H group from water (H20). Peaks at 1195 cm™ and 1077
cm™ can be allotted to the stretching vibration of the S=O group, while peaks at 933 cm®
Land 737 cm™ corresponded to the stretching vibrations of the S—O group and Al—O
bond. Pertinently, absorption peaks in the region of 750-400 cm™ are characteristic for
the vibration of Al-O [25]. Results of the FT-IR analyses in study, hence affirmed the
successful preparation of KAI(SO4)2-12H20. The spectrum of KAI(SO4)2:12H,0 s
illustrated in Figure 2.



105

TV

85
80
75 -

70
] S=0
65 3

R | LAEP ! Rerir Tl LB FRTMETTTN Ty
4000 3500 3000 2500 2000 1500 1000

%T

Wave number (cm')

Figure 2. FT-IR spectrum of KAI(SO4)2:12H,0

The crystallinity of the alum catalyst and the crystal lattice of the KAI(SO4)2:12H.0
catalyst were characterized using X-Ray Diffraction (XRD) technique. The XRD patterns
of catalyst are presented in Figure 3. High crystallinity indicating higher catalytic
properties, stability at high temperatures, wide porosity, and free of impurities [26]. The
main composition of alum sample was identified to be aluminum potassium sulfate. The
peak of 20= 21°;, 28°; and 32° represents the characteristics of KAI(SO4)2-12H;0.
According to Souza et al. (2019), 100% of KAI(SO4), anhydrous showed peaks at 26=
25°; 32°; and 28°. The 100% of Al.O3 compound showed peak at 26= 36°; 45°; and 58°.
The 68.54% of K»(SOs4) showed peak at 26= 22°;32°; and 45° [27]. According to
Abdulwahab et al. (2019) KAI(SO4)2:12H,0 has peak of 26=21°;22°; and 28°. These
results are in accordance with PDF File 07.0017. The XRD test results can be concluded
that the KAI(SO4).-12H,0 used has high crystallinity but the levels did not reach 100%
[28].
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Figure 3. XRD diffractogram of KAI(SO4)2-12H,0




3.2 Catalytic test

The effects of three reaction conditions on the KAI(SO4)2-12H,0 catalyzed
methoxylation of a-pinene was examined. The reaction was carried out with a volume
ratio of a-pinene and methanol of 1:4, 1:7, and 1:10, 60°C temperature, and amount of
potassium alum catalyst of 1 g. The conversion of a-pinene and selectivity of the reaction

product with respect to the volume ratio of reactants are shown in Figure 4.
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Figure 4. Influence of volume ratio of reactants on the methoxylation of a-pinene: (a)
conversion of a-pinene (b) selectivity of FME (c) selectivity of TME

Observably, the concentration of a-pinene decreased from the initial concentration,
which was 96.30% (Figure 4a). The volume ratio of reactants affected the outcome of the
methoxylation reaction, whereby increasing concentrations of methanol was favorable in
the yielding higher amounts of the ether products (Figure 4a). Concentration of products
also tended to increase over an extended reaction time and the magnitude of the ratio
used. The highest conversion of a-pinene was reached at 74.82% when a volume ratio of

reactants 1:10 and reaction time of 360 min was employed for the methoxylation reaction.



This can be explained by the fact that methanol simultaneously acts as the reactant and
solvent in the reaction, hence improving integration of the reactions and thereby,
accelerating the percentage conversion into the main product, and other ether products
[29]. Likewise, by-products of the methoxylation were also formed, due to the
isomerization of a-pinene including camphene, limonene, and terpinolene, under the
applied reaction condition [30]. The highest selectivity of the KAI(SOa)2:12H,0
catalyzed methoxylation was observed when the substrate reaction ratio was 1:10 with
stirring for 360 min at 60°C, to give products terpinyl methyl ether (TME) (55.76%) and
fenchyl methyl ether (FME) (10.34%) and, as presented in Figure 4b and 4c.

In addition to reaction time, increase in temperature was seen to cause a general
increase in the reaction rate. This subsequently led to the improved percentage conversion
of a-pinene into the ether products. It should be noted that the boiling point of methanol
was ~338K or 65°C. For this very reason, the suitable temperature for the methoxylation
reaction was seen at a lower temperature of 60°C [29]. This is in accordance with the data
in Figure 5a, which at temperature of 60°C the a-pinene conversion increased steadily.
However, when the reaction temperature was elevated to 65°C, a notable increase in
reaction time from 72 minutes to 144 minutes was observed, considering that higher
temperature would result in transformation of the reactants into more products. It is
pertinent to highlight here, a-pinene conversion catalyzed by KAI(SO4),-12H20 peaked
at 98.18% when the reaction temperature was 65°C.

On the same note, selectivity of the catalyst was the highest at 65°C and employing
a 360 min reaction which led to production of 8.7% of FME (Figure 5b), 7.13% of BME
(Figure 5c¢), and 59.59% of TME (Figure 5d). The high selectivity values of TME
corroborated a report by Catrinescu's (2013) which explored the methoxylation of
limonene through the exchange of acid-activated ions and clay. The study asserted that
an increase in reaction temperature as high as 65°C did not lead to a decrease in

methoxylation selectivity [31].
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Figure 5. Effect of temperature on a-pinene methoxylation: (a) a-pinene conversion vs
time (b) FME selectivity vs time (c) BME selectivity vs time (d) TME selectivity vs
time

It was apparent that the concentration of a-pinene declined with increasing reaction
time, implying an on-going methoxylation reaction on a-pinene and that a longer reaction
time was favourably to warrant higher conversions of a-pinene into the corresponding
different a-pinene ether products. Interestingly, the study also noted that the percentages
of the different a-pinene ether products tended to fluctuate over the course of the
methoxylation reaction, for the exception of TME, which demonstrated a consistent
upward trend over time. The outcome seen here, thus insinuated the reversible nature of
the KAI(SO4)2-12H-0 catalyzed methoxylation of a-pinene, and that the exact conditions
of the reaction must be found in order to obtain high percentages of the desired ether
products.

While the percentage of a-pinene being converted into the corresponding ether
products exhibited a monotoic upward trend with longer reaction time, selectivity of the
reaction, however, fluctuated over the course of the reaction. This was most likely due to

the unstable temperature at certain intervals, particularly when the sampling of the



reaction mixture took place. This was probably because the reaction vessel must be open
to allow sampling and led to a large drop in the overall reaction temperature. This
corresponds to the findings of Hensen et al (1997) which investigated the effects of
temperature on the alkoxylation of pinene. They discovered that the maximum
alkoxylation conversion was reached at 60°C and t=120 min [14]. The use of a
temperature of 80°C led to the reverse reaction that reformed pinene isomers in methanol
as the solvent. The same trend was noted for a-pinene conversion in a related system
using 100 mg of Al-SAz-1 as the catalyst [5]. As anticipated, increasing the reaction
favorably increased the conversion of pinene, under otherwise identical conditions.
Reaction selectivity towards the mono-ether, at constant conversion, seems to be largely
unaffected by raising the reaction temperature. Likewise, increasing the temperature up
to 65°C, nonetheless, did not lead to a decrease in selectivity, as observed in the previous
study on limonene methoxylation [31].

Consequently, the corresponding GC chromatograms of sampled reaction mixture
uncovered the main ether products being a-terpinyl methyl ether (59.59%), followed by
fenchyl methyl ether (8.87%) and bornyl methyl ether (7.13%). The products are also
detected when conventionally produced by alkoxylation from pinene or limonene using
mineral acids [5]. This also meant that KAI(SO4)2:12H20 solid catalyst prepared in this
study was converting a-pinene into the corresponding ether products, with good success.
Also, it was apparent that compositions of the a-pinene ether products increased with
increasing amount of catalyst. A noteworthy aspect to highlight here, 0.5 g of the catalyst
gave the highest methoxylation selectivity of a-pinene for FME and BME, while the use

of 1 g of the catalyst leaned towards a higher production of TME (Table 2).

Table 2. Data on the percentage conversion (% C) and selectivity of methoxylation of a-
pinene with variable amount of the KAI(SO4)2:12H,0 catalyst.

Reaction products

a-pinene

Alum (g) t(min) %) %C FME BME TME
%A %S %A %S %A %S
0.5 72 78.70 18.28 212 11.60 146 799  10.04 54.92
144 68.68 28.68 321 1119 212 739 1575 54.92
216 61.24 36.41 405 1112 252 6.92 19.95 54.79
288 53.75 44.18 483 1093 369 835 2378 53.82
360 48.02 50.13 545 1087 362 722 2714 54.14
1 72 71.92 25.32 2.48 9.79 193 762 1346 53.16
144 60.51 37.16 3.87 1041 279 751  20.50 55.17

216 52.87 45.10 4.65 10.31 3.31 7.34 24.53 54.39



288 44.88 53.40 5.35 10.02 409  7.66 28.94 54.19

360 38.05 60.49 6.05 10.00 411 6.79 32.96 54.49
1.5 72 56.00 41.85 4.40 10.51 323 1.72 22.39 53.50
144 45.58 52.67 5.47 10.38 3.76 7.14 28.31 53.75
216 37.42 61.14 6.23 10.19 418 6.84 32.58 53.29
288 30.38 68.45 6.72 9.82 4.71 6.88 36.61 53.48
360 24.56 74.50 7.16 9.61 520 6.98 39.97 53.65

Note: %C (% Conversion), %A (% Content), %S (% Selectivity), FME (a-Fenchyl Methyl
Ether), BME (Bornyl Methyl Ether), and TME (Terpinyl Methyl Ether).

Representative samples of reaction mixture assessed for the mass of catalyst,
temperature and volume ratio of reactants were analyze by FT-IR, to ensure that the data
of the formed methoxylation compounds supported the ones detected in the GC-MS
analysis (Figure 6).
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Figure 6. (a) FT-IR spectrum of a-pinene; (b) FT-IR spectrum of reaction products

The mechanisms of the predominant methoxylated products of a-pinene seen in this
study are presented Scheme 1. The mechanism begins with the protonation of the double
bond of a-pinene to give the pinyl ion, under an acidic condition from the hydrolysis of
the KAI(SO.)2-12H20 catalyst. According to literary review, the process catalyzed by
acid (potassium alum) takes place through two routes, route A is obtained by bornyl ion
and route B is obtained by ionized ion [4]. The alkoxylation of a-pinene initiated by
protonation of the a-pinene double bond to form the pinyl ion. The reaction then proceeds

via two parallel pathways depending on the pinyl ion rearrangement, one of which



resulting in by-cyclic products and the other in monocyclic products. Bornyl ions and
terpinyl ions present in the reaction mixture then react with methanol, and are
consequently deprotonated to yield the ether products viz. TME, BME, and FME.
Catrinecu et al (2015) also stated that pinene reacted with methanol over the acid sites
available on the clay surface to form terpinyl methyl ether, TME, as the main reaction
product. Other compounds were also identified in the complex reaction mixture, which
include bicyclic ethers (fenchyl methyl ether and bornyl methyl ethers) [5]. Several
reaction products were thought to be associated with irreversible rearrangements of the
pinyl ion [15]. This was because the pinyl ion can rearrange into the bornyl ion, and after
methanol addition, and when bornyl methyl ether, and fenchyl methyl ether are formed.
The pinyl ion can also rearrange into the terpiny ion upon formation terpinyl methyl ether,

in which methanol was employed as the solvent.
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Scheme 1. The mechanism of a-pinene methoxylation

4. Conclusion

The study successfully established the best conditions for the KAI(SO4).:12H.0
catalyzed methoxylation of a-pinene to give satisfactorily afford the high percentage
conversion of a-pinene into its ether derivatives. It was discovered that the highest

selectivity values of the a-pinene methoxylation reaction was achievable when the



methoxylation condition was carried out using 1 g of catalyst, volume ratio of reactant
of 1:10, with the temperature and reaction time set to 65°C and 360 min, respectively.
Most importantly, the reaction yielded 59.59% of TME, 8.87% of FME, 7.13% of BME,
with an exceptional percentage conversion of a-pinene at 98.18%. Thus, the study
demonstrated that KAI(SO4)2-12H>0 was an effective and suitable solid catalyst for a-
pinene methoxylation. Further research on the catalyst is still needed to improve the
selectivity of this solid catalyst, for increasing its efficiency to catalyze the methoxylation

of a-pinene.

Acknowledgments

This research is supported by grant under Basic Research for Higher Education program
(Grant no0.192/SP2H/LT/DRPM/2019) by the Directorate of Research and Public
Service, Ministry of Research, Technology, and Higher Education, Republic of

Indonesia.

Author Contributions

N.W. designed, performed the experiments, wrote the paper, and analyzed the data;
L.R.L. and L.A.W. helped with performing the experiments and assisted in data analysis;
F.W.M. and S.K.R. carried out the SEM and FT-IR analysis, and helped with the
interpretations; E.C. provided the materials and RAW helped with the conception and
editing of the manuscript. All authors have read and agreed to the published version of

the manuscript.

Conflict of Interest: The authors declare no conflict of interest.

References

(1) Roman-Aguirre, M.; Torre-Saenz, L. D. la; Flores, W. A.; Robau-Sanchez, A.;
Elguézabal, A. A. Synthesis of Terpineol from a-Pinene by Homogeneous Acid
Catalysis. Catal. Today 2005, 107-108, 310-314.
https://doi.org/10.1016/j.cattod.2005.07.061.

(2)  Wijayati, N.; Pranowo, H. D.; Jumina, J.; Triyono, T. The Acid Catalyzed Reaction
of a-Pinene Over Y-Zeolite. Indones. J. Chem. 2013, 13 (1), 59-65.
https://doi.org/10.22146/ijc.21327.

(3)  Zielinska, A.; Ferreira, N. R.; Durazzo, A.; Lucarini, M.; Cicero, N.; Mamouni, S. E.;
Silva, A. M.; Nowalk, I.; Santini, A.; Souto, E. B. Development and Optimization of
Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental



(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Factorial Design and Dispersion Analysis. Molecules 2019, 24 (15), 2683.
https://doi.org/10.3390/molecules24152683.

Matos, I.; Silva, M. F.; Ruiz-Rosas, R.; Vital, J.; Rodriguez-Mirasol, J.; Cordero, T.;
Castanheiro, J. E.; Fonseca, |. M. Methoxylation of a-Pinene over Mesoporous
Carbons and Microporous Carbons: A Comparative Study. Microporous
Mesoporous Mater. 2014, 199, 66—73.
https://doi.org/10.1016/j.micromeso0.2014.08.006.

Catrinescu, C.; Fernandes, C.; Castilho, P.; Breen, C. Selective Methoxylation of
a-Pinene to a-Terpinyl Methyl Ether Over Al3+ lon-Exchanged Clays. Appl. Catal.
Gen. 2015, 489 (1), 171-179. https://doi.org/10.1016/j.apcata.2014.10.028.
Wijayati, N.; Handayani, T.; Supartono. Isomerization Reaction of A-Pinene Using
Zirconia/Natural Zeolite Catalysts. Asian J. Chem. 2017, 29 (8), 1705-1708.
https://doi.org/10.14233/ajchem.2017.20552.

Yadav, M. Kr.; Patil, M. V.; Jasra, R. V. Acetoxylation and Hydration of Limonene
and a-Pinene Using Cation-Exchanged Zeolite Beta. J. Mol. Catal. Chem. 2009,
297 (2), 101-109. https://doi.org/10.1016/j.molcata.2008.09.017.

Mochida, T.; Ohnishi, R.; Horita, N.; Kamiya, Y.; Okuhara, T. Hydration of a-
Pinene over Hydrophobic Zeolites in 1,4-Dioxane-Water and in Water.
Microporous Mesoporous Mater. 2007, 101 (1-2), 176—183.
https://doi.org/10.1016/j.micromeso0.2006.10.022.

Kim, Hu Sik; A1 3t Suh, Jeong-Min; Lim, Woo-Taik. Location of Na* lons in Fully
Dehydrated Na*-Saturated Zeolite Y (FAU, Si/Al = 1.56). Bull. Korean Chem. Soc.
2012, 33 (8), 2785-2788. https://doi.org/10.5012/BKCS.2012.33.8.2785.
Telalovié, S.; Ramanathan, A.; Ng, J. F.; Maheswari, R.; Kwakernaak, C.;
Soulimani, F.; Brouwer, H. C.; Chuah, G. K.; Weckhuysen, B. M.; Hanefeld, U. On
the Synergistic Catalytic Properties of Bimetallic Mesoporous Materials
Containing Aluminum and Zirconium: The Prins Cyclisation of Citronellal. Chem. -
Eur. J. 2011, 17 (7), 2077-2088. https://doi.org/10.1002/chem.201002909.
Gundiz, G.; Murzin, D. Y. Influence of Catalyst Pretreatment on a-Pinene
Isomerization Over Natural Clays. React Kinet Catal Lett 75 (2), 231-237.
Chimal-Valencia, O.; Robau-Sanchez, A.; Collins-Martinez, V.; Aguilar-Elguézabal,
A. lon Exchange Resins as Catalyst for the Isomerization of a-Pinene to
Camphene. Bioresour. Technol. 2004, 93 (2), 119-123.
https://doi.org/10.1016/j.biortech.2003.10.016.

Avila, M. C.; Comelli, N. A.; Rodriguez-Castelldn, E.; Jiménez-Lépez, A.; Carrizo
Flores, R.; Ponzi, E. N.; Ponzi, M. |. Study of Solid Acid Catalysis for the Hydration
of a-Pinene. J. Mol. Catal. Chem. 2010, 322 (1-2), 106-112.
https://doi.org/10.1016/j.molcata.2010.02.028.

Hensen, K.; Mahaim, C.; Holderich, W. F. Alkoxylation of Limonene and Alpha-
Pinene over Beta Zeolite as Heterogeneous Catalyst. Appl. Catal. Gen. 1997, 149
(2), 311-329. https://doi.org/10.1016/50926-860X(96)00273-6.

Pito, D. S.; Fonseca, I. M.; Ramos, A. M.; Vital, J.; Castanheiro, J. E.
Methoxylation of a-Pinene over Poly(Vinyl Alcohol) Containing Sulfonic Acid
Groups. Chem. Eng. J. 2009, 147 (2-3), 302-306.
https://doi.org/10.1016/j.cej.2008.11.020.

Castanheiro, J. E.; Guerreiro, L.; Fonseca, I. M.; Ramos, A. M.; Vital, J.
Mesoporous Silica Containing Sulfonic Acid Groups as Catalysts for the Alpha-



Pinene Methoxylation. In Studies in Surface Science and Catalysis; Elsevier, 2008;
Vol. 174, pp 1319-1322. https://doi.org/10.1016/50167-2991(08)80132-2.

(17) Wei, Z.; Xiong, D.; Duan, P.; Ding, S.; Li, Y.; Li, L.; Niu, P.; Chen, X. Preparation of
Carbon-Based Solid Acid Catalysts Using Rice Straw Biomass and Their
Application in Hydration of a-Pinene. Catalysts 2020, 10 (2), 213.
https://doi.org/10.3390/catal10020213.

(18) Shelke, K.; Sapkal, S.; Kategaonkar, A.; Shingate, B.; Shingare, M. S. An Efficient
and Green Procedure for the Preparation of Acylals from Aldehydes Catalyzed by
Alum. Afr J Chem 20009, 4.

(19) Madje, B. R.; Ubale, M. B.; Bharad, J. V.; Shingare, M. S. Alum an Efficient
Catalyst for Erlenmeyer Synthesis. Afr J Chem 2010, 4.

(20) Sadeghi, B.; Farahzadi, E.; Hassanabadi, A. KAI(SO4)2.12H20 as an Eco-Friendly
and Reusable Catalyst for the Synthesis of Amides by the Ritter Reaction. J.
Chem. Res. 2012, 36 (9), 539-540.
https://doi.org/10.3184/174751912X13418518739562.

(21) Heravi, M. M.; Zakeri, M.; Mohammadi, N.; Haghi, H. KAl (SO 4) 2 .12H, O or
KHSO 4 : Efficient and Inexpensive Catalysts for the One-Pot Synthesis of B-
Acetamido Ketones by Dakin—West Reaction. Synth. React. Inorg. Met.-Org.
Nano-Met. Chem. 2012, 42 (2), 178-182.
https://doi.org/10.1080/15533174.2011.609514.

(22) Reza Karimi, A.; Eslami, C. Mono- and Bis-2-Amino-4H-Pyrans: Alum Catalyzed
Three- or Pseudo Five-Component Reaction of 4-Hydroxycoumarin,
Malononitrile and Aldehydes. Lett. Org. Chem. 2011, 8 (2), 150-154.
https://doi.org/10.2174/157017811794697421.

(23) Aderemi, B. O.; Hameed, B. H. Alum as a Heterogeneous Catalyst for the
Transesterification of Palm Qil. Appl. Catal. Gen. 2009, 370 (1-2), 54-58.
https://doi.org/10.1016/j.apcata.2009.09.020.

(24) Park, H. C.; Park, Y. J.; Stevens, R. Synthesis of Alumina from High Purity Alum
Derived from Coal Fly Ash. Mater. Sci. Eng. A 2004, 367 (1-2), 166—-170.
https://doi.org/10.1016/j.msea.2003.09.093.

(25) Deveoglu, O.; Cakmakci, E.; Taskopru, T.; Torgan, E.; Karadag, R. Identification by
RP-HPLC-DAD, FTIR, TGA and FESEM-EDAX of Natural Pigments Prepared from
Datisca Cannabina L. Dyes Pigments 2012, 94 (3), 437-442.
https://doi.org/10.1016/j.dyepig.2012.02.002.

(26) Wang, Y.; Lu, D. STUDY ON ORAL ULCER POWDER USING TEMPERATURE-
DEPENDENT X-RAY DIFFRACTION TECHNIQUE. In Topics in Chemical & Material
Engineering; Volkson Press, 2018; pp 104-106.
https://doi.org/10.26480/icnmim.01.2018.104.106.

(27) Souza, R.; Navarro, R.; Grillo, A. V.; Brocchi, E. Potassium Alum Thermal
Decomposition Study under Non-Reductive and Reductive Conditions. J. Mater.
Res. Technol. 2019, 8 (1), 745-751. https://doi.org/10.1016/j.jmrt.2018.05.017.

(28) Abdulwahab, A. M.; Al-magdashi, Y. A. A.; Meftah, A.; Al-Eryani, D. A.; Qaid, A. A.
Growth, Structure, Thermal, Electrical and Optical Properties of Potassium
Aluminum Sulfate Dodecahydrate (Potash Alum) Single Crystal. Chin. J. Phys.
2019, 60, 510-521. https://doi.org/10.1016/j.cjph.2019.05.034.



(29)

(30)

(31)

He, X.; Xu, R.; Zhang, L.; Zhang, F.; Zhou, Z.; Zhang, Z. Alkoxylation of Camphene
Catalyzed by Cation Exchange Resins. Chem. Eng. Res. Des. 2016, 114, 60—-68.
https://doi.org/10.1016/j.cherd.2016.08.002.

Wijayati, N.; Pranowo, H. D.; Jumina; Triyono. Synthesis Of Terpineol from a-
Pinene Catalyzed by TCA/Y-Zeolite. Indones. J. Chem. Sci. 2011, 11 (3), 234-237.
Catrinescu, C.; Fernandes, C.; Castilho, P.; Breen, C.; Carrott, M. M. L. R.;
Cansado, I. P. P. Selective Methoxylation of Limonene over lon-Exchanged and
Acid-Activated Clays. Appl. Catal. Gen. 2013, 467, 38—46.
https://doi.org/10.1016/j.apcata.2013.07.012.



O 00 N O U b W N

W NN NNNNNNNNRRRRRRR R B R
O © O N O U & WN PO WOOWNOOU-MWWNIERO

w w
N R

w
w

w w
v b

w
[e)]

Potassium Alum [KAI(SO4),-12H,0] Solid Catalyst for

Effective and Selective Methoxylation Production of Alpha-Pinene Ether Products

Nanik Wijayati*”", Lulua Romjanah Lestari?, Lisa Ayuningtyas Wulandari?, F. Widhi
Mahatmanti?, Senda Kartika Rakainsa?, Edi Cahyono®, and Roswanira Abdul Wahab®*

2 Department of Chemistry, Universitas Negeri Semarang, Semarang 50229, Central
Java, Indonesia

b perhutani Pine Chemical Industry, Pemalang 52319, Central Java, Indonesia

¢ Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310,
UTM Johor Bahru, Malaysia

4 Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia,
81310 UTM Johor Bahru, Malaysia

*Corresponding author, e-mail: nanikanang@gmail.com

Abstract. Methoxylation is ameng-the-technologicalhyrelevantprocessesforpreducing

a relevant technological process applied in the production of high-value a-pinene

derivative compounds. ta—this—study—we—repert—Thisreport investigates the use of

potassium alum [KAI(SO4)2-12H20] as a catalyst in the methoxylation of a-pinene, at
65°C;-being-the-. The main reaction product of a-terpinyl methyl ether (TME}-the-rrain

product—TFhe—main—reaction—products—and—), alongside the intermediates were—was
identified by—using GC-MS. Fhe—Furthermore, the influence of various reaction

cenditions—te—maximize-conditions on the maximization of a-pinene conversion and
selectivity,—selectivity was studied—over—petassivm—alum—IKAKSO.)-12H.0}
catabystalso evaluated. When—thereaction—was—performed-for 6-h—at65-C—the-The
results show conversion reached 98.18% with 59.59% selectivity towards the mono
ether, TME, using 65°C treatment for 6 h. Similar—conversions—and—selectivities

reguired—up-to—20-h-ever—However, AISAz-1 and other solid acid catalysts require
exposure for up to 20 h to achieve similar outcome.

Keywords: a-pinene; methoxylation; postassium alum; catalyst
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1. Introduction

The organic compound a-pinene belongs to the terpene greup—endewed—with
group, characterized by a reactive ring-fellewingring, alongside the presence of double
bonds. Fhe-cempound-This is a commonplace constituent a-of various coniferous tree
oils, partictarespecially the pine tree [1,2]—Fhe-use-ef-a-pinene-becomes-, possessing
interesting and highly diverse when—the—compeund—is—chemically—transformed—via

varteus-applications, particularly after chemical precesses-transformation into an array

of high value compounds [3]. Fransfermations-of-e-pinrere-ecan-be-The modification is
initially conducted beferehand-by-using different acid catalysts, e.g. activated carbon,

ARF* ion exchanger clay, acid oxide, zeolite, activated clays, ion exchange resin, and
TCA/ZrO,.nH,0 [4-13]. Among-the-chemicalreactionsln addition, methoxylation by
through the addition of methoxide—iens— ions is the most frequent eheice—of-and
applicable reaction te-medify-funetional-groups-choice for the modification of e-pinene;
as-weH-as-itsappheabilityfunctional groups. Literature-have-shown-that-the-Previous
literature showed o-terpinyl methyl ether compound predeminates—as the e-pinene

methoxylationpredominant products, alengside-followed by other minor preduetsyields,
for-instanee—including a-terpinyl methyl ether, B-terpinyl methyl ether, terpinolene,

limonene, endo-bornyl methyl ether, B-fenchyl methyl ether, exobornyl methyl ether,
bornilene, and camphene [14]. Fhe-Specifically, a-terpinyl methyl ether notably exudes
fresh and citrus-like aroma, which-makes——desirable—with peculiar desirability as a
component in flavors and aromas of perfumes and cosmetic products. Also, plus-there
have been applications as an aromatic additives—foradditive in topical-medicines—and
medicines, agricultural chemicals, as-wet-as-ir-and the food industry [5].

The conventional process—ef-a-pinene methoxylation te—preduce—the—ea-terpinyt
methyl-etherprocess involves eertainkinds-the use of certain catalysts, including AI®*
ion exchanger clays, mesoporous/microporous carbon, poly(vinyl alcohol) (PVA)

containing sulfonic, B-zeolite, MCM-41, PMO, and heteropolyacids immobilized on
silica [4,5,14-16]. Nenetheless—itis—a—wel-knewnfaect-that-However, the chemical
synthetic route ef-for a-terpinyl methyl ether by-the-aforementioned-catalysts-is far
from efficient, whie-being-and also environmentally unfriendly [5,17]. Fhere-This is
mueh-due to be-dene-with-regards-to-mproving-the-poor selectivity ef-in the catalytic
process, as—wel-as—guaranteeing—a—and inability to guarantee higher methexylation
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yield. This study
behieves—that-the—issue—can—beresolved—with—the—use—offocuses on resolving these
challenges by using suitable heterogeneous catalysts, in—erder—to facilitate a more
benign synthesis-of the-etherproductsynthesis.
Lopotemerthypainto—hdentehere nterestingly, e—heteregenconshentelmad

metexyration—+reaction—this approach averts the shortcomings typically observed in
homogenous catalysis—Fhis-is-because-thefermeris-, featuring more environmentally

friendly andproperties. Also, #s—the solid form advantageously permits the facile
separation of the-catalyst from the reaction mixture upon eompletion-ef-termination
and the reaction—Meoreever—specific pore sizes eof-heteregencous—catalysts—ean
selectively adsorb the reactant melecules—for—molecules. This prompts a rapid
transformation into products [18-21]—Pertinently, adsorption—of-a—melecule—into-the
cavity-of the-catalyst-oceurs-more-rapidly-when-their-sizes-and the rapid activity results
from similarity in size and shapes-are-simiar-and-compatible-, alongside compatibility
[9,10]. A-matteref-factin addition, the-KAI(SO4)2.12H20 is identified as a promising
heterogeneous acid eatalystto—catabyze—the—methexylation—ofe-pinene—into—catalyst
needed for the production of value-added a-terpinyl methyl ether from a-pinene.

Fhe KAKSO4)-12H.0This is a solid state compound, eralso called potassium
alum, or potash alum acid—exists—in-sehd-form. Fhis-selid-eatalyst-has-Furthermore

they have commonly been eemmonty-utitized-for-applied in several kinds-ef-reactions,
sueh-as-including the synthesis of mono and bis-2-amino-4H-pyrans-pyrans, by reaction

ef-reacting three or five pseudo components from 4-hydroxycoumarin. Fhe-Also, the

catalyst has alse-been examined fer-in the reaction of malononitrile and aldehyde in
ethanol/water media at room temperature-ane-, as well as for the Erlenmeyer synthesis,
as-wel-asfer-and the transesterification of palm oil [19,22,23]. Censidering-Due to the
relatively—versatitity-ef-relative versatility, this selid-catalysis-te-mechiate-a—relatively
wide—variety—study assumes the possible usefulness of reaetions,—potassium alum
[KAI(SO4),-12H,0] catalyst in the study—believes—it—may—be—useful—for—the

methoxylation of a-pinene to produce a-terpinyl methyl ether.

[AKSO)2-22H,0)€atabyst—The influence of various reaction—parameters, sueh-—as;
velume-ratie-ef-including a-pinene to methanetmethanol volume ratio, temperature, and
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catalystloadingoniecetalystactivity ofihecaialyst werealsosiudied. Thisapproechiskrawniotees

adopted in organic reactions involving polar reagents.

2. Materials and Methods
2.1. Materials

a-Pinene standard and anhydrous methanol were obtained from Sigma Aldrich—,
while Turpentine oil was ebtained—acquired from KBM Perhutani Pine Chemical
tadustry-Industry, Pemalang, Indonesia. The Potassium alum [KAI(SO4)2:12H20] used

was procured from Merck.

2.2.  Instrumentations

Quantitative and qualitative analyses of the isolated a-pinene and the
corresponding methoxylation products were conducted fer-with GC 23 Agilent 6820
(Version A. 01. 03), HP-5 column and FID detector (detector temperature of 300°C),
with Helium as carrier gas. tnjectien-The injection temperature was 280°C—Celumn
temperature-, while the column was 76-360°C-with-set at an initial temperature of 70°C
for 10 minutes, inereasing-increased gradually urtil-to 280°C (5°C/min), and urti-up to
300°CHC, at 20°C/min}. FheFurthermore, GC-MS (Shimadzu QP-2010 Plus) equipped
with a AOC-20i+s autosampler that-was operated under the following conditions:
column and injection temperature of 70°C and 200°C, injection—temperature—200°C
respectively with split injection mode, pressure 13.7 kPa, flow column 0.50 mL/min,
ion source and interface temperature of 200°C and interface-temperature-240°C—a-this
anabysis, correspondingly. This analysis required the use of helium (He) gas was-used-as
the earrierwith-carrier, at a constant flowrate of 0.1pL/min—Fhe-study-would-like-te
note—that—estimation—of—, and the methoxylation products—of—e—pinene—result were
estimated based on the area beneath each peak. The-Furthermore, the percentage of each

ether product where-ebtained-was achieved by dividing the respective peak area ef-each
e-pinene-ether-product-with that-ef-the isolated a-pinene, and multiplied by 100. Forthe
The qualitative analysis ef the-reaction-preducts-involved performing Fourier-transform
spectroscopy was-perfermed-on prepared KBr pellets-pellets, and anahyzed-subsequently

evaluated on a Perkin Elmer Spectrum Version 10.4.00-fe+, in the wavenumber region

betweenof 4000—400 cml-were-used-to-quantify-the-produced-etherproduets.
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2.3.  Procedures
2.3.1 Preparation of the catalysts

For catalyst preparation, potassium alum was spray coated over AuPd plates
under Argon flow for 90 s to give-generate KAI(SOa4)2-12H,0. The gas pressure was set
to 0.5 bar, and the analysis was conducted at a-20 mA for the-duration-6f5-10 mins in
AuPd solvent. The catalyst was then characterized by-using X-Ray Diffractometer(D-
Max Il (Rigaku)-), with radiation—of-Cu Ko (a = 1.5378 A,40kV, 30mA)—Fhe
radiation. Furthermore, morphology and mean crystallite size of-the—catabyst—was

determined by scanning electron microscopy (SEM) in—a-with JEOL JFC-1600 and

JSM-6701F equipments. Seanning—electron—micrographs—«(SEM)—of—the—prepared
KAKSO4)-12H.0-was-obtained-en-The results were extracted from a Pro X Scanning

Desktop Electron Microescepe-Microscope, with Energy Dispersive X-Ray (EDX).

2.3.2 Isolation of a-pinene
FThe fractional distillation of turpentine oil was used under reduced pressure was

used-to prepare the a-pinene starting material-in-the-methexylation—reactionmaterial.
The result of isolation process was analyzed using GC-MS and FT-IRL Hasiliselasi

[Commented [SK1]: Already tranlated

2.3.3 Catalytic experiments

The catalytic experiments were earried-eut-performed in a stirred batch reactor
with reflux, at different temperatures (50-65°C) and ambient pressure. Befere-Prior to
the reaction, a known amount of catalyst powder was thermally activated in an oven at
110-C, #-even-and then placed in a desiccator ar room temperature (15 min) to cool

and prevent rehydration. After-being-cooled-atroom-temperature-{15-min)-the-catalyst
powder—This was quickly transferred into the reaction vessel containing 20 mL dry

methanol—methanol and preheated at the reaction temperature,—, followed by the
addition and mixture of 5 mL ef-a-pinene and-the-mixture-was-stirred-by stirring for a
further—another 360/ jmin- —. Therefore, samples were taken—periodically
collected periodically, and the catalyst was removed by syringe filtration—Fhe-, using
a filter had-with no influence-impact on the reaction-produets-and-products. Also, no
further reaction teek-place-was reported during storage—Fhereactionproducts—, and

the yields were identified by-using GC-MS (Shimadzu QP-2010 Plus)-ane-guantified
5
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by-). In addition, GC Agilent 6820 with FID detector (T 300°C), using a HP-5 column

with Helium as carrier gas was adopted for quantification. The chromatogram peaks ef

chromatogram-were identified by comparing retention times and gas chromatography-
mass spectrometry.

Ir-orderto-optimize-the-The reaction cenditions,—conditions were optimized by
evaluating the effect of different parameters—(parameters, including reaction
temperature (50, 55, 60 and 65°C), catalyst loading (0.5; 1; and 1.5 g), and volume

ratio of reactants (o-pinene : methanol=—methanol of 1:4, 1.7, 1:10) en-during the
methoxylation ef-e-pinene—over-KAKSO)-12H.0—¢atalyst-was—studiedprocess. Fhe
selectivity—ef-Therefore, a-terpinyl methyl ether selectivity, and eenversion—of-a-
pinene conversion were calculated by—using the external standard—standardized

method, the-standare-with curves was-prepared by detecting different concentration of

the standard solution. Fhe—In addition, the conversion of o-pinene (X) and the

selectivity (S) of a-terpinyl methyl ether were calculated using the following formula:

., % converted alpha pinene L % desired product
. 04 initial alpha pinene ° " 9 conversion of alpha pins
Y= % converted alpha pinene 5= % desired product
- U4 initial alpha pinene ' " 9 conversion of alpha pine

3. Results and Discussions
3.1 Characterization of catalyst

The potassium alum catalyst (KAI(SO4)2-42H.0-12H,0) is an inexpensive, non-
toxic, water-soluble, and commercially available compound that-ean-be-frequently used
in the laboratory witheut—with no special precautions [19, 22,23]. Alum—was
characterized—using—Furthermore, characterization involved FT-IR, XRD, as well as
SEM, and-XRB-—Fhe-folowing-Figure-1-iHustrates-with micrograph illustrated in figure
1, showing reasonable similarities with the SEM-micrograph—ofKAHKSO.).-12H.0
solid-catalyst-prepared-by—this—study—lt-appearsthat KAKSO4)-12H,0-has-a-micro
structure that-is—reasenablysimilar—to-of ammonium aluminum sulfate dodecahydrate
[NH4AI(SO4)2:12H20]. However, except-the latter has—comprise a more rounded
shape, showing-sizes-with a size range of between 100—200 wm. Hewever-when-heated
at—a—at—At higher temperatures of 1100-1200°C, the overall construct of
KAI(SO4)2-12H0 is attered-and-adept-altered, therefore generating an elongated oval
shape [24].
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Infrared spectroscopy is often used forcharacterization-of-to characterize solid
state eatalysts-due-to-its-catalysts, resulting from the flexible nature identify-during the
identification of surface functional groups:-, both organic er-and inorganic. Fhe-Figure 2
shows the spectrum of KAI(SOa),-12H.0—is-tHustrated-in-Figure2—Peaks-12H,0, with
peaks at 1195 cm™ and 1077 cm is-indicating the stretching vibration of the-S=0
group, while the-peaks-at-933 cm™ and 737 cm are related to the stretching vibrations

of the-S—O and Al —O bonds, respectively. Assigaments-The assignment of various
bands to corresponding vibrational modes of the functional groups present in alums-and

alums, as well as the related aluminum bearing compounds are sufficiently detailed in

the literature. AFurthermore, absorption peaks in the region of 750-400 cm™ are
charaeteristicfor-indicate the vibration of AI-O [25]. Observablefrom-Fig. 2the-2
shows sharp sulfate (SO4%) bands in 468-471 cm™, 603-608 cm™, 657-686 cm™, 1104-

1115 cm? and 1237-1247 cm™ corresponds to symmetrical SO4> bending mode,

degeneration of asymmetric bending, symmetrical bending, degenerate symmetric
stretching and degenerate asymmetric stretching medes—ef-SOs*modes, respectively
[23].

The crystallinity ef—the—alum—ecatalyst—and the—crystal lattice of the
KAI(SO4)2-12H.0—=¢atabyst—12H,0  were eharacterized—evaluated using X-Ray
Diffraction (XRD) technique—Fhe—xXRB—, and the deduced patterns ef—eatalyst-are
presented in Figure 3. H-is-impertant-to-nete-here-that-a-Furthermore, high crystallinity
indicates—a-high-implies greater catalytic properties, as-weH-as-and better stability at
high temperatures, alongside wide porosity, and free-ef-impurities-purity [26]. The main
composition of alum sample-was identified to be aluminum potassium sutate-sulfate
based on the characteristic peaks at 26= 21°; 28°; and 32°-represents-the-characteristies
oFKAKSOH-12H,0°. The-Based on the diffractogram in Figure 3, Al,Os is represented
by 26 peaks at 36°; 46° and 58°, while the 68.54% ofK2(SQO4) shewed-was designated
at 20-peaks-that-corresponded-, corresponding to 22°; 32°; and 45°-en-the-diffractogram
{Figure—3). Moeost—importanthy,—the—results—seen—here—The result is substantially
corroborated by Souza et al—which-assessed-., where a similar compound was assessed
[27]—Fhe—, and the 2O peaks seen—observed at 21°, 22°; and 28° acecorded—were
congruent with the PDF File 07.0017 for KAI(SO4)2:12H,0. The—diffractogram
thereforeln addition, the diffractogram affirmed the samples’ high crystallinity—ef
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KAKSO4)2-42H20, matching a recent report by-ef-from another analogous compound
investigated by Abdulwahab et al. (2019) [28].

3.2 Catalytic test
3.2.1 Effect of volume ratio of a-pinene and methanol

The effect of the-volume-ratio-ef-vried a-pinene and methanol volume ratio on
the selectivity to a-terpinyl methyl ether was also studied—At-the-different-volumeratio
ofa-pinene-evaluated, and methanel-considered;-good selectivity values (about 56%, at
conversion of o-pinene 75%) were obtained. Thereaction—was—carried—out-with-—a

volume—ratio-of-o-pinene—and-methanel-of-The ratios investigated were 1:4, 1:7, and
1:10, at 60°C temperature, anc-with 0.1 g of potassium alum catalyst—Fhe-conversion-of

. while a-pinene conversion and seleetivity-of-thereactionproduct-withrespect-to-the
volume-ratio-ofreactantsare-relative product selectivity is shown in Figure 4.

FFigure 4a shows a decline in the initial concentration of a-pinene decreased from
the-initial-coneentration-which-was-96.30%-(Figure-4a)—Fhe-. The reactant volume ratie
of —reactants—affectedratio also influenced the outcome of the—methoxylation
reactionreactions, whereby—increasing—concentrations—thus a higher concentration of
methanol was—favorable—in-—the—yielding-higher—led to greater amounts of the—ether
produetsyield (Figure 4a). Cencentration-of products-also-tended-to-inereaseAlso, the

production increased over ar-extended reaction time—and-the-rmagnitude—of-theratio
wsed—TFhe-duration, and the highest eenversion-of-a-pinene wasreached-at-conversion

(74.82% when-a-volumeratio-of reactants-) was attained at 1:10 ratio and reaction time
of 360 min-was-employed-for-the-methoxylation—reaction. This can-be-explained-by-is
possibly due to the faet-that-ability for methanol to simultaneously acts-act as thea

reactant and selvent—in—solvent, thus augmenting the reactionintegrations, henee
impreving—integration—of—the—reactions—and thereby,—accelerating the percentage
conversion into the main ether product, and eother—ether—preductsothers [29].
LikewdseFurthermore, by-products ef-the-methoxylation-were alse—formed —due-to-the

isermerization-ef-formed from o-pinene isomerization, including camphene, limoneneg,

and terpinolene, under the apphied—reaction condition applied [30]. The highest
selectivity of the KAI(SO4)2-12H-0 catalyzed methoxylation was observed when the-at
a substrate reaction ratio was-2:20-0f 1:10, with stirring for 360 min at 60°C;-te-give-.
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Figure 4b and ¢ show the most prominent products to be terpinyl methyl ether (TME)
(55.76%) and fenchyl methyl ether (FME) (10.34%)-and,as presented-in-Figure-4b-and4e.

3.2.2 Effect of reaction temperature
The effect of the-reaction-temperature on the selectivity to o terplnyl methy| ether
was also } } }

{investigated, by exposing the reactions to 50, 55, 60 and 65°C)—, over 1 g of
KAI(SO4)2-12H20 eatalyst-while-the-catalyst, and constant a- pinene: methanol volume

ratio—and-the—catalystloadingwerekeptconstant_ratio. As anticipated, e-pirene-the
percentage conversion increased with the rise in temperature—b|4qeIer—ethe+t\,A,L+se—+elem;c—a1l
i This
influence, alongside the selectivity towards the-mono-ether products is presented in Fig.

5a, 5bb and 5ec. At-the-different-temperatures—censidered—Also, the variations were
considered capable of generating good selectivity values {of about 60% _ether product, at

conversion-of-from 98% o -pinene-98%)-were-ebtained_conversion.

products—tt-sheuld-be-noted-that-the-The boiling point of methanol was 65°C-—For-this
very—reason—the—, hence 60°C was determined as suitable temperature—for the
methoxylation reaction was—seen—at—a—lower—temperature—of-606°C—[29]. This is in
accordance with the data in Figure 5a, which-attemperature-of60°C-the-where a-pinene
conversion steadily increased steadilyat 60°C. However, when-the-reaction-temperature
was—elevated-t0-85°C—a notable inerease—elevation in reaction time from 72 to 144
minutes was ebservedobserved at 65°C, considering that—higher—temperature—would
result—in—transformation—the possibility of the—reaetants—inte—generating more
produetsproducts at higher temperature. H-ispertinent-to-hightight-here;-Hence, the peak
conversion of o-pinene eenversion—eatalyzed-by KAI(SO4)2:12H20 peaked—at—was
98.18% when-the-reaction-temperature—was-at 65°C

SThe catalyst selectivity ef-thecatalyst-was the-highest at 65°C-and-empleying-a
C, over reaction duration of 360 min-reactien-which-led-, leading to the production of

8.7% ofFME (Figure 5b), 7.13% ef+BME (Figure 5c), and 59.59% ef TME (Figure 5d).
TFhe-same-Similar trend was observed fortimonene-conversien-in the methoxylation of

limonene through the—exchange—ef-acid-activated ions and clay exvhangers [31].
9
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Inereasing—Accordingly, the increase in temperature uwp—to—65-C—did—hottead—to
prevented a deerease—decline in selectivity;—as—ebserved—in—the—previous—study—on
Hmonene-methoxylation- [31]. This corresponds to the findings of Hensen et al (19973}
which—investigated—), on the effects of temperature on pinene alkoxylation, and the
atkoxylation-of pinene—Fhey-discovered-that the-maximum atkexylatien-conversion was
reached-attained at 60°C and t=120 min [14]. Fhe-use-However, temperatures of a
temperature-0£-80°C led-to-the-have been affiliated with reverse reaction-thatreformed
reactions, characterized by the reformation of pinene isomers in methanel-as—the
methanol solvent. Fhe—same-In addition, similar trend was reted—for-observed in a-
pinene conversion in a-related system-—systems, using 100 mg of Al-SAz-1 as the
catalyst [5]—"c—snteeated, mereas he—the—reneton—tverbbneransedthecopversion
ofpineneand is more favorable, ureerstherarise-compared to other identical conditions.
Reaetien-The reaction selectivity towards—the-for mono-ether, at-censtantcenversion;
seems to be largely unaffected by raising-thereaction-increase in temperature—ikewise,
increasing-the-temperature-up to 65°C, nenethelessat constant percentage conversion.
Also, did-netlead-to-a-deerease-there was no decline in selectivity, as observed in the

previous study-en-studies concerning limonene methoxylation [31].
Table 1 presents-is a summary of the a-pinene methoxylation activity ef-in the

presence of various eatalysts—that-havebeen—investigated—catalysts, as shown in the
previous literatures. Highest-The highest yield was obtained everusing AISAz-1 ia-the
present-work-under a-mild reaction esnditienconditions.

Table 1. The summary of a-pinene methoxylation activity in the presence of various
catalysts in a batch reactor

Catalysts Temp°C Reaction  Conversion  Selectivity Literature
Time (h) (%) (%)
AISAz-1 60 1 65 65 Catrinescu et al. (2015) [5]
AISAz-1 40 20 71 91 Catrinescu et al. (2013) [31]
CB, CMN, CNorit 60 250 55-75 50-55  Matos et al. (2014) [4]
PW2-S 60 27 40 60 Pito et al. (2010) [32]
PVSSA-20 60 24 40 60 Pito et al. (2009) [15]
PMO-SO3H-g 100 - 90 45 Castanheiro et al. (2008)
[16]
Beta Zeolite 40 5 92 54 Hensen et al. (1997) [14]

3.2.3 Effect of the catalyst loading

10
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The effect-of-the-catalystloading-on-the-selectivity of KAI(SO4)2:12H,0 te-for a-
terpinyl methyl ether was also studied—Fhereaction—was—earried—out-with-, using a

catalyst loading of 0.5, 1, and 1.5 g, 60°C temperature, and velume-ratio-of-a-pinene
and methanol volume ratio of 1:10. Fre-Figure 4 shows the conversion ef-e-pinere-and
selestirb o the—eneton—product with—respesito—hevo e mlo—o—reachnie o
shown-inFigure—4-H-was-ebserved-that—selectivity, where the eatalytic-experiments
ever-different amountof KAKSO.).-12H.0—treatments yield good values-amout of a-
terpinyl methyl ether selectivity—(about 54% and—with 75% a-pinene cenversion-—of
75%conversion). Fhe-These products are also detected when-conventionaty—produced
by-after the conventional alkoxylation frerm-of pinene or limonene using-with mineral
acids [5]. Fhis-alse-meant-that-Hence, the KAI(SO4)2:12H-0 solid catalyst prepared in
this study was—ecenverting—successfully converted a-pinene into the eorrespending
expected ether products;—with—geed—sueeess. Also, i—there was apparent—that
compesitions-of-an upsurge in yield following an increase in the e-pinene-ether-products
inereased-with-inereasingameunt-quantity of eatalystcatalyst used. A-roteworthy-aspeet
to—highlight—herelnterestingly, 0.5 g ef—the—ecatalyst—gave—ensured the highest
methoxylation selectivity-of-a-pinene selectivity for FME and BME, while the-use-ef-1
g of the—eatalyst-leaned-towards—a—prompted higher production of TME (Table 2).
Matos et al [4}-stated-that] attributed this improved percentage conversion ereases-as
Lo the inereasing-amount-ef-eatalyst—which-is-probablyrelatecwith-the-corresponding
increase in quantity of active centers. However, increasing-the-amount-ef-catalyst-frem
0.2 g to 0.4 g produces—justa—smal—of catalyst caused insignificant increment in
conversion, thus-indicating there—is—ne—advantage—in—using-the absence of any added

advantages, following the use of higher amounts.

Table 2. Data on the percentage conversion (% C) and selectivity of methoxylation of
a-pinene with variable amount of the KAI(SO4)2-12H,0 catalyst.

Reaction products

a-pinene

Alum (g) t(min) ) %C FME BME T™ME
%A %S %A %S %A %S
0.5 72 78.70 1828 212 1160 146 799 10.04 5492
144 68.68 2868 321 1119 212 739 1575 5492
216 61.24 3641 405 1112 252 692 1995 5479
288 53.75 4418 483 1093 369 835 2378  53.82
360 48.02 50.13 545 1087 362 722 2714 5414
1 72 71.92 2532 248 979 193 762 1346  53.16

11
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144 60.51 37.16 3.87 10.41 279 751  20.50 55.17

216 52.87 45.10 4.65 10.31 331 734 24.53 54.39
288 44.88 53.40 5.35 10.02 4.09  7.66 28.94 54.19
360 38.05 60.49 6.05 10.00 411  6.79 32.96 54.49
15 72 56.00 41.85 4.40 10.51 323 172 22.39 53.50
144 45.58 52.67 5.47 10.38 376 7.14 28.31 53.75
216 37.42 61.14 6.23 10.19 418 6.84 32.58 53.29
288 30.38 68.45 6.72 9.82 471  6.88 36.61 53.48
360 24.56 74.50 7.16 9.61 520 6.98 39.97 53.65

Note: %C (% Conversion), %A (% Content), %S (% Selectivity), FME (a-Fenchyl Methyl
Ether), BME (Bornyl Methyl Ether), and TME (Terpinyl Methyl Ether).

TFheScheme 1 shows the mechanisms of the-predominant methoxylated products
eﬁa-pinene aan in thi udv—are-presented heme-1-The-mechanism-begins-with-the
protonation-of-the-products., This is initiated by double bond ef-e-pinene-protonation, to
give-the-yield pinyl ions, under an acidic condition frem-created through the hydrolysis
of the-KAI(SOa4)2:12H20-catalyst. According to literary review, the-process—catalyzed
acid catalysis by acid-{potassium atum)-takes-place-through-alum ensues via two routes,
rotte-including A is-ebtained-by-terpinylHon—and reute-B-is-B, obtained by terpinyl and
bornyl ten-ion, respectively [4]. The alkoxylation ef-e-pinene-process was initiated by
protonation of the a-pinene double bend-to-ferm-bond, therefore forming the pinyl ion.

Fhe—This reaction then—proceeds—via—is proceeded through two parallel pathways
depending-pathways, dependent on the pimyHen-product rearrangement, ene-of-which
resulting-ta-including bycyclic preducts-and the-ether—+n-monocyclic preducts—Bornyt
iens-type. Furthermore, the bornyl and terpinyl ions present in the reaction mixture then
are react with methanol, and are-consequently deprotonated to yield the-etherproducts
ethers viz. TME, BME, and FME. Catrinescu et al (2015) also stated-that-reported on
the reaction of pinene reacted-with methanol over the acid sites available on the clay
surface-surface, to form terpinyl methyl ether, TME, as the main reaction-product. Other
Meanwhile, other compounds were—also-identified in the complex—reaction—mixture;
whieh—_include bicyclic ethers—{fenchyl-methylether—and—bornyl-methyl-ethers)—,

encompassing the fenchyl and bornyl methyl varieties [5]. Several-Morever, several

reaction products were theughit-te-be-associated with the irreversible rearrangements of
the—pinyl ion [15]—Fhis—wasbeeause-the—pinylHon—ean—, resulting from the intrinsic
ability to rearrange into the bornyl ion;-and-after-methanol-addition—and-when-. This
leads to the formation of bornyl methyl ether, and fenchyl methyl etherare-formedether,
following the addition of methanol. Fhe-Therefore, pinyl ion ean—alse—+rearrange—is
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further rearranged into the terpiny ion upen-fermation-after the generation of terpinyl
methyl ether, in-which-using methanol was-empleyed-as the-a solvent.

4. Conclusion
Petasim-Potassium alum [KAI(SO4)2-12H20] eatalyzed-was successfully used as
acid catalysts in the methoxHatien-methoxylation of a-pinene—Fhe-main-produet-of-e-

pinene-methoxylation—was—, to produce a-terpinyl methyl ether (TME}) as the main
product. Fhe-This process also ferms—causes the formation of fenchyl methyl ether

(FME), bornyl methyl ether (BME), limonene, and terpinolene as by-products. H-erder
to-optimize-the-The optimized reaction eenditiens—condition was evaluated from the
effect of various parameters, sueh—as—volume—ratio—ef—including a-pinene to
methanelmethanol volume ratio, reaction temperature, and catalyst loading of
KAI(SO4)2-12H.0were—earried—outl2H,0. H—-was—discovered—that-Furthermore, the
highest selectivity values ef-the-e-pinene-methoxylation-reaction-was achievable-when

the-methexylation-condition-was—carried-eut-achieved using 1 g of catalyst, volume
ratio ef-reactant-of 1:10, with-the-temperature—as well as temperature and reaction time

set to-at 65°C and 6 h, respectively. The reaction-yielded-final yield comprises 59.59%
of-TME, 8.87% eof-FME, 7.13% of BME, with—from an exceptional percentage
eenversion-ef-a-pinene atpercentage conversion of 98.18%.
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Figure 1. Scanning Electron Microscope (SEM) micrograph of KAI(SO4)2-12H.0
magnified 2000 x
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Figure 2. Fourier Transform-Infrared (FT-IR) spectrum of KAI(SO4),-12H,0
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Figure 3. X-Ray Diffraction (XRD) diffractogram of KAI(SO4)2-12H,0
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Potassium Alum [KAI(SO4)2:12H20] Solid Catalyst for
Effective and Selective Methoxylation Production of Alpha-Pinene Ether Products
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Abstract. Methoxylation is a relevant technological process applied in the production of
high-value a-pinene derivative compounds. Thisreport investigates the use of potassium
alum [KAI(SO4)2-12H,0] as a catalyst in the methoxylation of a-pinene, at 65°C. The
main reaction product of a-terpinyl methyl ether (TME), alongside the intermediates was
identified using GC-MS. Furthermore, the influence of various conditions on the
maximization of a-pinene conversion and selectivity was also evaluated. The results show
conversion reached 98.18% with 59.59% selectivity towards the mono ether, TME, using
65°C treatment for 6 h. However, AISAz-1 and other solid acid catalysts require exposure
for up to 20 h to achieve similar outcome.

Keywords: a-pinene; methoxylation; postassium alum; catalyst
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1. Introduction

The organic compound a-pinene belongs to the terpene group, characterized by a
reactive ring, alongside the presence of double bonds. This is a commonplace constituent
of various coniferous tree oils, especially the pine tree [1,2], possessing interesting and
highly diverse applications, particularly after chemical transformation into an array of
high value compounds [3]. The modification is initially conducted using different acid
catalysts, e.g. activated carbon, AI* ion exchanger clay, acid oxide, zeolite, activated
clays, ion exchange resin, and TCA/ZrO,.nH,0 [4-13]. In addition, methoxylation
through the addition of methoxide ions is the most frequent and applicable reaction
choice for the modification of functional groups. Previous literature showed a-terpinyl
methyl ether compound as the predominant product, followed by other minor yields,
including a-terpinyl methyl ether, B-terpinyl methyl ether, terpinolene, limonene, endo-
bornyl methyl ether, B-fenchyl methyl ether, exobornyl methyl ether, bornilene, and
camphene [14]. Specifically, a-terpinyl methyl ether notably exudes fresh and citrus-like
aroma, with peculiar desirability as a component in flavors and aromas of perfumes and
cosmetic products. Also, there have been applications as an aromatic additive in topical
medicines, agricultural chemicals, and the food industry [5].

The conventional a-pinene methoxylation process involves the use of certain
catalysts, including AI** ion exchanger clays, mesoporous/microporous carbon,
poly(vinyl alcohol) (PVA) containing sulfonic, B-zeolite, MCM-41, PMO, and
heteropolyacids immobilized on silica [4,5,14-16]. However, the chemical synthetic
route for a-terpinyl methyl ether is far from efficient, and also environmentally unfriendly
[5,17]. This is due to poor selectivity in the catalytic process, and inability to guarantee
higher yield. This study focuses on resolving these challenges by using suitable
heterogeneous catalysts, to facilitate a more benign synthesis.

Interestingly, this approach averts the shortcomings typically observed in
homogenous catalysis, featuring more environmentally friendly properties. Also, the
solid form advantageously permits the facile separation of catalyst from the reaction
mixture upon termination, and the specific pore sizes selectively adsorb the reactant
molecules. This prompts a rapid transformation into products [18-21], and the rapid
activity results from similarity in size and shape, alongside compatibility [9,10]. In
addition, KAI(SO4)2.12H20 is identified as a promising heterogeneous acid catalyst

needed for the production of value-added o-terpinyl methyl ether from a-pinene.
2
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This is a solid state compound, also called potassium alum, or potash alum acid.
Furthermore, they have commonly been applied in several reactions, including the
synthesis of mono and bis-2-amino-4H-pyrans, by reacting three or five pseudo
components from 4-hydroxycoumarin. Also, the catalyst has been examined in the
reaction of malononitrile and aldehyde in ethanol/water media at room temperature, as
well as for the Erlenmeyer synthesis, and the transesterification of palm oil [19,22,23].
Due to the relative versatility, this study assumes the possible usefulness of potassium
alum [KAI(SO4)2-12H,0] catalyst in the methoxylation of a-pinene to produce a-terpinyl
methyl ether.

The influence of various parameters, including a-pinene to methanol volume ratio,
temperature, and catalyst loading on catalyst activity were also studied. This approach

is frequently adopted in organic reactions involving polar reagents.

2. Materials and Methods
2.1.  Materials

a-Pinene standard were obtained from Sigma Aldrich, while Turpentine oil was
acquired from KBM Perhutani Pine Chemical Industry, Pemalang, Indonesia. The
methanol for analysis and potassium alum [KAI(SO4)2-12H,0] were procured from
Merck.

2.2.  Instrumentations

Quantitative and qualitative analyses of the isolated a-pinene and the corresponding
methoxylation products were conducted with GC 23 Agilent 6820 (Version A. 01. 03),
HP-5 column and FID detector (detector temperature of 300°C), with Helium as carrier
gas. The injection temperature was 280°C, while the column was set at an initial
temperature of 70°C for 10 minutes, increased gradually to 280°C (5°C/min), and up to
300°C, at 20°C/min. Furthermore, GC-MS (Shimadzu QP-2010 Plus) equipped with a
AOC-20i+s autosampler was operated under the following conditions: column and
injection temperature of 70°C and 200°C, respectively with split injection mode, pressure
13.7 kPa, flow column 0.50 mL/min, ion source and interface temperature of 200°C and
240°C, correspondingly. This analysis required the use of helium (He) gas as the carrier,
at a constant flow rate of 0.1uL/min, and the methoxylation result were estimated based

on the area beneath each peak. Furthermore, the percentage of each ether product was
3
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achieved by dividing the respective peak area with the isolated a-pinene, and multiplied
by 100. The qualitative analysis involved performing Fourier-transform spectroscopy on
prepared KBr pellets, and subsequently evaluated on a Perkin Elmer Spectrum Version
10.4.00, in the wavenumber region of 4000—-400 cm™.

2.3.  Procedures
2.3.1 Preparation of the catalysts

For catalyst preparation, potassium alum was spray coated over AuPd plates under
Argon flow for 90 s to generate KAI(SOa)2-12H20. The gas pressure was set to 0.5 bar,
and the analysis was conducted at 20 mA for 5-10 mins in AuPd solvent. The catalyst
was then characterized using X-Ray Diffractometer(D-Max 11l (Rigaku), with Cu Ka (a
= 1.5378 A,40kV, 30mA) radiation. Furthermore, morphology and mean crystallite size
was determined by scanning electron microscopy (SEM) with JEOL JFC-1600 and JSM-
6701F equipments. The results were extracted from a Pro X Scanning Desktop Electron

Microscope, with Energy Dispersive X-Ray (EDX).

2.3.2 Isolation of a-pinene

The fractional distillation of turpentine oil was used under reduced pressure to
prepare the a-pinene starting material. The result of isolation was analyzed using GC-MS
and FT-IR.

2.3.3 Catalytic experiments
The catalytic experiments were performed in a stirred batch reactor with reflux, at

different temperatures (50 - 65°C) and ambient pressure. Prior to the reaction, a known
amount of catalyst powder was thermally activated in an oven at 110-C, and then placed

in a desiccator at room temperature (15 min) to cool and prevent rehydration. This was
quickly transferred into the reaction vessel containing 20 mL dry methanol and
preheated at the reaction temperature, followed by the addition and mixture of 5 mL a-
pinene by stirring for another 360 min. Therefore, samples were collected periodically,
and the catalyst was removed by syringe filtration, using a filter with no impact on the
products. Also, no further reaction was reported during storage, and the yields were
identified using GC-MS (Shimadzu QP-2010 Plus). In addition, GC Agilent 6820 with

FID detector (T 300°C), using a HP-5 column with Helium as carrier gas was adopted
4
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for quantification. The chromatogram peaks were identified by comparing retention
times and gas chromatography-mass spectrometry.

The reaction conditions were optimized by evaluating the effect of different
parameters, including reaction temperature (50, 55, 60 and 65°C), catalyst loading (0.5;
1;and 1.5 g), and volume ratio of reactants (a-pinene : methanol of 1:4, 1:7, 1:10) during
the methoxylation process. Therefore, a-terpinyl methyl ether selectivity, and a-pinene
conversion were calculated using the external standardized method, with curves
prepared by detecting different concentration of the standard solution. In addition, the
conversion of a-pinene (X) and the selectivity (S) of a-terpinyl methyl ether were

calculated using the following formula:

_ % converted alpha pinene % desired product

% initial alpha pinene ’ % conversion of alpha pinene

3. Results and Discussions
3.1 Characterization of catalyst

The potassium alum catalyst (KAI(SO4)2:12H,0) is an inexpensive, non-toxic,
water-soluble, and commercially available compound frequently used in the laboratory
with no special precautions [19, 22,23]. Furthermore, characterization involved FT-IR,
XRD, as well as SEM, with micrograph illustrated in figure 1, showing reasonable
similarities with the micro structure of ammonium aluminum sulfate dodecahydrate
[NH4AI(SO4)2-12H,0]. However, the latter comprise a more rounded shape, with a size
range of between 100—200 um. At higher temperatures of 1100-1200°C, the overall
construct of KAI(SO4)2-12H0 is altered, therefore generating an elongated oval shape
[24].

Infrared spectroscopy is often used to characterize solid state catalysts, resulting
from the flexible nature during the identification of surface functional groups, both
organic and inorganic. Figure 2 shows the spectrum of KAI(SO4)2:12H20, with peaks at
1195 cm™ and 1077 cm™ indicating the stretching vibration of S=O group, while 933 cm’
Land 737 cm? are related to the stretching vibrations of S—O and Al —O bonds,
respectively. The assignment of various bands to corresponding vibrational modes of the
functional groups present in alums, as well as the related aluminum bearing compounds
are sufficiently detailed in the literature. Furthermore, absorption peaks in the region of
750-400 cm™ indicate the vibration of Al-O [25]. Fig. 2 shows sharp sulfate (SO4?)

5
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bands in 468-471 cm™, 603-608 cm™, 657-686 cm™, 1104-1115 cm™ and 1237-1247
cm™ corresponds to symmetrical SO4* bending mode, degeneration of asymmetric
bending, symmetrical bending, degenerate symmetric stretching and degenerate
asymmetric stretching modes, respectively [23].

The crystallinity and crystal lattice of KAI(SO4)2-12H,0 were evaluated using X-
Ray Diffraction (XRD) technique, and the deduced patterns are presented in Figure 3.
Furthermore, high crystallinity implies greater catalytic properties, and better stability at
high temperatures, alongside wide porosity, and purity [26]. The main composition of
alum was identified to be aluminum potassium sulfate, based on the characteristic peaks
at 26= 21°; 28°; and 32°. Based on the diffractogram in Figure 3, Al.Os is represented
by 26 peaks at 36°; 46° and 58°, while the 68.54% K>(SO4) was designated at 20,
corresponding to 22°; 32°; and 45°. The result is substantially corroborated by Souza et
al., where a similar compound was assessed [27], and the 20 peaks observed at 21°, 22°;
and 28° were congruent with the PDF File 07.0017 for KAI(SO4)2-12H,0. In addition,
the diffractogram affirmed the samples’ high crystallinity, matching a recent report from

another analogous compound investigated by Abdulwahab et al. (2019) [28].

3.2 Catalytic test
3.2.1 Effect of volume ratio of a-pinene and methanol

The effect of varied a-pinene and methanol volume ratio on the selectivity to o-
terpinyl methyl ether was also evaluated, and good selectivity values (about 56%, at
conversion of a-pinene 75%) were obtained. The ratios investigated were 1:4, 1:7, and
1:10, at 60°C temperature, with 0.1 g of potassium alum catalyst, while a-pinene
conversion and relative product selectivity is shown in Figure 4.

Figure 4a shows a decline in the initial concentration of a-pinene decreased from
96.30%. The reactant volume ratio also influenced the outcome of methoxylation
reactions, thus a higher concentration of methanol led to greater amounts of ether yield
(Figure 4a). Also, the production increased over extended reaction duration, and the
highest a-pinene conversion (74.82%) was attained at 1:10 ratio and reaction time of 360
min. This is possibly due to the ability for methanol to simultaneously act as a reactant
and solvent, thus augmenting the integrations, and accelerating the percentage conversion
into the main ether product, and others [29]. Furthermore, by-products were formed from
a-pinene isomerization, including camphene, limonene, and terpinolene, under the

6
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reaction condition applied [30]. The highest selectivity of the KAI(SO4)2:12H.0
catalyzed methoxylation was observed when at a substrate reaction ratio of 1:10, with
stirring for 360 min at 60°C. Figure 4b and ¢ show the most prominent products to be
terpinyl methyl ether (TME) (55.76%) and fenchyl methyl ether (FME) (10.34%).

3.2.2 Effect of reaction temperature

The effect of temperature on the selectivity to a -terpinyl methyl ether was also
investigated, by exposing the reactions to 50, 55, 60 and 65-° C, over 1 g of
KAI(SO4)2-12H,0 catalyst, and constant o- pinene: methanol volume ratio. As
anticipated, the percentage conversion increased with the rise in temperature. This
influence, alongside the selectivity towards mono-ether products is presented in Fig. 5a,
b and c. Also, the variations were considered capable of generating good selectivity

values of about 60% ether product, from 98% o -pinene conversion.
The boiling point of methanol was 65°C, hence 60°C was determined as suitable

for the methoxylation reaction [29]. This is in accordance with the data in Figure 5a,
where a-pinene conversion steadily increased at 60°C. However, a notable elevation in
reaction time from 72 to 144 minutes was observed at 65°C, considering the possibility
of generating more products at higher temperature. Hence, the peak conversion of a-
pinene by KAI(SO4)2-12H>0 was 98.18% at 65°C.

The catalyst selectivity was highest at 65°C, over reaction duration of 360 min,
leading to the production of 8.7% FME (Figure 5b), 7.13% BME (Figure 5c), and 59.59%
TME (Figure 5d). Similar trend was observed in the methoxylation of limonene through
acid-activated ions and clay exvhangers [31]. Accordingly, the increase in temperature
prevented a decline in selectivity [31]. This corresponds to the findings of Hensen et al
(1997), on the effects of temperature on pinene alkoxylation, and the maximum
conversion was attained at 60°C and t=120 min [14]. However, temperatures of 80°C have
been affiliated with reverse reactions, characterized by the reformation of pinene isomers
in the methanol solvent. In addition, similar trend was observed in a-pinene conversion
in related systems, using 100 mg of Al-SAz-1 as catalyst [5], and is more favorable,
compared to other identical conditions. The reaction selectivity for mono-ether, seems to
be largely unaffected by increase in temperature, up to 65°C, at constant percentage
conversion. Also, there was no decline in selectivity, as observed in previous studies

concerning limonene methoxylation [31].
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Table 1 is a summary of the a-pinene methoxylation activity in the presence of
various catalysts, as shown in previous literatures. The highest yield was obtained using
AISAz-1 under mild reaction conditions.

Table 1. The summary of a-pinene methoxylation activity in the presence of various
catalysts in a batch reactor

Catalysts Temp°C Reaction  Conversion  Selectivity Literature
Time (h) (%) (%)
AlISAz-1 60 1 65 65 Catrinescu et al. (2015) [5]
AlISAz-1 40 20 71 91 Catrinescu et al. (2013) [31]
CB, CMN, CNorit 60 250 55-75 50-55 Matos et al. (2014) [4]
PW2-S 60 27 40 60 Pito et al. (2010) [32]
PVSSA-20 60 24 40 60 Pito et al. (2009) [15]
PMO-SO3H-g 100 - 90 45 Castanheiro et al. (2008)
[16]
Beta Zeolite 40 5 92 54 Hensen et al. (1997) [14]

3.2.3 Effect of the catalyst loading

The selectivity of KAI(SOa4)2:12H20 for a-terpinyl methyl ether was also studied,
using a catalyst loading of 0.5, 1, and 1.5 g, 60°C temperature, and a-pinene and methanol
volume ratio of 1:10. Figure 4 shows the conversion and product selectivity, where the
different treatments yield good amout of a-terpinyl methyl ether (about 54% with 75% a-
pinene conversion). These products are also detected after the conventional alkoxylation
of pinene or limonene with mineral acids [5]. Hence, the KAI(SO4)2:12H,0 solid catalyst
prepared in this study successfully converted a-pinene into the expected ether products.
Also, there was an upsurge in yield following an increase in the quantity of catalyst used.
Interestingly, 0.5 g ensured the highest methoxylation a-pinene selectivity for FME and
BME, while 1 g prompted higher production of TME (Table 2). Matos et al [4] attributed
this improved percentage conversion to the corresponding increase in quantity of active
centers. However, 0.2 g to 0.4 g of catalyst caused insignificant increment in conversion,

indicating the absence of any added advantages, following the use of higher amounts.

Table 2. Data on the percentage conversion (% C) and selectivity of methoxylation of a-
pinene with variable amount of the KAI(SO4)2:12H,0 catalyst.

Reaction products
%C FME BME TME

%A %S %A %S %A %S

a-pinene

Alum (g) t(min) (%)

8
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0.5 72 78.70 18.28 2.12 11.60 146  7.99 10.04 54.92

144 68.68 28.68 3.21 11.19 2.12 7.39 15.75 54.92
216 61.24 36.41 4.05 11.12 2.52 6.92 19.95 54.79
288 53.75 44.18 4.83 10.93 3.69 8.35 23.78 53.82
360 48.02 50.13 5.45 10.87 3.62 7.22 27.14 54.14
1 72 71.92 25.32 2.48 9.79 193 7.62 13.46 53.16
144 60.51 37.16 3.87 10.41 2.79 7.51 20.50 55.17
216 52.87 45.10 4.65 10.31 3.31 7.34 24.53 54.39
288 44.88 53.40 5.35 10.02 4.09 7.66 28.94 54.19
360 38.05 60.49 6.05 10.00 4.11 6.79 32.96 54.49
1.5 72 56.00 41.85 4.40 10.51 323 1.72 22.39 53.50
144 45.58 52.67 5.47 10.38 3.76  7.14 28.31 53.75
216 37.42 61.14 6.23 10.19 418 6.84 32.58 53.29
288 30.38 68.45 6.72 9.82 471 6.88 36.61 53.48
360 24.56 74.50 7.16 9.61 520 6.98 39.97 53.65

Note: %C (% Conversion), %A (% Content), %S (% Selectivity), FME (a-Fenchyl Methyl
Ether), BME (Bornyl Methyl Ether), and TME (Terpinyl Methyl Ether).

Scheme 1 shows the mechanisms of predominant methoxylated a-pinene products.,
This is initiated by double bond protonation, to yield pinyl ions, under an acidic condition
created through the hydrolysis of KAI(SOs)2:12H.0. According to literary review, acid
catalysis by potassium alum ensues via two routes, including A and B, obtained by
terpinyl and bornyl ion, respectively [4]. The alkoxylation process was initiated by
protonation of the a-pinene double bond, therefore forming the pinyl ion. This reaction is
proceeded through two parallel pathways, dependent on the product rearrangement,
including bycyclic and monocyclic type. Furthermore, the bornyl and terpinyl ions
present in the reaction mixture are react with methanol, and consequently deprotonated
to yield ethers viz. TME, BME, and FME. Catrinescu et al (2015) also reported on the
reaction of pinene with methanol over the acid sites available on the clay surface, to form
terpinyl methyl ether, TME, as the main product. Meanwhile, other compounds identified
in the complex include bicyclic ethers, encompassing the fenchyl and bornyl methyl
varieties [5]. Morever, several reaction products were associated with the irreversible
rearrangements of pinyl ion [15], resulting from the intrinsic ability to rearrange into the
bornyl ion. This leads to the formation of bornyl methyl ether, and fenchyl methyl ether,
following the addition of methanol. Therefore, pinyl ion is further rearranged into the

terpiny ion after the generation of terpinyl methyl ether, using methanol as a solvent.

4. Conclusion



[

A W N

O 00 N o Ou»

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31

Potassium alum [KAI(SO4).-12H,0] was successfully used as acid catalysts in the
methoxylation of a-pinene, to produce a-terpinyl methyl ether (TME) as the main
product. This process also causes the formation of fenchyl methyl ether (FME), bornyl
methyl ether (BME), limonene, and terpinolene as by-products. The optimized reaction
condition was evaluated from the effect of various parameters, including a-pinene to
methanol volume ratio, reaction temperature, and catalyst loading of KAI(SO4)2-12H:0.
Furthermore, the highest selectivity values was achieved using 1 g of catalyst, volume
ratio of 1:10, as well as temperature and reaction time set at 65°C and 6 h, respectively.
The final yield comprises 59.59% TME, 8.87% FME, 7.13% BME, from an exceptional
a-pinene percentage conversion of 98.18%. Further investigation of a-pinene chemical
processes is still needed. One of the novel development is by using nanotechnology
application for a-pinene formulation [3]. This has broadened our perspective to further

contribute to a-pinene research in the future.
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Figure 3. X-Ray Diffraction (XRD) diffractogram of KAI(SO4)2-12H,0
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Abstract. Methoxylation is a relevant technological process applied in the production of
high-value a-pinene derivatives. This report investigates the use of potassium alum
[KAI(SO4)2:12H20] as a catalyst in the methoxylation of a-pinene. In this study, the
methoxylation reaction was optimized for the highest conversion of a-pinene and
selectivity, assessed for the factors, catalyst loading (0.5; 1.0; and 1.5 g), volume ratio
of a-pinene: methanol (1:4, 1:7, 1:10), reaction temperature (50, 55, 60 and 65°C), and
reaction time (72, 144, 216, 288, 360 min). The highest selectivity of KAI(SO4)2:12H,0
in the methoxylation of a-pinene was achieved under an optimal condition of 1 g of
catalyst, volume ratio of 1:10, as well as the reaction temperature and incubation time of
65°C and 6 h, respectively. GC-MS results revealed the yields of the methoxylated
products from the 98.2% conversion of a-pinene, to be 59.6%, 8.9%, and 7.1% for a-
terpinyl methyl ether (TME), fenchyl methyl ether (FME), bornyl methyl ether (BME),
respectively. It was apparent that a lower KAI(SO4)2:12H20 loading (0.5—1.5 g) was more
economical for the methoxylation reaction. The findings seen here indicated the
suitability of the KAI(SO4)2-12H-0 to catalyze the methoxylation of a-pinene to produce
an commercially important ethers.

Keywords: a-pinene; methoxylation; potassium alum; catalyst
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1. Introduction

a-Pinene is the main constituent of turpentine, the essential oil obtained from pine
gum, in live Pinus trees, making cuts in the trunk openings of the wood (similar to the
extraction of latex for rubber in rubber trees) so the resin present in the resinous channels
exudes under pressure [1-2]. Turpentine is a valuable and renewable natural resource
widely used in the medical industry, for the synthesis of new important chemicals foruse
as cosmetic, flavours, fragrances, and pharmaceuticals sectors as well as in the synthesis
of chemical intermediates [3]. Thus, o-Pinene is considered a versatile building block
for the synthesis of high-value added chemicals, mainly through catalytic processes, such
as hydration [4-9], isomerization [10-11], epoxidation and pinene oxide isomerization
[12-14], esterification [15-16], and etherification [17-22], among others can be applied to
obtain a wide variety of added value products.

The main product of the acid-catalysed methoxylation of a-pinene is a-terpinyl
methyl ether, which smells grape fruit-like and might be used as flavour and fragrance
and as additive for pharmaceuticals and food industry [23]. Traditionally, sulfuric acid
has been used in this reaction, as catalyst [17]. However, solid catalysts have many
advantages over liquid acids, such as they do less harm to the environment, can be easily
separated from liquid phase and can be reusable. The a-pinene methoxylation has been
carried out over beta zeolite [18], sulfonic-modified mesoporous silica /MCM-41, PMO
[19], poly(vinyl alcohol) containing sulfonic acid groups [20], Heteropolyacids
Immobilized in Silica [21] and microporous and mesoporous carbons [22] and clays
mineral [23] reported good selectivities, of ca. 60%, at almost complete conversion.

Potassium Alum (KAI(SO4)2_12H,0), which is natural materials that cost
significantly less than the catalysts listed above, is versatile and environmentally friendly
catalysts to promote a wide variety of organic reactions. This study introduces the term
"dreamland catalyst" to denote a heterogeneous catalyst which is a cheap, water-soluble,
mild, efficient, safe, stable, non-toxic, reliable, incorruptible, recyclable and
commercially available compound that can be used in the laboratory without special
precautions (easy to use). Moreover, the catalyst has been commonly applied in several
other synthetic reactions with good success, for example, including in the
transesterification of palm oil [24], acylals [25], Azlactone [26]; coumarins [27], amides
[28], B-acetamido ketones [29], novel bis[spiro(quinazoline-oxindole)] derivatives [30],

and bispyrazole derivatives [31]. It was therefore decided to investigate alum
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(KAI(S04)2.12H,0) in catalyzing certain synthetic reactions, this study assumed that this
catalyst may be effective to catalyze the methoxylation of a-pinene to produce a-terpinyl
methyl ether.

In this work we report the synthesis of a-terpinyl methyl ether via the
methoxylation of a-pinene over Potassium Alum (KAI(SO4)2.12H20) catalysts. The
influence of various reaction parameters, such as, reaction times, o-pinene to methanol
volume ratio, temperature, and catalyst loading on catalyst activity of the active catalyst,
is also studied. The parameters were chosen in this study as the are also commonly
assessed in similar organic reactions involving polar reagents. It is worth to mention here
that the optimal condition for the KAI(SO4)2.12H.0 catalyzed methoxylation must be

found.

2. Materials and Methods
2.1.  Materials

a-Pinene standard (98%) was obtained from Sigma Aldrich, while turpentine oil
was acquired from KBM Perhutani Pine Chemical Industry, Pemalang, Indonesia.
Methanol and potassium alum [KAI(SOs)2-12H20] for analysis were procured from
Merck (Germany).

2.2.  Instrumentations

Quantitative and qualitative analyses of the isolated a-pinene and the corresponding
methoxylation products were conducted using the GC 23 Agilent 6820 (Version A. 01.
03, South Korea), HP-5 column and FID detector (detector temperature of 300°C), with
helium as the carrier gas. The injection temperature was set to 280°C, while the column
was maintained at an initial temperature of 70°C for 10 minutes and was increased
gradually to 280°C (5°C/min), and ramped up to 300°C at 20°C/min. Analysis of the
methoxylation products was done on a GC-MS (Shimadzu QP-2010 Plus, Japan)
equipped with an AOC-20i+s autosampler that was operated under the following
conditions: column and injection temperature of 70°C and 200°C, respectively with split
injection mode, pressure 13.7 kPa, flow column 0.50 mL/min, ion source and interface
temperature of 200°C and 240°C, correspondingly. Here, helium (He) gas was used as
the carrier at a constant flow rate of 0.1uL/min. The percentage of the methoxylation

process was estimated from the area beneath each peak. Furthermore, the percentage of
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each ether product was achieved by dividing the respective peak area with the isolated a-
pinene and multiplied by 100. The qualitative analysis on the produced ether products
were done on a Fourier-Transform Infrared Spectrophotometer (Perkin Elmer Spectrum
Version 10.4.00, US). Each sample was prepared on KBr pellets and the analysis was

done in the wavenumber region of 4000400 cm™.

2.3.  Procedures
2.3.1 Preparation of the catalysts

Potassium alum was spray-coated over AuPd plates for 90 s under argon flow to
produce the KAI(SO4)2-12H,0. The gas pressure was set to 0.5 bar and the analysis was
conducted at 20 mA for 5-10 mins using AuPd as the solvent. The catalyst was
characterized on an X-Ray diffractometer (D-Max Ill (Rigaku) with a Cu Ka radiation
source (o0 = 1.5378 A, 40kV, 30mA). Morphology and mean crystallite size were
determined by scanning electron microscopy (SEM) performed on a JEOL JFC-1600 and
JSM-6701F equipment. The crystallinity index was estimated using previously described
method [32]. FT-IR analysis that was performed within the spectral region of 4000 to 400

cm™* under room temperature.

2.3.2 Isolation of a-pinene

Fractional distillation of turpentine oil was performed under reduced pressure to
prepare and concentrate a-pinene as the starting material for the methoxylation process.
The isolated a-pinene was analyzed by GC-MS where the column and injection
temperature of 70°C and 200°C, respectively with split injection mode, pressure 13.7 kPa,
flow column 0.50 mL/min, ion source and interface temperature of 200°C and 240°C,

correspondingly.

2.3.3 Catalytic experiments

The catalytic experiments were performed in a stirred batch reactor under reflux at
different temperatures (50—-65°C) and ambient pressure. A known amount of the
KAI(S04)2:12H,0 catalyst was thermally activated in an oven at 110°C and then left to
cool in a desiccator at room temperature (15 min) to prevent rehydration. The catalyst
was quickly transferred into the reaction vessel containing 20 mL dry methanol and was

preheated (50—65°C) before the addition of a-pinene (5 mL), followed by continuous
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stirring for 360 min. The samples were then collected periodically, and the catalyst was
removed using a syringe filter with no impact on the products. It is worth mentioning
here that no reaction was observed during storage. The a-pinene methoxylation reaction
yields were identified by a GC-MS (Shimadzu QP-2010 Plus) and then quantified on
an HP-5 column with helium as carrier gas using the GC Agilent 6820 with a FID
detector (T= 300°C). All samples collected were analyzed using a Gas Chromatograph
(GC), comparing the retention times of the compounds in the reaction mixture with
those of standard compounds.

The reaction conditions were optimized by evaluating the effects of parameters,
reaction temperature (50, 55, 60 and 65°C), catalyst loading (0.5; 1; and 1.5 g), and
volume ratio of reactants (a-pinene:methanol of 1:4, 1:7, 1:10) during the methoxylation
process. In this study, external standard was used to estimate the a-terpinyl methyl ether
selectivity, and the percentage conversion of a-pinene by preparing the corresponding
standard curves. The conversion of a-pinene (X) and the selectivity (S) for the desired

products were defined as follows [5]:

converted alpha pinene % desired product %

initial alpha pinene % ’ ~ conversion of alpha pinene %

3. Results and Discussions

3.1 Characterization of catalyst

Potassium Alum (KAI(SO4)2-12H,0) is an inexpensive, non-toxic, water-soluble,
and commercially available compound frequently used in the laboratory with no special
precautions [24-31]. Data on the characterization of the produced KAI(SO4),:12H20 by
scanning electron microscopy (SEM), FT-IR, and XRD, are illustrated in Figure 1, Figure
2, and Figure 3, respectively. The micrographs of KAI(SO4)2:12H,0 showed reasonable
similarities with the microstructure of ammonium aluminum sulfate dodecahydrate
[NH1AI(SO4)2-12H20]. However, the latter are reportedly to be of a more rounded
shape, with a size range of between 100—-200 um at higher temperatures of 1100-1200°C
(Figure 1). However, the overall construct of KAI(SOa4)2-12H,0 is altered, and adopts an

overall more elongated oval shape, thus corroborated the findings of an earlier study [33].



Infrared spectroscopy is often used to characterize solid-state catalysts to identify
both the organic and inorganic surface functional groups. Figure 2 shows the spectrum of
KAI(SO4)2-12H,0, with the peaks at 1195 cm™ and 1077 cm™ ascribed to the stretching
vibration of a S=O group, while peaks at 933 cm™ and 737 cm™ were the result of the
stretching vibrations of S—O and Al —O bonds, respectively. Peaks that emerged in the
region of 750-400 cm™ indicated the vibration of Al-O [34]. Figure 2 illustrates
characteristic sharp sulfate (S04%) peaks at 468-471 cm™, 603-608 cm™, 657-686 cm™,
1104-1115 cm™ and 1237-1247 cm™ that corresponded to the symmetrical bending mode
of SO4* degeneration of asymmetric bending, symmetrical bending, degenerate
symmetric stretching and degenerate asymmetric stretching. [24].

Figure 3 depicts the crystallinity and crystal lattice of KAI(SO4).-12H0, evaluated
by XRD. It is important to indicate here, a high crystallinity insinuates appreciable
catalytic properties, and better stability at high temperatures, alongside extensive porosity
and purity of the sample [35]. The main composition of KAI(SO4)2:12H,0 was affirmed
to be aluminum potassium sulfate, based on the characteristic peaks at 260 = 21°; 28°; and
32°. Based on the diffractogram in Figure 3, Al.O3 was represented by peaks at 36°, 46°
and 58°, while the 68.54% of K»(SO4) corresponded to 22°; 32°; and 45°. The results seen
here corroborate previous investigation for a similar compound [36], and the 26 peaks
observed at 21°, 22°; and 28° were consistent with the JCDF File 07.0017 for
KAI(S04)2:12H,0. Thus, the diffractogram affirmed the prepared catalyst show high

crystallinity, matching a recent report from another analogous compound [37].

3.2 Catalytic test
In order to optimise the reaction conditions, the effect of different parameters
(volume ratio of a-pinene and methanol, temperature, and catalyst loading,) on the

methoxylation of a-pinene over KAI(SO4)2:12H,0 catalyst was studied.

3.2.1 Effect of volume ratio of a-pinene and methanol

The effect of the volume ratio of a-pinene to methanol (a-pinene:methanol; 1:4,
1:7, 1:10) on the selectivity of a-terpinyl methyl ether by KAI(SO4)2-12H,0O was also
evaluated. In this investigation, the reactions were done at 60°C using a 0.1 g of potassium
alum catalyst. The study noted that the catalysts yielded good selectivity values (~ 56%



with a 75% conversion of a-pinene) of the methoxylation. Results of the o-pinene
conversion and relative product selectivity are shown in Figure 4.

The volume ratio of the reactant was found to influence the outcome of the
methoxylation reaction, as higher concentrations of methanol in the mixture led to a
higher ether yield (Figure 4a). Also, the percentage of the produced ether products
increased with longer reaction time. The highest a-pinene conversion (74.8%) was
attained with the use of 1:10 ratio of a-pinene:methanol and a reaction time of 360 min.
The outcome seen here possibly resulted from the surplus presence of methanol molecules
to simultaneously act as a reactant and solvent. This augmented the integration of the
reactants and accelerated the conversion of a-pinene into the main ether product, a-
terpinyl methyl ether and other ether by-products. In this study, the by-products were
formed were from the isomerization of o-pinene under the methoxylation process,
including camphene, limonene, and terpinolene, as similarly described by an earlier study
[17-22].

Similarly, the highest selectivity of the KAI(SO4).-12H,0 catalyzed methoxylation
was observed at 1:10 ratio of a-pinene:methanol, with stirring for 360 min at 60°C. This
also goes to show that the KAI(SO4)2-12H.0 was capable of carrying out selective
methoxylation of the a-pinene to produce ether. Figure 4b and ¢ show the most prominent
products to be terpinyl methyl ether (TME) (55.8%) and fenchyl methyl ether (FME)
(10.3%).

3.2.2 Effect of reaction temperature

The effect of temperature (50, 55, 60 and 65°C) on the selective production of a-
terpinyl methyl ether by KAI(SO4)2:12H,O was also investigated, under a constant
catalyst loading, and volume ratio of a-pinene:methanol. As anticipated, the percentage
conversion increased with the rise in temperature, which resulted in the concomitant
increase in methoxylation selectivity towards mono-ether products (Figure 5a-d). Figure
5a revealed that the conversion of a-pinene steadily increased at 60°C. It is worth to
indicate here, since the boiling point of methanol was 65°C; hence a lower temperature
of 60°C was the suitable reaction temperature for the methoxylation process [21].
However, a notable elevation in reaction time from 72 to 144 minutes was observed at
65°C, wherein the best methoxylation temperature on a-pinene by KAI(SO4)2:12H.0

occurred at 65°C for a 98.2% conversion. The outcome seen here also signified that the
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temperatures assessed in this study promoted good selectivity of the methoxylation
reaction to yield ~60% of the ether products.

The highest selectivity was at 65°C over a reaction time of 360 min, to produce
8.7% of FME (Figure 5b), 7.1% BME (Figure 5c), and 59.6% TME (Figure 5d).
Likewise, another study documented a similar trend for the methoxylation of limonene
through acid-activated ions and clay exchangers, whereby a higher reaction temperature
prevented the decline in catalyst selectivity [38]. Another work saw the alkoxylation of
pinene yielded the maximum conversion of the reactant when the reaction temperature
and duration were set to 60°C and t=120 min, respectively [21].

Nonetheless, higher temperatures approaching 80°C or higher were found to be
counterproductive and promoted the reverse reaction that reformed the pinene isomers in
the methanol solvent. The same outcome was also corroborated by an earlier study that
investigated a similar reaction using 100 mg of Al-SAz-1 as the catalyst [23]. Also, a
decline in selectivity was not observed during the methoxylation of limonene [38], where
the reaction selectivity for mono-ether was largely unaffected when the reaction
temperature was increased up to 65°C. Table 1 shows the comparative study of a-pinene
methoxylation process in the presence of various catalysts. The highest percentage

conversion was obtained using the catalysts, AISAz-1.

Table 1. Comparative summary of a-pinene methoxylation in the presence of various

catalysts in a batch reactor

Catalysts Temp  Reaction Conversion Selectivity Literature
(°C)  Time (h) (%) (%)

AISAz-1 60 1 65 65 [5]
AISAz-1 40 20 71 91 [32]
CB, CMN, CNorit 60 250 55-75 50-55 [4]
PW2-S 60 27 40 60 [33]
PVSSA-20 60 24 40 60 [15]
PMO-SO3H-g 100 - 90 45 [16]
Beta Zeolite 40 5 92 54 [14]
KAI(SO4)2-12H,0 65 6 98 60 -




3.2.3 Effect of the catalyst loading

The selectivity of KAI(SO4)2-12H.0 to produce a-terpinyl methyl ether was also
studied, using three catalyst loadings of 0.5, 1, and 1.5 g, while other reaction conditions
were held constant at 60°C, and a-pinene:methanol volume ratio at 1:10. Table 2 shows
the conversion and product selectivity, where the different treatments yielded reasonably
good amount of TME (~54%, 75% a-pinene conversion). The KAI(SO4)2-12H.0 solid
catalyst prepared in this study successfully converted the a-pinene into the expected ether
products. Also, there was an upsurge in the yields of the reaction products following an
increase catalyst quantity in the reaction mixture. Interestingly, 0.5 g of the catalyst gave
the highest methoxylation a-pinene selectivity for FME and BME, while 1 g prompted
higher production of TME. The improved percentage conversion seen here was the
likelihood of the higher availability of catalyst active centers to carry out the conversion
reaction [22]. The yields of TME in the methoxylation reaction appeared comparable for
KAI(SO4)2:12H0 loadings between 0.2—0.4 g, thus evidently indicating the futile use of
the catalyst at higher loadings. A lower KAI(SO4)2-12H20 is more economical to produce

the ethers in this study.

Table 2. Data on the conversion (% C) and selectivity of methoxylation of a-pinene with
a variable of the KAI(SOs)2:12H20 catalyst loading.

Alum (g) t (min) Conversion Selectiviy of reaction products (%S)
(% C) TME BME FME
0.5 72 18.3 54.9 7.8 11.6
144 28.7 54.9 7.4 11.2
216 36.4 54.8 6.9 11.1
288 44.2 53.8 8.4 10.9
360 50.1 54.1 7.2 10.9
1.0 72 25.3 53.2 7.6 9.8
144 37.2 55.2 7.5 104
216 45.1 54.4 7.3 10.3
288 53.4 54.2 7.7 10.0
360 60.5 54.5 6.8 10.0
15 72 419 53.5 7.7 105
144 52.7 53.8 7.2 104
216 61.1 53.3 6.8 10.2
288 68.5 53.5 6.9 9.8
360 74.5 53.7 7.0 9.6

Note: %C (% Conversion), %S (% Selectivity), TME (Terpinyl Methyl Ether), BME (Bornyl Methyl
Ether), and FME (a-Fenchyl Methyl Ether).



Scheme 1 shows the reaction mechanism of a-pinene methoxylation with potassium
alum KAI(SO4)2:12H,0 catalyst. According to literary review, acid catalysis by
potassium alum ensues via two routes, including A and B, obtained by terpinyl and bornyl
ion, respectively [21-22]. The alkoxylation process was initiated by protonation of the a-
pinene double bond to create the pinyl ion. This reaction proceeded through two parallel
pathways, dependent on the product rearrangement which include bicyclic and
monocyclic type. The bornyl and terpinyl ions present in the reaction mixture then react
with methanol, and consequently deprotonate to yield the ethers viz. TME, BME, and
FME. Previous investigation also reported on the reaction of pinene with methanol over
the acid sites available on the clay surface, to form terpinyl methyl ether, TME, as the
main product [23].

Meanwhile, other compounds identified in the complex include bicyclic ethers,
encompassing the fenchyl and bornyl methyl varieties [23]. Formation of several reaction
products in the KAI(SO4)2-12H.0 catalyzed methoxylation process was associated with
the irreversible rearrangements of pinyl ion [20], resulting from the intrinsic ability to
rearrange into the bornyl ion. This leads to the formation of bornyl methyl ether, and
fenchyl methyl ether, following the addition of methanol. Therefore, pinyl ion is further
rearranged into the terpiny ion after the generation of terpinyl methyl ether, using
methanol as a solvent. In all, the collective results seen in this study advocated the
feasibility of KAI(SO4)2-12H,0 for a reasonably satisfactory methoxylation of a-pinene

into a-terpinyl methyl ether (TME) as the main product, with relatively good selectivity.

4. Conclusion

In this study, we have successfully demonstrated that the potassium alum
[KAI(SO4)2:12H20] is a potentially effective acid catalyst in the methoxylation of a-
pinene, to give a-terpinyl methyl ether (TME) as the main product with fenchyl methyl
ether (FME), bornyl methyl ether (BME), limonene, and terpinolene as the by-products.
Results revealed that the highest selectivity of KAI(SO4)2:12H,0 to catalyze the
methoxylation of a-pinene was achieved under an optimal condition of 1 g of catalyst,
volume ratio of 1:10, as well as the reaction temperature and reaction time of 65°C and 6
h, respectively. This gave the final yield of the ether products as 59.6%, 8.9%, and 7.1%
for TME, FME, BME, respectively, following a 98.2% conversion of a-pinene. Further

research into the use of nanocatalysts for improving processes using a-pinene chemical
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as the starting material may prove useful in improving the product yields and selectivity
of the methoxylation process. In a nutshell, the results obtained in this study affirmed the
suitability of KAI(SOa4)2-12H20 to selectively catalyze the methoxylation of a-pinene to
produce TME.
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Figures

Figure 1. Scanning Electron Microscope (SEM) micrograph of KAI(SO4)2:12H>0
magnified 2000 x
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Figure 2. Fourier Transform-Infrared (FT-IR) spectrum of KAI(SO4)2-12H,0
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Abstract. Methoxylation is a relevant technological process applied in the production of
high-value a-pinene derivatives. This report investigates the use of potassium alum
[KAI(SO4)2:12H20] as a catalyst in the methoxylation of a-pinene. In this study, the
methoxylation reaction was optimized for the highest conversion of a-pinene and
selectivity, assessed for the factors, catalyst loading (0.5; 1.0; and 1.5 g), volume ratio
of a-pinene: methanol (1:4, 1:7, 1:10), reaction temperature (50, 55, 60 and 65°C), and
reaction time (72, 144, 216, 288, 360 min). The highest selectivity of KAI(SO4)2:12H,0
in the methoxylation of a-pinene was achieved under an optimal condition of 1 g of
catalyst, volume ratio of 1:10, as well as the reaction temperature and incubation time of
65°C and 6 h, respectively. GC-MS results revealed the yields of the methoxylated
products from the 98.2% conversion of a-pinene, to be 59.6%, 8.9%, and 7.1% for a-
terpinyl methyl ether (TME), fenchyl methyl ether (FME), bornyl methyl ether (BME),
respectively. It was apparent that a lower KAI(SO4)2:12H20 loading (0.5—1.5 g) was more
economical for the methoxylation reaction. The findings seen here indicated the
suitability of the KAI(SO4)2-12H-0 to catalyze the methoxylation of a-pinene to produce
an commercially important ethers.
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1. Introduction

a-Pinene is the main constituent of turpentine, the essential oil obtained from pine
gum, in live Pinus trees, making cuts in the trunk openings of the wood (similar to the
extraction of latex for rubber in rubber trees) so the resin present in the resinous channels
exudes under pressure [1-2]. Turpentine is a valuable and renewable natural resource
widely used in the medical industry, for the synthesis of new important chemicals foruse
as cosmetic, flavours, fragrances, and pharmaceuticals sectors as well as in the synthesis
of chemical intermediates [3]. Thus, o-Pinene is considered a versatile building block
for the synthesis of high-value added chemicals, mainly through catalytic processes, such
as hydration [4-9], isomerization [10-11], epoxidation and pinene oxide isomerization
[12-14], esterification [15-16], and etherification [17-22], among others can be applied to
obtain a wide variety of added value products.

The main product of the acid-catalysed methoxylation of a-pinene is a-terpinyl
methyl ether, which smells grape fruit-like and might be used as flavour and fragrance
and as additive for pharmaceuticals and food industry [23]. Traditionally, sulfuric acid
has been used in this reaction, as catalyst [17]. However, solid catalysts have many
advantages over liquid acids, such as they do less harm to the environment, can be easily
separated from liquid phase and can be reusable. The a-pinene methoxylation has been
carried out over beta zeolite [18], sulfonic-modified mesoporous silica /MCM-41, PMO
[19], poly(vinyl alcohol) containing sulfonic acid groups [20], heteropolyacids
immobilized in silica [21] and microporous and mesoporous carbons [22] and clays
mineral [23] reported good selectivities, of ca. 60%, at almost complete conversion.

Potassium Alum (KAI(SOs)2.12H,0), which is natural materials that cost
significantly less than the catalysts listed above, is versatile and environmentally friendly
catalysts to promote a wide variety of organic reactions. This study introduces the term
"dreamland catalyst" to denote a heterogeneous catalyst which is a cheap, water-soluble,
mild, efficient, safe, stable, non-toxic, reliable, incorruptible, recyclable and
commercially available compound that can be used in the laboratory without special
precautions (easy to use). Moreover, the catalyst has been commonly applied in several
other synthetic reactions with good success, for example, including in the
transesterification of palm oil [24], acylals [25], Azlactone [26]; coumarins [27], amides
[28], B-acetamido ketones [29], novel bis[spiro(quinazoline-oxindole)] derivatives [30],

and bispyrazole derivatives [31]. It was therefore decided to investigate alum
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(KAI(S04)2.12H,0) in catalyzing certain synthetic reactions, this study assumed that this
catalyst may be effective to catalyze the methoxylation of a-pinene to produce a-terpinyl
methyl ether.

In this work we report the synthesis of a-terpinyl methyl ether via the
methoxylation of a-pinene over Potassium Alum (KAI(SO4)2.12H20) catalysts. The
influence of various reaction parameters, such as, reaction times, o-pinene to methanol
volume ratio, temperature, and catalyst loading on catalyst activity of the active catalyst,
is also studied. The parameters were chosen in this study as the are also commonly
assessed in similar organic reactions involving polar reagents. It is worth to mention here
that the optimal condition for the KAI(SO4)2.12H.0 catalyzed methoxylation must be

found.

2. Materials and Methods
2.1.  Materials

a-Pinene standard (98%) was obtained from Sigma Aldrich, while turpentine oil
was acquired from KBM Perhutani Pine Chemical Industry, Pemalang, Indonesia.
Methanol and potassium alum [KAI(SOs)2-12H20] for analysis were procured from
Merck (Germany).

2.2.  Instrumentations

Quantitative and qualitative analyses of the isolated a-pinene and the corresponding
methoxylation products were conducted using the GC 23 Agilent 6820 (Version A. 01.
03, South Korea), HP-5 column and FID detector (detector temperature of 300°C), with
helium as the carrier gas. The injection temperature was set to 280°C, while the column
was maintained at an initial temperature of 70°C for 10 minutes and was increased
gradually to 280°C (5°C/min), and ramped up to 300°C at 20°C/min. Analysis of the
methoxylation products was done on a GC-MS (Shimadzu QP-2010 Plus, Japan)
equipped with an AOC-20i+s autosampler that was operated under the following
conditions: column and injection temperature of 70°C and 200°C, respectively with split
injection mode, pressure 13.7 kPa, flow column 0.50 mL/min, ion source and interface
temperature of 200°C and 240°C, correspondingly. Here, helium (He) gas was used as
the carrier at a constant flow rate of 0.1uL/min. The percentage of the methoxylation

process was estimated from the area beneath each peak. Furthermore, the percentage of
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each ether product was achieved by dividing the respective peak area with the isolated a-
pinene and multiplied by 100. The qualitative analysis on the produced ether products
were done on a Fourier-Transform Infrared Spectrophotometer (Perkin Elmer Spectrum
Version 10.4.00, US). Each sample was prepared on KBr pellets and the analysis was

done in the wavenumber region of 4000400 cm™.

2.3.  Procedures
2.3.1 Preparation of the catalysts

Potassium alum was spray-coated over AuPd plates for 90 s under argon flow to
produce the KAI(SO4)2-12H,0. The gas pressure was set to 0.5 bar and the analysis was
conducted at 20 mA for 5-10 mins using AuPd as the solvent. The catalyst was
characterized on an X-Ray diffractometer (D-Max Ill (Rigaku) with a Cu Ka radiation
source (o0 = 1.5378 A, 40kV, 30mA). Morphology and mean crystallite size were
determined by scanning electron microscopy (SEM) performed on a JEOL JFC-1600 and
JSM-6701F equipment. The crystallinity index was estimated using previously described
method [32]. FT-IR analysis that was performed within the spectral region of 4000 to 400

cm™* under room temperature.

2.3.2 Isolation of a-pinene

Fractional distillation of turpentine oil was performed under reduced pressure to
prepare and concentrate a-pinene as the starting material for the methoxylation process.
The isolated a-pinene was analyzed by GC-MS where the column and injection
temperature of 70°C and 200°C, respectively with split injection mode, pressure 13.7 kPa,
flow column 0.50 mL/min, ion source and interface temperature of 200°C and 240°C,

correspondingly.

2.3.3 Catalytic experiments

The catalytic experiments were performed in a stirred batch reactor under reflux at
different temperatures (50—-65°C) and ambient pressure. A known amount of the
KAI(S04)2:12H,0 catalyst was thermally activated in an oven at 110°C and then left to
cool in a desiccator at room temperature (15 min) to prevent rehydration. The catalyst
was quickly transferred into the reaction vessel containing 20 mL dry methanol and was

preheated (50—65°C) before the addition of a-pinene (5 mL), followed by continuous
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stirring for 360 min. The samples were then collected periodically, and the catalyst was
removed using a syringe filter with no impact on the products. It is worth mentioning
here that no reaction was observed during storage. The a-pinene methoxylation reaction
yields were identified by a GC-MS (Shimadzu QP-2010 Plus) and then quantified on
an HP-5 column with helium as carrier gas using the GC Agilent 6820 with a FID
detector (T= 300°C). All samples collected were analyzed using a Gas Chromatograph
(GC), comparing the retention times of the compounds in the reaction mixture with
those of standard compounds.

The reaction conditions were optimized by evaluating the effects of parameters,
reaction temperature (50, 55, 60 and 65°C), catalyst loading (0.5; 1; and 1.5 g), and
volume ratio of reactants (a-pinene:methanol of 1:4, 1:7, 1:10) during the methoxylation
process. In this study, external standard was used to estimate the a-terpinyl methyl ether
selectivity, and the percentage conversion of a-pinene by preparing the corresponding
standard curves. The conversion of a-pinene (X) and the selectivity (S) for the desired

products were defined as follows [5]:

converted alpha pinene % desired product %

initial alpha pinene % ' conversion of alpha pinene %

3. Results and Discussions
3.1 Characterization of catalyst

Potassium Alum (KAI(SOa4)2-12H.0) is an inexpensive, non-toxic, water-soluble,
and commercially available compound frequently used in the laboratory with no special
precautions [24-31]. Data on the characterization of the produced KAI(SO4)2:12H20 by
scanning electron microscopy (SEM), FT-IR, and XRD, are illustrated in Figure 1, Figure
2, and Figure 3, respectively. The micrographs of KAI(SO4),-12H,0 showed reasonable
similarities with the microstructure of ammonium aluminum sulfate dodecahydrate
[NH4AI(SO4)2-12H,0]. However, the latter are reportedly to be of a more rounded
shape, with a size range of between 100—200 um at higher temperatures of 1100-1200°C
(Figure 1). However, the overall construct of KAI(SOa4)2-12H,0 is altered, and adopts an
overall more elongated oval shape, thus corroborated the findings of an earlier study [33].

Infrared spectroscopy is often used to characterize solid-state catalysts to identify
both the organic and inorganic surface functional groups. Figure 2 shows the spectrum of
KAI(SO4)2-12H,0, with the peaks at 1195 cm™ and 1077 cm™ ascribed to the stretching
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vibration of a S=O group, while peaks at 933 cm™ and 737 cm™ were the result of the
stretching vibrations of S—O and Al —O bonds, respectively. Peaks that emerged in the
region of 750—400 cm™ indicated the vibration of Al-O [34]. Figure 2 illustrates
characteristic sharp sulfate (S04%) peaks at 468-471 cm™, 603-608 cm™, 657-686 cm™,
1104-1115cm™ and 1237-1247 cm™ that corresponded to the symmetrical bending mode
of SOs* degeneration of asymmetric bending, symmetrical bending, degenerate
symmetric stretching and degenerate asymmetric stretching [24].

Figure 3 depicts the crystallinity and crystal lattice of KAI(SO4).-12H,0, evaluated
by XRD. It is important to indicate here, a high crystallinity insinuates appreciable
catalytic properties, and better stability at high temperatures, alongside extensive porosity
and purity of the sample [35]. The main composition of KAI(SO4)2:12H,0 was affirmed
to be aluminum potassium sulfate, based on the characteristic peaks at 20 = 21°; 28°; and
32°. Based on the diffractogram in Figure 3, Al.O3 was represented by peaks at 36°, 46°
and 58°, while the 68.54% of K>(SO4) corresponded to 22°; 32°; and 45°. The results seen
here corroborate previous investigation for a similar compound [36], and the 26 peaks
observed at 21°, 22°; and 28° were consistent with the JCDF File 07.0017 for
KAI(SO4)2:12H,0. Thus, the diffractogram affirmed the prepared catalyst show high

crystallinity, matching a recent report from another analogous compound [37].

3.2 Catalytic test

In order to optimise the reaction conditions, the effect of different parameters
(volume ratio of a-pinene and methanol, temperature, and catalyst loading,) on the
methoxylation of a-pinene over KAI(SO4)2:12H,0 catalyst was studied.

3.2.1 Effect of volume ratio of a-pinene and methanol

The effect of the volume ratio of a-pinene to methanol (a-pinene:methanol; 1:4,
1:7, 1:10) on the selectivity of a-terpinyl methyl ether by KAI(SO4)2-12H,O was also
evaluated. In this investigation, the reactions were done at 60°C using a 0.1 g of potassium
alum catalyst. The study noted that the catalysts yielded good selectivity values (~ 56%
with a 75% conversion of a-pinene) of the methoxylation. Results of the a-pinene
conversion and relative product selectivity are shown in Figure 4.

The volume ratio of the reactant was found to influence the outcome of the
methoxylation reaction, as higher concentrations of methanol in the mixture led to a
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higher ether yield (Figure 4a). Also, the percentage of the produced ether products
increased with longer reaction time. The highest a-pinene conversion (74.8%) was
attained with the use of 1:10 ratio of a-pinene:methanol and a reaction time of 360 min.
The outcome seen here possibly resulted from the surplus presence of methanol molecules
to simultaneously act as a reactant and solvent. This augmented the integration of the
reactants and accelerated the conversion of a-pinene into the main ether product, a-
terpinyl methyl ether and other ether by-products. In this study, the by-products were
formed were from the isomerization of o-pinene under the methoxylation process,
including camphene, limonene, and terpinolene, as similarly described by an earlier study
[17-22].

Similarly, the highest selectivity of the KAI(SO4).-12H,0 catalyzed methoxylation
was observed at 1:10 ratio of a-pinene:methanol, with stirring for 360 min at 60°C. This
also goes to show that the KAI(SO4)2-12H.0 was capable of carrying out selective
methoxylation of the a-pinene to produce ether. Figure 4b and ¢ show the most prominent
products to be terpinyl methyl ether (TME) (55.8%) and fenchyl methyl ether (FME)
(10.3%).

3.2.2 Effect of reaction temperature

The effect of temperature (50, 55, 60 and 65°C) on the selective production of a-
terpinyl methyl ether by KAI(SO4)2:12H,0O was also investigated, under a constant
catalyst loading, and volume ratio of a-pinene:methanol. As anticipated, the percentage
conversion increased with the rise in temperature, which resulted in the concomitant
increase in methoxylation selectivity towards mono-ether products (Figure 5a-d). Figure
5a revealed that the conversion of a-pinene steadily increased at 60°C. It is worth to
indicate here, since the boiling point of methanol was 65°C; hence a lower temperature
of 60°C was the suitable reaction temperature for the methoxylation process [21].
However, a notable elevation in reaction time from 72 to 144 minutes was observed at
65°C, wherein the best methoxylation temperature on a-pinene by KAI(SO4)2:12H.0
occurred at 65°C for a 98.2% conversion. The outcome seen here also signified that the
temperatures assessed in this study promoted good selectivity of the methoxylation
reaction to yield ~60% of the ether products.

The highest selectivity was at 65°C over a reaction time of 360 min, to produce

8.7% of FME (Figure 5b), 7.1% BME (Figure 5c), and 59.6% TME (Figure 5d).
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Likewise, another study documented a similar trend for the methoxylation of limonene
through acid-activated ions and clay exchangers, whereby a higher reaction temperature
prevented the decline in catalyst selectivity [38]. Another work saw the alkoxylation of
pinene yielded the maximum conversion of the reactant when the reaction temperature
and duration were set to 60°C and t=120 min, respectively [21].

Nonetheless, higher temperatures approaching 80°C or higher were found to be
counterproductive and promoted the reverse reaction that reformed the pinene isomers in
the methanol solvent. The same outcome was also corroborated by an earlier study that
investigated a similar reaction using 100 mg of Al-SAz-1 as the catalyst [23]. Also, a
decline in selectivity was not observed during the methoxylation of limonene [38], where
the reaction selectivity for mono-ether was largely unaffected when the reaction
temperature was increased up to 65°C. Table 1 shows the comparative study of a-pinene
methoxylation process in the presence of various catalysts. The highest percentage

conversion was obtained using the catalysts, AISAz-1.

Table 1. Comparative summary of a-pinene methoxylation in the presence of various

catalysts in a batch reactor

Catalysts Temp Reaction Conversion Selectivity Literature
(°C)  Time (h) (%) (%)

Beta Zeolite 40 5 92 54 [17]
PMO-SO3H-g 100 - 90 45 [19]
PVSSA-20 60 24 40 60 [20]
PW2-S 60 27 40 60 [21]
CB, CMN, CNorit 60 250 55-75 50-55 [22]
AlISAz-1 60 1 65 65 [23]
AlISAz-1 40 20 71 91 [38]
KAI(SO4)'12H,0 65 6 98 60 -




3.2.3 Effect of the catalyst loading

The selectivity of KAI(SO4)2-12H,0 to produce a-terpinyl methyl ether was also
studied, using three catalyst loadings of 0.5, 1, and 1.5 g, while other reaction conditions
were held constant at 60°C, and a-pinene:methanol volume ratio at 1:10. Table 2 shows
the conversion and product selectivity, where the different treatments yielded reasonably
good amount of TME (~54%, 75% a-pinene conversion). The KAI(SO4)2-12H.0 solid
catalyst prepared in this study successfully converted the a-pinene into the expected ether
products. Also, there was an upsurge in the yields of the reaction products following an
increase catalyst quantity in the reaction mixture. Interestingly, 0.5 g of the catalyst gave
the highest methoxylation a-pinene selectivity for FME and BME, while 1 g prompted
higher production of TME. The improved percentage conversion seen here was the
likelihood of the higher availability of catalyst active centers to carry out the conversion
reaction [22]. The yields of TME in the methoxylation reaction appeared comparable for
KAI(S0O.)2:12H0 loadings between 0.5-1.5 g, thus evidently indicating the futile use of
the catalyst at higher loadings. A lower KAI(SO4)2-12H20 is more economical to produce

the ethers in this study.

Table 2. Data on the conversion (% C) and selectivity of methoxylation of a-pinene with
a variable of the KAI(SOs)2:12H20 catalyst loading.

Alum (g) t (min) Conversion Selectiviy of reaction products (%S)
(% C) TME BME FME
0.5 72 18.3 54.9 7.8 11.6
144 28.7 54.9 7.4 11.2
216 36.4 54.8 6.9 11.1
288 44.2 53.8 8.4 10.9
360 50.1 54.1 7.2 10.9
1.0 72 25.3 53.2 7.6 9.8
144 37.2 55.2 7.5 104
216 45.1 54.4 7.3 10.3
288 53.4 54.2 7.7 10.0
360 60.5 54.5 6.8 10.0
15 72 419 53.5 7.7 105
144 52.7 53.8 7.2 104
216 61.1 53.3 6.8 10.2
288 68.5 53.5 6.9 9.8
360 74.5 53.7 7.0 9.6

Note: %C (% Conversion), %S (% Selectivity), TME (Terpinyl Methyl Ether), BME (Bornyl Methyl
Ether), and FME (a-Fenchyl Methyl Ether).



Scheme 1 shows the reaction mechanism of a-pinene methoxylation with potassium
alum KAI(SO4)2:12H,0 catalyst. According to literary review, acid catalysis by
potassium alum ensues via two routes, including A and B, obtained by terpinyl and bornyl
ion, respectively [21-22]. The alkoxylation process was initiated by protonation of the a-
pinene double bond to create the pinyl ion. This reaction proceeded through two parallel
pathways, dependent on the product rearrangement which include bicyclic and
monocyclic type. The bornyl and terpinyl ions present in the reaction mixture then react
with methanol, and consequently deprotonate to yield the ethers viz. TME, BME, and
FME. Previous investigation also reported on the reaction of pinene with methanol over
the acid sites available on the clay surface, to form terpinyl methyl ether, TME, as the
main product [23].

Meanwhile, other compounds identified in the complex include bicyclic ethers,
encompassing the fenchyl and bornyl methyl varieties [23]. Formation of several reaction
products in the KAI(SO4)2-12H.0 catalyzed methoxylation process was associated with
the irreversible rearrangements of pinyl ion [20], resulting from the intrinsic ability to
rearrange into the bornyl ion. This leads to the formation of bornyl methyl ether, and
fenchyl methyl ether, following the addition of methanol. Therefore, pinyl ion is further
rearranged into the terpiny ion after the generation of terpinyl methyl ether, using
methanol as a solvent. In all, the collective results seen in this study advocated the
feasibility of KAI(SO4)2-12H,0 for a reasonably satisfactory methoxylation of a-pinene

into a-terpinyl methyl ether (TME) as the main product, with relatively good selectivity.

4. Conclusion

In this study, we have successfully demonstrated that the potassium alum
[KAI(SO4)2:12H20] is a potentially effective acid catalyst in the methoxylation of a-
pinene, to give a-terpinyl methyl ether (TME) as the main product with fenchyl methyl
ether (FME), bornyl methyl ether (BME), limonene, and terpinolene as the by-products.
Results revealed that the highest selectivity of KAI(SO4)2:12H,0 to catalyze the
methoxylation of a-pinene was achieved under an optimal condition of 1 g of catalyst,
volume ratio of 1:10, as well as the reaction temperature and reaction time of 65°C and 6
h, respectively. This gave the final yield of the ether products as 59.6%, 8.9%, and 7.1%
for TME, FME, BME, respectively, following a 98.2% conversion of a-pinene. Further

research into the use of nanocatalysts for improving processes using a-pinene chemical
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as the starting material may prove useful in improving the product yields and selectivity

of the methoxylation process. In a nutshell, the results obtained in this study affirmed the

suitability of KAI(SO4)2-12H20 to selectively catalyze the methoxylation of a-pinene to
produce TME.
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Figures

Figure 1. Scanning Electron Microscope (SEM) micrograph of KAI(SO4)2:12H>0

magnified 2000 x
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Figure 2. Fourier Transform-Infrared (FT-IR) spectrum of KAI(SO4),-12H,0
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Abstract

Methoxylation is a relevant technological process applied in the production of high-value a-pinene
derivatives. This report investigates the use of potassium alum [KAI(SO,4), - 12H,0] as a catalyst in the
methoxylation of o-pinene. In this study, the methoxylation reaction was optimized for the highest
conversion of a-pinene and selectivity, assessed for the factors, catalyst loading (0.5; 1.0; and 1.5 g), volume
ratio of a-pinene: methanol (1:4, 1:7, 1:10), reaction temperature (50, 55, 60 and 65 °C), and reaction time
(72, 144, 216, 288, 360 min). The highest selectivity of KAI(SO4),-12H,0 in the methoxylation of a-

pinene was achieved under an optimal condition of 1 g of catalyst loading, volume ratio of 1:10, as well as

the reaction temperature and incubation time of 65 °C and 6 h, respectively. GC-MS results revealed the
yields of the methoxylated products from the 98.2% conversion of a-pinene, to be 59.6%, 8.9%, and 7.1%
for a-terpinyl methyl ether (TME), fenchyl methyl ether (FME), bornyl methyl ether (BME), respectively. It
was apparent that a lower KAI(SO4),-12H,0 loading (0.5-1.5 g) was more economical for the
methoxylation reaction. The findings seen here indicated the suitability of the KAI(SO,4), - 12H,0O to

catalyze the methoxylation of a-pinene to produce an commercially important ethers.

Keywords: a-Pinene; Methoxylation; Potassium alum; Catalyst

1 Introduction

a-Pinene is the main constituent of turpentine, the essential oil obtained from pine gum, in #ve Pineus trees, making

cuts in the trunk openings of the wood (similar to the extraction of latex for rubber in rabbertrees Hevea brasiliensis) so

the resin present in the resinous channels exudes under pressure [1, 2]. Turpentine is a valuable and renewable natural
resource widely used in the medical industry, for the synthesis of new important chemicals foruse as cosmetic, flavours,
fragrances, and pharmaceuticals sectors as well as in the synthesis of chemical intermediates [3]. Thus, a-Pinene is
considered a versatile building block for the synthesis of high-value added chemicals, mainly through catalytic

processes, such as hydration [4, 5, 6, 7, 8, 9], isomerization [10, 11], epoxidation and pinene oxide isomerization [12,



13, 14], esterification [15, 16], and etherification [17, 18, 19, 20, 21, 22], among others can be applied to obtain a wide

variety of added value products.

The main product of the acid-catalysed methoxylation of a-pinene is a-terpinyl methyl ether, which smells grape fruit-
like and might be used as flavour and fragrance and as additive for pharmaceuticals and food industry [23].
Traditionally, sulfuric acid has been used in this reaction, as catalyst [17]. However, solid catalysts have many
advantages over liquid acids, such as they do less harm to the environment, can be easily separated from liquid phase
and can be reusable. The a-pinene methoxylation has been carried out over beta zeolite [18], sulfonic-modified
mesoporous silica/MCM-41, PMO [19], poly(vinyl alcohol) containing sulfonic acid groups [20], heteropolyacids
immobilized in silica [21] and microporous and mesoporous carbons [22] and clays mineral [23] reported good

selectivities, of ca. 60%, at almost complete conversion.

Potassium Alum (KAI(SO,),.12H,0), which isnatural-materials—that cost significantly less than the catalysts listed
above, is versatile and environmentally friendly catalysts to promote a wide variety of organic reactions. This study
introduces the term "dreamland catalyst" to denote a heterogencous catalyst which is a cheap, water-soluble, mild,
efficient, safe, stable, non-toxic, reliable, incorruptible, recyclable and commercially available compound that can be
used in the laboratory without special precautions (easy to use). Moreover, the catalyst has been commonly applied in
several other synthetic reactions with good success, for example, including in the transesterification of palm oil [24],
acylals [25], Azlactone [26]; coumarins [27], amides [28], -acetamido ketones [29], novel bis[spiro(quinazoline-
oxindole)] derivatives [30], and bispyrazole derivatives [31]. It was therefore decided to investigate alum
(KAI(SO4),.12H,0) in catalyzing certain synthetic reactions, this study assumed that this catalyst may be effective to

catalyze the methoxylation of a-pinene to produce a-terpinyl methyl ether.

In this work we report the synthesis of a-terpinyl methyl ether via the methoxylation of c-pinene over Potassium Alum
(KAI(SO4),.12H,0) catalysts. The influence of various reaction parameters, such as, reaction times, a-pinene to
methanol volume ratio, temperature, and catalyst loading on catalyst activity of the active catalyst, is also studied. The
parameters were chosen in this study as the are also commonly assessed in similar organic reactions involving polar
reagents. It is worth to mention here that the optimal condition for the KAI(SO,4),.12H,0O catalyzed methoxylation

must be found.

2 Materials and methods
2.1 Materials

a-Pinene standard (98%) was obtained from Sigma Aldrich, while turpentine oil was acquired from KBM Perhutani
Pine Chemical Industry, Pemalang, Indonesia. Methanol and potassium alum [KAI(SO,4),-12H,0] for analysis were
procured from Merck (Germany).

2.2 Instrumentations

Quantitative and qualitative analyses of the isolated ca-pinene and the corresponding methoxylation products were
conducted using the GC 23 Agilent 6820 (Version A. 01. 03, South Korea), HP-5 column and FID detector (detector
temperature of 300 °C), with helium as the carrier gas. The injection temperature was set to 280 °C, while the column
was maintained at an initial temperature of 70 °C for 10 min and was increased gradually to 280 °C (5°C/min), and
ramped up to 300 °C at 20°C/min. Analysis of the methoxylation products was done on a GC-MS (Shimadzu QP-2010
Plus, Japan) equipped with an AOC-20i + s autosampler that was operated under the following conditions: column and
injection temperature of 70 °C and 200 °C, respectively with split injection mode, pressure 13.7 kPa, flow column 0.50
mL/min, ion source and interface temperature of 200 °C and 240 °C, correspondingly. Here, helium (He) gas was used
as the carrier at a constant flow rate of 0.1 uL/min. The percentage of the methoxylation process was estimated from
the area beneath each peak. Furthermore, the percentage of each ether product was achieved by dividing the respective
peak area with the isolated a-pinene and multiplied by 100. The qualitative analysis on the produced ether products
were done on a Fourier-Transform Infrared Spectrophotometer (PerkinElmer Spectrum Version 10.4.00, US). Each

sample was prepared on KBr pellets and the analysis was done in the wavenumber region of Please-be-informed-that




are.4000—400

2.3 Procedures

2.3.1 Preparation of the catalysts

Potassium-atum-was- The KAI(SO4),:12H,0 catalyst was thermally_activated in an oven at 110 °C and then left to

determined by scanning_electron microscopy (SEM)_performed on a JEOL JFC-1600 and JSM-6701F equipment.

Alum catalyst was spray-coated over AuPd plates for 9910 minutes s-under argon flow to preduee-generate conductive
layers the KAKSO 4),-12H, 0. t
min-usingAwPd-as-the-selvent_coa. The catalyst was characterized on an X-Ray diffractometer (D Max 11 (ngaku)
with a Cu Ka radiation source (o = 1.5378 A, 40kV, 30mA).

at: The crystallinity
index was estimated using previously described method [32]. FT-IR analysis that was performed within the spectral

region of 4000 to 400 cm™" under room temperature.
2.3.2 Isolation of a-pinene

Fractional distillation of turpentine oil was performed under reduced pressure to prepare and concentrate c-pinene as
the starting material for the methoxylation process. The isolated a-pinene was then analyzed by GC-MS where the
column and injection temperature of 70 °C and 200 °C, respectively with split injection mode, pressure 13.7 kPa, flow

column 0.50 mL/min, ion source and interface temperature of 200 °C and 240 °C, correspondingly.
2.3.3 Catalytic experiments

The catalytic experiments were performed in a stirred batch reactor under reflux at different temperatures (50-65 °C)
and ambient pressure. A-knewn-amountofthe-The activated KAI(SO4)2 12H,0 eata’:yst—was—theﬁnaﬂy—&eﬁva{ed—m—aﬂ

0

was quickly transferred into the reaction vessel containing 20 mL dry methanol and was preheated (50-65 °C) before

the addition of a-pinene (5 mL), followed by continuous stirring for 360 min. The samples were then collected
periodically, and the catalyst was removed using a syringe filter with no impact on the products. It is worth mentioning
here that no reaction was observed during storage. The a-pinene methoxylation reaction yields were identified by a
GC-MS (Shimadzu QP-2010 Plus) and then quantified on an HP-5 column with helium as carrier gas using the GC
Agilent 6820 with a FID detector (T = 300 °C). All samples collected were analyzed using a Gas Chromatograph

(GC), comparing the retention times of the compounds in the reaction mixture with those of standard compounds.

The reaction conditions were optimized by evaluating the effects of parameters, reaction temperature (50, 55, 60 and 65
°C), catalyst loading (0.5; 1; and 1.5 g), and volume ratio of reactants (a-pinene:methanol of 1:4, 1:7, 1:10) during the
methoxylation process. In this study, external standard was used to estimate the o-terpinyl methyl ether selectivity, and
the percentage conversion of a-pinene by preparing the corresponding standard curves. The conversion of o-pinene
(X) and the selectivity (S) for the desired products were defined as follows [5]:

_ converted alpha pinene % S= desired product %
initial alpha pinene % conversion of alpha pinene %

3 Results and discussions
3.1 Characterization of catalyst

Potassium Alum (KAI(SO,), 12H,0) is an inexpensive, non-toxic, water-soluble, and commercially available
compound frequently used in the laboratory with no special precautions [24, 25, 26, 27, 28, 29, 30, 31]. Data on the
characterization of the produced KA1(SO,4),-12H,0 by scanning electron microscopy (SEM), FT-IR, and XRD, are
illustrated in Figure 1, Figure 2, and Figure 3, respectively. The micrographs of KAI(SO,4), 12H,0O showed reasonable

similarities with the microstructure of ammonium aluminum sulfate dodecahydrate [NH,Al(SO,),-12H,0O]. However,



the latter are reportedly to be of a more rounded shape, with a size range of between 100-200 wm at higher
temperatures of 1100-1200 °C (Figure 1). Hewever-the overall construct of KAI(SO,4), 12H,0 is altered, and adopts

an overall more elongated oval shape, thus corroborated the findings of an earlier study [33].
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Scanning Electron Microscope (SEM) micrograph of KAI(SO4)>:12H»O magnified 2000 x.
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X-ray diffractogram of KA1(SO4),-12H,O.

Infrared spectroscopy is often used to characterize solid-state catalysts to identify both the organic and inorganic surface
functional groups. Figure 2 shows the spectrum of KAI(SO,),-12H,0, with the peaks at 1195 cm~! and 1077 cm™!
ascribed to the stretching vibration of a S=O group, while peaks at 933 cm™' and 737 cm™' were the result of the
stretching vibrations of S—O and Al —O bonds, respectively. Peaks that emerged in the region of 750—400 cm™!
indicated the vibration of Al-O [34]. Figure 2 illustrates characteristic sharp sulfate (SO 42') peaks at 468-471 cm™!,
603-608 cm™!, 657-686 cm~!, 1104—1115 cm™' and 1237-1247 cm™! that corresponded to the symmetrical
bending mode of SO 42' degeneration of asymmetric bending, symmetrical bending, degenerate symmetric stretching

and degenerate asymmetric stretching [24].

Figure 3 depicts the crystallinity and crystal lattice of KAI(SO4),-12H,0, evaluated by XRD. It is important to
indicate here, a high crystallinity insinuates appreciable catalytic properties, and better stability at high temperatures,
alongside extensive porosity and purity of the sample [35]. The main composition of KAI(SO4),-12H,0 was affirmed
to be aluminum potassium sulfate, based on the characteristic peaks_and it at26-—=21°-28%-and32°Based-on—the
diffractogram—in—Figure-3:—Al, O3 —was—represented—by peaks—at36%546%-and—-58°—while—the68-54%of K.(564)

o S—peaks—observed—at242522%—and—28°n were consistent with the JEBE JCPDF F#e-07-:0017 for
KAI(SO,4),-12H,0. Thus, the diffractogram affirmed the prepared catalyst show high crystallinity, matching a recent

report from another analogous compound [37].
3.2 Catalytic test

In order to optimise the reaction conditions, the effect of different parameters (volume ratio of c-pinene and methanol,

temperature, and catalyst loading) on the methoxylation of a-pinene over KA1(SO,4),-12H, O catalyst was studied.
3.2.1 Effect of volume ratio of a-pinene and methanol

The effect of the volume ratio of a-pinene to methanol (a-pinene:methanol; 1:4, 1:7, 1:10) on the selectivity of o-
terpinyl methyl ether by-over KAI(SO4),-12H,0 was also evaluated. In this investigation, the reactions were done at
60 °C using a 0.1 g of potassium alum catalyst. The study noted that the catalysts yielded good selectivity values (~
56% with a 75% conversion of a-pinene) of the methoxylation. Results of the a-pinene conversion and relative product

selectivity are shown in Figure 4.
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The volume ratio of the reactant was found to influence the outcome of the methoxylation reaction, as higher
concentrations of methanol in the mixture led to a higher ether yield (Figure 4a). Also, the percentage of the produced
ether products increased with longer reaction time. The highest a-pinene conversion (74.8%) was attained with the use
of 1:10 ratio of a-pinene:methanol and a reaction time of 360 min. The outcome seen here possibly resulted from the
surplus presence of methanol molecules to simultaneously act as a reactant and solvent. This augmented the integration
of the reactants and accelerated the conversion of a-pinene into the main ether product, a-terpinyl methyl ether and
other ether by-products. In this study, the by-products were formed were from the isomerization of a-pinene under the
methoxylation process, including camphene, limonene, and terpinolene, as similarly described by an earlier study [17,
18, 19, 20, 21, 22].

Similarly, the highest selectivity of the KAI(SO,),-12H,0O catalyzed methoxylation was observed at 1:10 ratio of a-
pinene:methanol, with stirring for 360 min at 60 °C. This also goes to show that the KAI(SO4),-12H,0O was capable
of carrying out selective methoxylation of the a-pinene to produce ether. Figure 4b and ¢ show the most prominent
products to be terpinyl methyl ether (TME) (55.8%) and fenchyl methyl ether (FME) (10.3%).

3.2.2 Effect of reaction temperature

The effect of temperature (50, 55, 60 and 65 °C) on the selective production of a-terpinyl methyl ether by
KAI(SOy4), 12H,0 was also investigated, under a constant catalyst loading, and volume ratio of a-pinene:methanol.
As anticipated, the percentage conversion increased with the rise in temperature, which resulted in the concomitant
increase in methoxylation selectivity towards mono-ether products (Figure 5a-d). Figure Sa revealed that the conversion
of a-pinene steadily increased at 60 °C. It is worth to indicate here, since the boiling point of methanol was 65 °C;
hence a lower temperature of 60 °C was the suitable reaction temperature for the methoxylation process [21]. However,
a notable elevation in reaction time from 72 to 144 min was observed at 65 °C, wherein the best methoxylation

temperature on a-pinene by KAI(SO,4),-12H,0 occurred at 65 °C for a 98.2% conversion. The outcome seen here



also signified that the temperatures assessed in this study promoted good selectivity of the methoxylation reaction to
yield ~60% of the ether products.
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The highest selectivity was at 65 °C over a reaction time of 360 min, to produce 8.7% of FME (Figure 5b), 7.1% BME
(Figure 5c), and 59.6% TME (Figure 5d). Likewise, another study documented a similar trend for the methoxylation of
limonene through acid-activated ions and clay exchangers, whereby a higher reaction temperature prevented the decline
in catalyst selectivity [38]. Another work saw the alkoxylation of pinene yielded the maximum conversion of the

reactant when the reaction temperature and duration were set to 60 °C and t = 120 min, respectively [21].

Nonetheless, higher temperatures approaching 80 °C or higher were found to be counterproductive and promoted the
reverse reaction that reformed the pinene isomers in the methanol solvent. The same outcome was also corroborated by
an earlier study that investigated a similar reaction using 100 mg of Al-SAz-1 as the catalyst [23]. Also, a decline in
selectivity was not observed during the methoxylation of limonene [38], where the reaction selectivity for mono-ether
was largely unaffected when the reaction temperature was increased up to 65 °C. Table 1 shows the comparative study
of a-pinene methoxylation process in the presence of various catalysts. The highest percentage conversion was
obtained using the catalysts, AISAz-1.
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Comparative summary of a-pinene methoxylation in the presence of various catalysts in a batch reactor.

Catalysts

Beta Zeolite
PMO-SO3H-g
PVSSA-20
PW2-S

CB, CMN, CNorit
AlSAz-1

AlSAz-1

KAI(SO4)-12H,0

Temp (°C)

40

100

60

60

60

60

40

65

Reaction Time (h)

5

24

27

250

20

3.2.3 Effect of the catalyst loading

The selectivity of KA1(SO4),-12H, 0 to produce a-terpinyl methyl ether was also studied, using three catalyst loadings
of 0.5, 1, and 1.5 g, while other reaction conditions were held constant at 60 °C, and a-pinene:methanol volume ratio at
1:10. Table 2 shows the conversion and product selectivity, where the different treatments yielded reasonably good
amount of TME (~54%, 75% a-pinene conversion). The KAI(SO,),-12H,0 solid catalyst prepared in this study
successfully converted the a-pinene into the expected ether products. Also, there was an upsurge in the yields of the
reaction products following an increase catalyst quantity in the reaction mixture. Interestingly, 0.5 g of the catalyst gave
the highest methoxylation a-pinene selectivity for FME and BME, while 1 g prompted higher production of TME. The
improved percentage conversion seen here was the likelihood of the higher availability of catalyst active centers to
carry out the conversion reaction [22]. The yields of TME in the methoxylation reaction appeared comparable for
KAI(SO,4),°12H,0 loadings between 0.5—1.5 g, thus evidently indicating the futile use of the catalyst at higher
loadings. A lower KAI(SO4),-12H,0O is more economical to produce the ethers in this study.
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Data on the conversion (% C) and selectivity of methoxylation of a-pinene with a variable of the KAI(SO4)2-12H7 O catalyst

loading.

Alum (g) t (min)

72
144

0.5 216
288
360
72
144

1.0 216
288

360

Conversion (% C)

36.4

442

50.1

534

60.5

Selectiviy of reaction products (%S)

TME

54.9

54.9

54.8

54.4

542

54.5

BME

7.8

7.4

6.9

8.4

7.2

7.6

7.5

7.3

7.7

6.8

109

109

9.8

10.4

10.3

10.0

10.0



1.5 72 41.9 535 7.7 10.5

144 52.7 53.8 7.2 10.4
216 61.1 533 6.8 10.2
288 68.5 535 6.9 9.8
360 74.5 53.7 7.0 9.6

Note: %C (% Conversion), %S (% Selectivity), TME (Terpinyl Methyl Ether), BME (Bornyl Methyl Ether), and FME (a-Fenchyl
Methyl Ether).

Scheme 1 shows the reaction mechanism of a-pinene methoxylation with potassium alum KAI(SO,4),-12H,0 catalyst.
According to literary review, acid catalysis by potassium alum ensues via two routes, including A and B, obtained by
terpinyl and bornyl ion, respectively [21, 22]. The alkoxylation process was initiated by protonation of the o-pinene
double bond to create the pinyl ion. This reaction proceeded through two parallel pathways, dependent on the product
rearrangement which include bicyclic and monocyclic type. The bornyl and terpinyl ions present in the reaction mixture
then react with methanol, and consequently deprotonate to yield the ethers viz. TME, BME, and FME. Previous
investigation also reported on the reaction of pinene with methanol over the acid sites available on the clay surface, to

form terpinyl methyl ether, TME, as the main product [23].
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Meanwhile, other compounds identified in the complex include bicyclic ethers, encompassing the fenchyl and bornyl
methyl varieties [23]. Formation of several reaction products in the KAI(SO,),-12H,0 catalyzed methoxylation
process was associated with the irreversible rearrangements of pinyl ion [20], resulting from the intrinsic ability to
rearrange into the bornyl ion. This leads to the formation of bornyl methyl ether, and fenchyl methyl ether, following
the addition of methanol. Therefore, pinyl ion is further rearranged into the terpiny ion after the generation of terpinyl
methyl ether, using methanol as a solvent. In all, the collective results seen in this study advocated the feasibility of
KAI(SO4),-12H,0O for a reasonably satisfactory methoxylation of a-pinene into a-terpinyl methyl ether (TME) as the

main product, with relatively good selectivity.

4 Conclusion



In this study, we have successfully demonstrated that the potassium alum [KAI(SO,), 12H,0] is a potentially effective
acid catalyst in the methoxylation of a-pinene, to give a-terpinyl methyl ether (TME) as the main product with fenchyl
methyl ether (FME), bornyl methyl ether (BME), limonene, and terpinolene as the by-products. Results revealed that
the highest selectivity of KAI(SO4),-12H,0 to catalyze the methoxylation of a-pinene was achieved under an optimal
condition of 1 g of catalyst, volume ratio of 1:10, as well as the reaction temperature and reaction time of 65 °C and 6
h, respectively. This gave the final yield of the ether products as 59.6%, 8.9%, and 7.1% for TME, FME, BME,
respectively, following a 98.2% conversion of a-pinene. Further research into the use of nanocatalysts for improving
processes using a-pinene chemical as the starting material may prove useful in improving the product yields and
selectivity of the methoxylation process. In a nutshell, the results obtained in this study affirmed the suitability of
KAI(SOy), - 12H,0 to selectively catalyze the methoxylation of a-pinene to produce TME.
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ARTICLE INFO ABSTRACT

Keywords: Methoxylation is a relevant technological process applied in the production of high-value a-pinene derivatives.
a-Pinene This report investigates the use of potassium alum [KAI(SO4); - 12H50] as a catalyst in the methoxylation of
Metho.xylation a-pinene. In this study, the methoxylation reaction was optimized for the highest conversion of a-pinene and
Eg:;;l;tlm alum selectivity, assessed for the factors, catalyst loading (0.5; 1.0; and 1.5 g), volume ratio of a-pinene: methanol (1:4,

1:7, 1:10), reaction temperature (50, 55, 60 and 65 °C), and reaction time (72, 144, 216, 288, 360 min). The
highest selectivity of KAI(SO4)2+12H50 in the methoxylation of a-pinene was achieved under an optimal con-
dition of 1 g of catalyst loading, volume ratio of 1:10, as well as the reaction temperature and incubation time of
65 °C and 6 h, respectively. GC-MS results revealed the yields of the methoxylated products from the 98.2%
conversion of a-pinene, to be 59.6%, 8.9%, and 7.1% for a-terpinyl methyl ether (TME), fenchyl methyl ether
(FME), bornyl methyl ether (BME), respectively. It was apparent that a lower KA1(SO4)2-12H30 loading (0.5-1.5
g) was more economical for the methoxylation reaction. The findings seen here indicated the suitability of the

KAI(SO4), - 12H,0 to catalyze the methoxylation of a-pinene to produce an commercially important ethers.

1. Introduction

a-Pinene is the main constituent of turpentine, the essential oil ob-
tained from pine gum, in Pine trees, making cuts in the trunk openings of
the wood (similar to the extraction of latex for rubber in Hevea brasi-
liensis) so the resin present in the resinous channels exudes under pres-
sure [1, 2]. Turpentine is a valuable and renewable natural resource
widely used in the medical industry, for the synthesis of new important
chemicals foruse as cosmetic, flavours, fragrances, and pharmaceuticals
sectors as well as in the synthesis of chemical intermediates [3]. Thus,
a-Pinene is considered a versatile building block for the synthesis of
high-value added chemicals, mainly through catalytic processes, such as
hydration [4, 5, 6, 7, 8, 9], isomerization [10, 11], epoxidation and
pinene oxide isomerization [12, 13, 14], esterification [15, 16], and
etherification [17, 18, 19, 20, 21, 22], among others can be applied to
obtain a wide variety of added value products.

The main product of the acid-catalysed methoxylation of a-pinene is
a-terpinyl methyl ether, which smells grape fruit-like and might be used

* Corresponding author.
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as flavour and fragrance and as additive for pharmaceuticals and food
industry [23]. Traditionally, sulfuric acid has been used in this reaction,
as catalyst [17]. However, solid catalysts have many advantages over
liquid acids, such as they do less harm to the environment, can be easily
separated from liquid phase and can be reusable. The a-pinene methox-
ylation has been carried out over beta zeolite [18], sulfonic-modified
mesoporous silica/MCM-41, PMO [19], poly(vinyl alcohol) containing
sulfonic acid groups [20], heteropolyacids immobilized in silica [21] and
microporous and mesoporous carbons [22] and clays mineral [23] re-
ported good selectivities, of ca. 60%, at almost complete conversion.
Potassium Alum (KAI(SO4)2.12H20), which cost significantly less
than the catalysts listed above, is versatile and environmentally friendly
catalysts to promote a wide variety of organic reactions. This study in-
troduces the term "dreamland catalyst" to denote a heterogeneous cata-
lyst which is a cheap, water-soluble, mild, efficient, safe, stable, non-
toxic, reliable, incorruptible, recyclable and commercially available
compound that can be used in the laboratory without special precautions
(easy to use). Moreover, the catalyst has been commonly applied in
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several other synthetic reactions with good success, for example,
including in the transesterification of palm oil [24], acylals [25], Azlac-
tone [26]; coumarins [27], amides [28], p-acetamido ketones [29], novel
bis[spiro(quinazoline-oxindole)] derivatives [30], and bispyrazole de-
rivatives [31]. It was therefore decided to investigate alum (KAIl(-
S04)2.12H50) in catalyzing certain synthetic reactions, this study
assumed that this catalyst may be effective to catalyze the methoxylation
of a-pinene to produce o-terpinyl methyl ether.

In this work we report the synthesis of a-terpinyl methyl ether via the
methoxylation of a-pinene over Potassium Alum (KAI(SO4)2.12H50)
catalysts. The influence of various reaction parameters, such as, reaction
times, a-pinene to methanol volume ratio, temperature, and catalyst
loading on catalyst activity of the active catalyst, is also studied. The
parameters were chosen in this study as the are also commonly assessed
in similar organic reactions involving polar reagents. It is worth to
mention here that the optimal condition for the KAI(SO4)2.12H50 cata-
lyzed methoxylation must be found.

2. Materials and methods
2.1. Materials

a-Pinene standard (98%) was obtained from Sigma Aldrich, while
turpentine oil was acquired from KBM Perhutani Pine Chemical Industry,
Pemalang, Indonesia. Methanol and potassium alum [KA1(SO4)2+12H,0]
for analysis were procured from Merck (Germany).

2.2. Instrumentations

Quantitative and qualitative analyses of the isolated a-pinene and the
corresponding methoxylation products were conducted using the GC 23
Agilent 6820 (Version A. 01. 03, South Korea), HP-5 column and FID
detector (detector temperature of 300 °C), with helium as the carrier gas.
The injection temperature was set to 280 °C, while the column was
maintained at an initial temperature of 70 °C for 10 min and was
increased gradually to 280 °C (5°C/min), and ramped up to 300 °C at
20°C/min. Analysis of the methoxylation products was done on a GC-MS
(Shimadzu QP-2010 Plus, Japan) equipped with an AOC-20i + s auto-
sampler that was operated under the following conditions: column and
injection temperature of 70 °C and 200 °C, respectively with split in-
jection mode, pressure 13.7 kPa, flow column 0.50 mL/min, ion source
and interface temperature of 200 °C and 240 °C, correspondingly. Here,
helium (He) gas was used as the carrier at a constant flow rate of 0.1 pL/
min. The percentage of the methoxylation process was estimated from
the area beneath each peak. Furthermore, the percentage of each ether
product was achieved by dividing the respective peak area with the
isolated a-pinene and multiplied by 100. The qualitative analysis on the
produced ether products were done on a Fourier-Transform Infrared
Spectrophotometer (PerkinElmer Spectrum Version 10.4.00, US). Each
sample was prepared on KBr pellets and the analysis was done in the
wavenumber region of 4000—400 cm™ L.

2.3. Procedures

2.3.1. Preparation of the catalysts

The KAI(SO4)2 - 12H50 catalyst was thermally activated in an oven at
110 °C and then left to cool in a desiccator at room temperature (15 min)
to prevent rehydration before used. The morphology of alum was
determined by scanning electron microscopy (SEM) performed on a JEOL
JFC-1600 and JSM-6701F equipment. Alum catalyst was spray-coated
over AuPd plates for 10 minutes under argon flow to generate conduc-
tive layers. The catalyst was characterized on an X-Ray diffractometer (D-
Max III (Rigaku) with a Cu Ka radiation source (x = 1.5378 A, 40kV,
30mA). The crystallinity index was estimated using previously described
method [32]. FT-IR analysis that was performed within the spectral re-
gion of 4000 to 400 cm ™! under room temperature.
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2.3.2. Isolation of a-pinene

Fractional distillation of turpentine oil was performed under reduced
pressure to prepare and concentrate a-pinene as the starting material for
the methoxylation process. The isolated a-pinene was then analyzed by
GC-MS where the column and injection temperature of 70 °C and 200 °C,
respectively with split injection mode, pressure 13.7 kPa, flow column
0.50 mL/min, ion source and interface temperature of 200 °C and 240 °C,
correspondingly.

2.3.3. Catalytic experiments

The catalytic experiments were performed in a stirred batch reactor
under reflux at different temperatures (50-65 °C) and ambient pressure.
The activated KAl(SO4)2+12H20 was quickly transferred into the reac-
tion vessel containing 20 mL dry methanol and was preheated (50-65 °C)
before the addition of a-pinene (5 mL), followed by continuous stirring
for 360 min. The samples were then collected periodically, and the
catalyst was removed using a syringe filter with no impact on the prod-
ucts. It is worth mentioning here that no reaction was observed during
storage. The a-pinene methoxylation reaction yields were identified by a
GC-MS (Shimadzu QP-2010 Plus) and then quantified on an HP-5 col-
umn with helium as carrier gas using the GC Agilent 6820 with a FID
detector (T = 300 °C). All samples collected were analyzed using a Gas
Chromatograph (GC), comparing the retention times of the compounds in
the reaction mixture with those of standard compounds.

The reaction conditions were optimized by evaluating the effects of
parameters, reaction temperature (50, 55, 60 and 65 °C), catalyst loading
(0.5; 1; and 1.5 g), and volume ratio of reactants (a-pinene:methanol of
1:4, 1:7, 1:10) during the methoxylation process. In this study, external
standard was used to estimate the a-terpinyl methyl ether selectivity, and
the percentage conversion of a-pinene by preparing the corresponding
standard curves. The conversion of a-pinene (X) and the selectivity (S) for
the desired products were defined as follows [5]:

converted alpha pinene %

initial alpha pinene %

desired product %
conversion of alpha pinene %

3. Results and discussions
3.1. Characterization of catalyst

Potassium Alum (KAI(SO4),-12H50) is an inexpensive, non-toxic,
water-soluble, and commercially available compound frequently used
in the laboratory with no special precautions [24, 25, 26, 27, 28, 29, 30,
31]. Data on the characterization of the produced KAl(SO4)2+12H50 by
scanning electron microscopy (SEM), FT-IR, and XRD, are illustrated in
Figure 1, Figure 2, and Figure 3, respectively. The micrographs of KAI(-
S04)2+12H,0 showed reasonable similarities with the microstructure of
ammonium aluminum sulfate dodecahydrate [NH4A1(SO4)2-12H50].
However, the latter are reportedly to be of a more rounded shape, with a
size range of between 100-200 pm at higher temperatures of 1100-1200
°C (Figure 1). The overall construct of KAI(SO4)2-12H50 is altered, and
adopts an overall more elongated oval shape, thus corroborated the
findings of an earlier study [33].

Infrared spectroscopy is often used to characterize solid-state cata-
lysts to identify both the organic and inorganic surface functional groups.
Figure 2 shows the spectrum of KAI(SO4)2-12H50, with the peaks at
1195 cm ™! and 1077 em ™! ascribed to the stretching vibration of a S=0
group, while peaks at 933 cm™! and 737 cm™! were the result of the
stretching vibrations of S—O and Al —O bonds, respectively. Peaks that
emerged in the region of 750—400 cm ™! indicated the vibration of Al-O
[34]. Figure 2 illustrates characteristic sharp sulfate (SO%’) peaks at
468-471 em™!, 603-608 cm™?, 657-686 cm ™!, 1104-1115 cm™* and
1237-1247 cm ™! that corresponded to the symmetrical bending mode of
SO% degeneration of asymmetric bending, symmetrical bending,
degenerate symmetric stretching and degenerate asymmetric stretching
[24].



N. Wijayati et al.

Heliyon 7 (2021) e06058

814

78]

704
68

\
661 \ \
64 \
62 /

\ \
o8] 2951.75cm-1
Be| 3371\20 1 o
.20cm-
56

54
521

%T

fo)

761 '
74
72 ~

\

\ N\ VA
1674.37cm-1 W‘ 21 O4crn/i1 \/,‘
|
| // \
693.0$95.34cm-1

|
1098 83cm-1

4000 3500 3000 2500
cm-1

2000 1500 1000 500400

Figure 2. Fourier Transform-Infrared (FT-IR) spectrum of KAI(SO4),-12H,0.

Figure 3 depicts the crystallinity and crystal lattice of KAI(-
S0O4)2+12H50, evaluated by XRD. It is important to indicate here, a high
crystallinity insinuates appreciable catalytic properties, and better sta-
bility at high temperatures, alongside extensive porosity and purity of the
sample [35]. The main composition of KAI(SO4)2+12H50 was affirmed to
be aluminum potassium sulfate, based on the characteristic peaks and it
were consistent with the JCPDF 07-0017 for KA1(SO4)2-12H50. Thus,
the diffractogram affirmed the prepared catalyst show high crystallinity,
matching a recent report from another analogous compound [36].

3.2. Catalytic test

In order to optimise the reaction conditions, the effect of different
parameters (volume ratio of a-pinene and methanol, temperature, and
catalyst loading) on the methoxylation of o-pinene over KAI(-
SO04)2+12H50 catalyst was studied.

3.2.1. Effect of volume ratio of a-pinene and methanol

The effect of the volume ratio of a-pinene to methanol (a-pine-
ne:methanol; 1:4, 1:7, 1:10) on the selectivity of a-terpinyl methyl ether
over KAI(SO4),-12H,0 was also evaluated. In this investigation, the re-
actions were done at 60 °C using a 0.1 g of potassium alum catalyst. The

study noted that the catalysts yielded good selectivity values ( 56% with a
75% conversion of a-pinene) of the methoxylation. Results of the
a-pinene conversion and relative product selectivity are shown in
Figure 4.

The volume ratio of the reactant was found to influence the outcome
of the methoxylation reaction, as higher concentrations of methanol in
the mixture led to a higher ether yield (Figure 4a). Also, the percentage of
the produced ether products increased with longer reaction time. The
highest a-pinene conversion (74.8%) was attained with the use of 1:10
ratio of a-pinene:methanol and a reaction time of 360 min. The outcome
seen here possibly resulted from the surplus presence of methanol mol-
ecules to simultaneously act as a reactant and solvent. This augmented
the integration of the reactants and accelerated the conversion of
a-pinene into the main ether product, a-terpinyl methyl ether and other
ether by-products. In this study, the by-products were formed were from
the isomerization of a-pinene under the methoxylation process, including
camphene, limonene, and terpinolene, as similarly described by an
earlier study [17, 18, 19, 20, 21, 22].

Similarly, the highest selectivity of the KAI(SO4),+12H50 catalyzed
methoxylation was observed at 1:10 ratio of a-pinene:methanol, with
stirring for 360 min at 60 °C. This also goes to show that the KAI(-
S04)2+12H0 was capable of carrying out selective methoxylation of the
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selectivity of Terpinyl Methyl Ether (TME).

a-pinene to produce ether. Figure 4b and ¢ show the most prominent
products to be terpinyl methyl ether (TME) (55.8%) and fenchyl methyl
ether (FME) (10.3%).

3.2.2. Effect of reaction temperature

The effect of temperature (50, 55, 60 and 65 °C) on the selective
production of a-terpinyl methyl ether by KAI(SO4)2-12H20 was also
investigated, under a constant catalyst loading, and volume ratio of
a-pinene:methanol. As anticipated, the percentage conversion increased
with the rise in temperature, which resulted in the concomitant increase
in methoxylation selectivity towards mono-ether products (Figure 5a-d).
Figure 5a revealed that the conversion of a-pinene steadily increased at
60 °C. It is worth to indicate here, since the boiling point of methanol was
65 °C; hence a lower temperature of 60 °C was the suitable reaction
temperature for the methoxylation process [21]. However, a notable

elevation in reaction time from 72 to 144 min was observed at 65 °C,
wherein the best methoxylation temperature on a-pinene by KAI(-
S04)2+12H50 occurred at 65 °C for a 98.2% conversion. The outcome
seen here also signified that the temperatures assessed in this study
promoted good selectivity of the methoxylation reaction to yield 60% of
the ether products.

The highest selectivity was at 65 °C over a reaction time of 360 min,
to produce 8.7% of FME (Figure 5b), 7.1% BME (Figure 5c), and 59.6%
TME (Figure 5d). Likewise, another study documented a similar trend for
the methoxylation of limonene through acid-activated ions and clay ex-
changers, whereby a higher reaction temperature prevented the decline
in catalyst selectivity [37]. Another work saw the alkoxylation of pinene
yielded the maximum conversion of the reactant when the reaction
temperature and duration were set to 60 °C and t = 120 min, respectively
[21].
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Nonetheless, higher temperatures approaching 80 °C or higher were
found to be counterproductive and promoted the reverse reaction that
reformed the pinene isomers in the methanol solvent. The same outcome
was also corroborated by an earlier study that investigated a similar re-
action using 100 mg of Al-SAz-1 as the catalyst [23]. Also, a decline in
selectivity was not observed during the methoxylation of limonene [37],
where the reaction selectivity for mono-ether was largely unaffected
when the reaction temperature was increased up to 65 °C. Table 1 shows
the comparative study of a-pinene methoxylation process in the presence
of various catalysts. The highest percentage conversion was obtained
using the catalysts, AISAz-1.

3.2.3. Effect of the catalyst loading

The selectivity of KAI(SO4)2:12H30 to produce a-terpinyl methyl
ether was also studied, using three catalyst loadings of 0.5, 1, and 1.5
g, while other reaction conditions were held constant at 60 °C, and
a-pinene:methanol volume ratio at 1:10. Table 2 shows the conversion
and product selectivity, where the different treatments yielded
reasonably good amount of TME (54%, 75% o-pinene conversion). The
KAI(SO4)2+12H50 solid catalyst prepared in this study successfully
converted the a-pinene into the expected ether products. Also, there
was an upsurge in the yields of the reaction products following an
increase catalyst quantity in the reaction mixture. Interestingly, 0.5 g of
the catalyst gave the highest methoxylation a-pinene selectivity for
FME and BME, while 1 g prompted higher production of TME. The

improved percentage conversion seen here was the likelihood of the
higher availability of catalyst active centers to carry out the conversion
reaction [22]. The yields of TME in the methoxylation reaction
appeared comparable for KAI(SO4)2:12H20 loadings between 0.5—1.5
g, thus evidently indicating the futile use of the catalyst at higher
loadings. A lower KAI(SO4)2+12H20 is more economical to produce the
ethers in this study.

Scheme 1 shows the reaction mechanism of a-pinene methoxylation
with potassium alum KAI(SO4)2-12H50 catalyst. According to literary
review, acid catalysis by potassium alum ensues via two routes, including
A and B, obtained by terpinyl and bornyl ion, respectively [21, 22]. The
alkoxylation process was initiated by protonation of the a-pinene double
bond to create the pinyl ion. This reaction proceeded through two par-
allel pathways, dependent on the product rearrangement which include
bicyclic and monocyclic type. The bornyl and terpinyl ions present in the
reaction mixture then react with methanol, and consequently deproto-
nate to yield the ethers viz. TME, BME, and FME. Previous investigation
also reported on the reaction of pinene with methanol over the acid sites
available on the clay surface, to form terpinyl methyl ether, TME, as the
main product [23].

Meanwhile, other compounds identified in the complex include
bicyclic ethers, encompassing the fenchyl and bornyl methyl varieties
[23]. Formation of several reaction products in the KAI(SO4)2-12H,0
catalyzed methoxylation process was associated with the irreversible
rearrangements of pinyl ion [20], resulting from the intrinsic ability to

Table 1. Comparative summary of a-pinene methoxylation in the presence of various catalysts in a batch reactor.

Catalysts Temp (°C) Reaction Time (h) Conversion (%) Selectivity (%) Literature
Beta Zeolite 40 5 92 54 [17]
PMO-SO3H-g 100 90 45 [19]
PVSSA-20 60 24 40 60 [20]
PW2-S 60 27 40 60 [21]

CB, CMN, CNorit 60 250 55-75 50-55 [22]
AlSAz-1 60 1 65 65 [23]
AlSAz-1 40 20 71 91 [371
KAI(SO4)>-12H,0 65 6 98 60 -
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Table 2. Data on the conversion (% C) and selectivity of methoxylation of a-pinene with a variable of the KAI(SO4),-12H,0 catalyst loading.

Alum (g) t (min) Conversion (% C) Selectiviy of reaction products (%S)
TME BME FME
0.5 72 18.3 54.9 7.8 11.6
144 28.7 54.9 7.4 11.2
216 36.4 54.8 6.9 11.1
288 44.2 53.8 8.4 10.9
360 50.1 54.1 7.2 10.9
1.0 72 25.3 53.2 7.6 9.8
144 37.2 55.2 7.5 10.4
216 45.1 54.4 7.3 10.3
288 53.4 54.2 7.7 10.0
360 60.5 54.5 6.8 10.0
1.5 72 41.9 53.5 7.7 10.5
144 52.7 53.8 7.2 10.4
216 61.1 53.3 6.8 10.2
288 68.5 53.5 6.9 9.8
360 74.5 53.7 7.0 9.6

Note: %C (% Conversion), %S (% Selectivity), TME (Terpinyl Methyl Ether), BME (Bornyl Methyl Ether), and FME (a-Fenchyl Methyl Ether).

rearrange into the bornyl ion. This leads to the formation of bornyl
methyl ether, and fenchyl methyl ether, following the addition of
methanol. Therefore, pinyl ion is further rearranged into the terpiny ion
after the generation of terpinyl methyl ether, using methanol as a solvent.
In all, the collective results seen in this study advocated the feasibility of
KAI(SO4)2-12H50 for a reasonably satisfactory methoxylation of
a-pinene into a-terpinyl methyl ether (TME) as the main product, with

relatively good selectivity.
H
R
Route A

Pinyl ion

s

Alpha Pinene

4. Conclusion

In this study, we have successfully demonstrated that the potassium
alum [KAI(SO4)2+12H50] is a potentially effective acid catalyst in the
methoxylation of a-pinene, to give a-terpinyl methyl ether (TME) as the
main product with fenchyl methyl ether (FME), bornyl methyl ether
(BME), limonene, and terpinolene as the by-products. Results revealed
that the highest selectivity of KAI(SO4)2-12H20 to catalyze the
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Scheme 1. The mechanism of a-pinene methoxylation.
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methoxylation of a-pinene was achieved under an optimal condition of 1
g of catalyst, volume ratio of 1:10, as well as the reaction temperature
and reaction time of 65 °C and 6 h, respectively. This gave the final yield
of the ether products as 59.6%, 8.9%, and 7.1% for TME, FME, BME,
respectively, following a 98.2% conversion of a-pinene. Further research
into the use of nanocatalysts for improving processes using a-pinene
chemical as the starting material may prove useful in improving the
product yields and selectivity of the methoxylation process. In a nutshell,
the results obtained in this study affirmed the suitability of KAI(SO4)5 -
12H,0 to selectively catalyze the methoxylation of a-pinene to produce
TME.
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