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Several algorithms have been developed for building-attached photovoltaic system (BAPV) planning in educational institute based
on PV capacity. Fewer studies on optimization algoritims for BAPV system planing on campus have been reported which
considers a technoeconomic assessment. Therefore, a well-known robust algorithm is used as an optimization technique of
BAPV system and considers technoeconomic assessment on campus. This paper presents a combination of analytical hierarchy
process (AHP) with fuzzy theory (fuzzy AHP) for selecting a suitable and optimal design of BAPV system on academic campus.
The BAPV system design is based on roof area and load profile at the project site. Five BAPV systems have been designed using
five different types of PV. The design was comprehensively assessed by experts through a questionnaire with pairwise comparison
model. Fuzzy AHP used to consider the qualitative and quantitative assessments that can affect the selection process. The
comprehensive assessment in criteria consists of sizing systems, technical, economic, and environmental perspectives as criteria.
The perspective is divided into 13 subcriteria. The results show degree of importance from the criteria-based fuzzy AHP as
follows: technical > economic > environment > sizing system. Based on the assessment of criteria and subcriteria, design with
monocrystalline is most suitable and polycrystalline as the least suitable design for BAPV system connected to grid and battery
energy storage system in case study.

1. Introduction

Global primary energy consumption increased by 2.2% in
2017 [1]. Natural gas still dominates as global primary energy
[2]. Fossil fuel as an conventional energy resource was
decreased and has a large impact to tmem"ironment. The
electrical demand was dominated by fossil fuel generation
supply that induces high cost and increased carbon dioxide
emissions [3]. Renewable and sustainable energy technolo-
gies are at the forefront of environmental concerns, indepen-
dence in energy, and solutions for high cost of fossil fuels [4].
Renewable energy offers great potential for reducing green-
house gas (GHG) emissions and other environmental
impacts from electricity production. In global power plants,
the uses of renewable energy plants increased from 7.4% to
8.4% [1]. Renewable energy resources grew by 17%, contrib-
uted to almost half of the growth of electricity generation
(49%) [1]. For example, solar photovoltaic (PV) is one of

renewable energy resources that can replace fossil fuel
resources. It can also be implemented in a distributed gener-
ation system where electricity plant and consumer are in the
same location. Until 2016, more than 310 GW of electricity
worldwide was generated by photovoltaic technology [5].
Building-attached photovoltaic (BAPV) and building-
integrated photovoltaic (BIPV) are two of the innovative
ways to implement solar photovoltaic technology. Several
countries have been implemented the BIPV and BAPV sys-
tems. Germany adopted the “Rooftop Solar Electricity Pro-
gram” law to encourage the development of BAPV. Japan
subsidized the cost of installing PV system in residential
buildings. PV systems in American and California increas
to 62 MW and 36.5 MW in 2004 [6]. In [7], study has given a
comparative assessment of the BIPV vs. BABR project in
Bangalore, India. That study provided results BIPV system
is not the best configuration in overall PV performance. In
[8], it compares BAPV and BIPV systems with various PV
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FiGure 1: Detail location and building of the project site experiment.

technologies in countries with tropical climates. That study
proved the BAPV system has better performance than the
BIPV system. It means the BAPV system is relative more fea-
sible to be implemented than BIPV system. BAPV system can
be installed in any kind of building. Not only for residential
buildings but also the BAPV and BIPV systems can be imple-
mented or planned for campus academics [9-13]. PV project
for the academic campus is a useful strategy. Academic build-
ings have many advantages to decrease electricity costs and
research opportunities and increase the energy mix on cam-
pus. PV systems also support green energy on campus and
reduce carbon dioxide [9, 14].

Although the BAPV system is better than the BIPV sys-
tem, not all BAPV systems are feasible to be implemented.
There are many factors that can affect BAPV system perfor-
mance. OptE@ization of design, PV type, arrangement array
of PV (in a roof or in facade), initial cost of system, cost of
operation, and maintenance can affect the performance [8].
Geographical condition in every country also determines
the performance of system. In China, the best PV type is
HIT [15]. a-Si PV type has the best performance to be applied
in Brunei Darussalam and Bhopal, India [16]. In Singapore,
monocrystalline PV has the lowest degradation of perfor-
mance that is -0.8% per year [17]. In Malaysia, the best PV
type is CdTe [8].

Thus, a technoeconomic assessment is needed to deter-
mine the feasibility of PV system performance. In [18], a
rooftop PV system with grid and batteries in China was con-
ducted. Technical, economic, and environmental aspect eval-
uation shows the system has good @Fjibility with cost of
energy (COE) $0.073/kWh. In [19], it reviewed the economic
factors of PV system for residential buildings in Khartoum,
Sudan. The 12kWp PV system in Khartoum, Sudan, is rela-
tively feasible because it has an COE of $0.051/kWh with a
local electricity cost is $0.055/kWh.

One consideration in implementation BAPV system is
required a priority factor chosen. Multicriteria decision-
making (MCDM) algorithm can be used to determine the
main priorities of several existing considerations. MCDM is
widely used in several cases related to photovoltaic technol-
ogy. In previous works, MCDM has been used to select the
suitable PV modules [20], used to investigate the most poten-

tial location for PV plants [21, 22], select best PV technolo-
gies [23], determine the most optimal renewable energy
scenario [21], and prioritize PV/T technologies [24].

Based on research studies that have perspectives, the fea-
sibility of a BAPV system is determined by an assessment of
technoeconomic factors. However, fewer studies about opti-
mization algorithms for BAPV system planning on campus
consider a technoeconomic assessment. Therefore, optimiza-
tion technique with a well-known robust algorithm is used to
get the best BAPV system design and considers technoeco-
nomic assessment on campus. In this paper, combination
of analytic hierarchy process with fuzzy theory is presented
to choose the optimal and suitable BAPV system design in
academic campus. Parameter assessment consists of a sizing
system factor, technical factor, economic factor, and environ-
ment factor. Five existing PV technologies are used as an
alternative design. The system design is simulated using
PV #Sol Premium to get the value of assessment. Evaluations
are obtained with qualitative and quantitative opinions from
experts in BAPV system planning and assessment. The eval-
uation resulted in one of the most optimal BAPV design
choices to be applied at the project site.

2. Profile of the Project Site

gepartment of Electrical Engineering in Universitas Negeri
Semarang is located in Sekaran, Gunung Pati, Semarang City,
with the tropical climate in coordinates 7.05" south latitude,
110.40° east longitude, and an altitude of 187 m above sea
level [25]. Three buildings as project case are, namely, E11,
E6, and E8 Buildings (Figure 1). Building inspections have
been carried out in the roof area, roof type, roof pitch, and
orientation of roof [9]. Total available roof areas in El1
Building and E6+E8 Buildings are 540 m’ and 504m? E11
Building is divided into 4 roof areas with a total available area
of 1,060.44m>. Roofs tilt in all buildings are 35, except the
flat roof in south-oriented of E11 Building is 16" [26]. Elec-
tricity demand at E11 Building is 179kWh/day and E6+E8
Buildings is 67.5kWh/day [27]. Detailed hourly energy
demand in each building has been predicted with PV+Sol
Premium and shown in Figure 2. Daily irradiation and
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Figure 2: Predicted hourly energy demand in project site with PV#Sol Premium.
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Figure 3: Daily irradiation and temperature in the project site.

temperature in this project site-based Meteonorm are shown
in Figure 3.

3. Design of BAPV System

The BAPV system was designed to reducing energy used
from grid. This paper shows 2 scenarios of BAPV system.
The first scenario is 73.5 kWp capacity of BAPV system con-
nected to grid and battery energy storage system (BESS) for
E11. BESS was added to E11 Building because it has high pro-
ductivity i llege activities. In addition, BESS can reduce
high peak demand and improve the quality of the power
system. The optimization of the BAPV system can be
increased using the appropriate BESS capacity [28]. The
second scenario is 31.5kWp capacity of BAPV system with

a grid only for E6+E8 Buildings. The BAPV system for Build-
ings E6 and E8 was combined because the building was inte-
grated. System capacity is based on the roof area available in
each building and PV requires alternatives [29]. Scheme of
BAPYV systems is shown in Figures 4 and 5.

There are five BAPV designs for each scenario with five
different PV types from G manufacturing, which are
heterojunction PV (HIT), cadmium telluride PV (CdTe),

er indium selenium PV (CIS), monocrystalline PV
(m-Si), and polycrystalline PV (p-Si). PV was chosen because
it has high efficiency of 15-20%. Table 1 shows the details of
PV type used in this design BAPV system.

Sizing inverf@Fjapacity is based on the BAPV system
capacity. BAPV system is connected to the grid, so a grid-
tie inverter type is chosen because the inverter type can adjust
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Figure 4: Scheme of BAPV connected to grid and BESS for E11 Building as scenario 1.
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FiGure 5: Scheme of BAPV connected to the grid for E6+E8 Buildings as scenario 2.

TasLe 1: Modules PV used of design BAPV system.

esign 1 Design 2 Design 3 Design 4 Design 5
PV type HIT CdTe CIS m-5i p-5i
Nominal power (Wp) 250 420 175 350 250
Weight of PV (kgs) 15 36 20 18.6 19
Efficiency 19.8% 18% 14.2% 20.6% 15.37%
Temperature coethicient (%/°C) -0.28 -0.32 -0.31 -0.25 -0.40

the voltage and frequency of the grid [9]. AC battery type was TasLE 2: Cosf of the designed BAPV system main components.
chosen as BESS to cover 15% of energy demand. Price of the

main components used is shown in Table 2. The price is Componenl- Unit price
taken from several online market places. Module m-Si $320
Module p-Si 5243
4. Fuzzy AHP Based Component Selection of Module CIS $162
BAPYV System Design Module CdTe $445
Module HIT §239
The development of BAPV system is supported by various Inverter 50 kWp $5.265
PV types. Five types of PV. that are choslen in Tablg 1is Inverter 25 kWp $3.185
needed to be selected to obtain the most optimal and suitable Tnverter 15 kW o930
for BAPV system design. In this paper, HIT PV (represented P ’
AC battery 13 kWh $8,750

in design 1), CdTe PV (represented in design 2), CIS PV

(represented in design 3), m-Si PV (represented in design
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Figure 8: Examples of the shading analyses with PhotoPlan 3D in PV #Sol Premium: (a) without PV and (b) with PV.

4), and p-Si PV (represented in design 5) are selected as
object experiment (Figure 6). Evaluation of parameter assess-
ment on BAPV systems based on fuzzy AHP has been carried
out by four experts in PV planning and assessment. For more
comprehensive in prioritizing the BAPV system designs,
several assessment perspectives are considered with relevant
references (8, 15].

Fuzzy AHP algorithm is divided into 4 main stages. The
first stage begins by constructing the hierarchy including
goal, criteria, and subcriteria. Criteria are built from the per-
spective of sizing system, technical, economic, and environ-
ment. Subcriteria is built from detailed assessment of each
criteria. The second stage is designing and assessing five
alternative designs of BAPV systems for project experiment.
The third stage is making an assessment of the hierarchy by
an expert with questionnaire. An expert was needed to give
opinion about comparison the criteria, subcriteria, and alter-
native using numeric scale. After getting the experts’ opinion,
the last stage is calculating the experts’ opinion using fuzzy
AHP algorithm and find the best option. The detailed expla-
nation of the main stage algorithm is shown as a flowchart in
Figure 7.

Stage 1. Construct the hierarchy

Criteria and subcriteria were built with different level as a
hierarchical model to evaluate the alternative and achieve the
goal [30]. Hierarchy of fuzzy AHP is shown in Figure 6.
Sizing system, economic, technical, and environmental fac-
tors are the main criteria to get the most optimal BAPV sys-
tem design in this project. Detail of criteria and subcriteria
was explained in Sections 4.1-4.4.

4.1. Criteria of Sizing. Each alternative design of BAPV sys-
tem uses a different type and nominal rating of PV, so sizing
each design has difference. Each BAPV system design has
own advantages and different performances according to
installation conditions and location [8].

Detailed assessment of sizing system such as type of PV,
amount of PV, weight of PV, covered area with PV, and unit
price of PV is used as subcriteria. Different types of PV can
affect the amount of PV that needs to be used and the total
weight of the PV. For example, alternative design 1 uses a
PV-type HIT 250 Wp; it takes 294 modules to get a capacity

TasLe 3: Detail initial investment cost of BAPV system design 1 in
scenario 1.

Cost of PV 570,266
Cost of inverter $8.450
Cost of battery $26,250
Cost of installation 510,496
Cost of cabling §15,745
Cost of shipping $79,307
Total initial investment cost §210,515

of 73.5kWp. Different from alternative design 2 that uses
PV-type CIS 175 Wp, it needed 420 modules to get the same
capacity with design 1. Each design alternative has a different
total PV weight and covered area by PV, depending on the
type of the PV used.

4.2. Criteria of Technical Assessment. The technical assess-
ment is affected by the performance of BAPV system in real
conditions. In this paper, the BAPV system design was simu-
lated in location of project site using software PV #Sol Pre-
mium (R10 version with student license). PV#*Sol Premium
is predicting accurately the performance of BAPV system
design with 3D visualization. The simulation is carried out
in 3 dimensions to calculate shading, geographical condition,
orientation, and tilt of the roof at the project site in more
detail [13, 31, 32]. BAPV design assuming the system is con-
nected to the grid without failures. Some output from PV#
Sol are used as a parameter in subcriteria of technical such
as performance ratio, yearly energy spent to the load, total
energy output during the system lifetime, and grid feed-in.
An example of rooftop shading using HIT PV is shown in
Figure 8.

Criteria of Economic Assessment. Initial investment cost,

cycle cost (LCC), and cost of energy (COE) are calculated
as subcriteria of economic. Initial investment cost is calcu-
lated with summing the cost of components system (PV, bat-
tery, inverter, balance of system (BOS) [33]), cost of shipping,
cost of installation, and cost of cabling. Detailed cost of
component is shown in Table 2. Shipping cost is assumed
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TasLe 4: Detail LCC of BAPV system design 1 in scenario 1.
Years Discount factor Initial investment cost Cost of replacement Cost of O&M Total
Battery Inverter
0 1.0000 5210515 5210515
1 0.9434 $3,972 $3972
2 0.8900 53,747 53,747
3 0.839 $3,535 53,535
4 0.7921 §3,335 §3,335
5 0.7473 56,314 56,314
6 0.7050 52,968 52968
7 0.6651 52,800 52,800
8 0.6274 52,642 52,642
9 0.5919 52,492 52492
10 0.5584 514,657 54,718 519,376
11 0.5268 52,218 52,218
12 0.4970 §2,092 §2,092
13 0.4688 51,974 51,974
14 0.4423 51,862 51,862
15 04173 53,526 53,526
16 0.3936 §1,657 §1,657
17 03714 51,564 51,564
18 0.3503 51,475 51475
19 0.3305 51,392 51,392
20 0.3118 SH,184 52,635 510,820
21 0.2942 §1,238 §1,238
22 02775 S1,168 51,168
23 0.2618 51,102 51,102
24 0.2470 51,040 51,040
25 0.2330 5981 5981
5210515 522,843 517,193 545,255 5295806

using FedEx expedition to Semarang City, Indonesia [34].
Installation costs are assumed at 10% of PV+inverter+battery
costs [35] and cabling costs are assumed at 15% of compo-
nent costs. Table 3 shows detail initial investment cost of
design 1 in scenario 1.

LCC is the total cost of investing in the BAPV system
during the lifetime (25 y€&#%). LCC is calculated with sum-
ming the cost of initial investment, cost of operation and
maintenance (O&M), and cost of replacement components.
Cost of O&M is assumed at 2% of the PV cost in each year
multiplied by the discount factor (R) value for a year
[35-37]. The interest rate in calculating the discount factor
follows the value of Bank Indonesia interest rates in May
2019 of 6.0% [38]. The cost of replacement components
is calculated based on the lifetime of each component. In
this plan, the photovoltaic module used has a 25-year war-
ranty. So, there is no need of replacement of PV modules
during BAPV system lifetime. The inverter has a lifetime
of 5 years and makes a 5-time replacement. BESS has a
lifetime of 10 years, so there will be a 2-time replacement.
Table 4 shows detailed LCC of design BAPV system with
HIT PV.

COE is the cost of electrical energy produced per kWh by
a BAPV system during the lifetime. The energy produced in
the system lifetime is affected by the degradation of PV (r).
COE is calculated as follows in Equation (4) [39]:

LCC
COE= (o, 1
z::;—l (Eru * (1 - r)) ( )

where E,, is energy output in m-year. Then, r is degradation
of PV.

4.4. Criteria of Environment Assessment. Reducing CO, and
improving human living standard is one of the advantages
of utilizing rooftop for BAPV m [40]. The emission of
CO, reduction is related to the amount of energy that can

be produced by the BAPV system.

Stage 2. Construct the alternative

Five alternatives of BAPV system were designed to be
chosen using the fuzzy AHP method. Evaluation criteria of
the five BAPV system designs have been carried out. Details
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TasLe 7: Comparison of criteria in a numerical scale of experts.
Criteria Sizing Technical Economic Environment
Sizing 1 L7 1 5
Technical 7 1 5 7
Expert 1 . ‘ ’
Economic 1 1/5 1 9
Environment 1/5 17 1/9 1
Sizing 1 1/5 1/6 1/5
Technical 5 1 2 1/2
Expert 2 .
Economic 6 1/2 1 2
Environment 5 2 1/2 1
Sizing 1 1/5 1/7 179
Technical 5 1 1/4 /7
Expert 3 .
Economic 7 4 1/5
Environment 9 7 5
Sizing 1 3 5 7
Technical 1/3 1 3 5
Expert 4 .
Economic 1/5 1/3 1 3
Environment 1/7 1/5 1/3 1

TasLe 8: Triangular fuzzy number.

Linguistic variable Numerc scale

TFN scale (I, m, u)

Reciprocal (I, m, u)

Equally strong 1 (1,1,1) (1,1,1)

Moderately strong 3 (1,3/2,2) (1/2, 2/3,1)

Strong 5 (2,5/2,3) (1/3, 2/5, 1/2)

Very strong 7 (3,7/2,4) (1/4, 2/7, 1/3)

Extremely strong 9 (4, 4/5,5) (2/9, 2/9, 1/4)
Intermediate 2,4,6,8 (1/2, 1, 3/2); (3/2, 2,5/2); (5/2, 3, 712); (712, 4, 9/2) (@73, 1,2); (22’;;{21’;82::5?(}2”’ 173, 215);

and assessments of five BAPV system designs for scenario 1
and scenario 2 are shown in Tables 5 and 6.

Stage 3. Expert opinion

The fuzzy AHP algorithm processes the matrix derived
from a questionnaire with pairwise comparison model. The
questionnaire is filled with opinion from the experts. The
questionnaire was made through Google Form and sent via
email to the experts. This research involves 4 experts that
were selected from related fields. The assessment of the four
experts involved in this research has been able to determine
the optimal and feasible system design.

Stage 4. Fuzzy AHP as decision-making of design BAPV
system

Ezzy AHP is the development of AHP using triangular
fuzzy number (TFN) of fuzzy theory. Rese in [41] shows
combining AHP with fuzzy theory can focus on relative
importance in evaluation criteria than the logic of human

thinking. The fuzzy QHP method can help the decision-
maker to make a realistic and flexible decision based on the
criteria and alternatives [42]. In this subsection, fuza AHP
was developed to find the goal. The steps used in this method
are described as follows [43, 44]:

Step 1. Build the pairwise comparison matrix for all
criteria, subcriteria, and alternative

After the assessment from experts, a pairwise comparison
matrix was made. The matrix must be made consistently by
experts so it can be analyzing properly. Matrix of pairwise
comparisons is made with Equation (2) [43]. An example
of pairwise comparison of criteria is shown in Table 7.

. wherei, j=1,2, -, n. (2)
i

W,is weightgrthe i-criteria and a;; is the ratio of the weight

for i-criteria and j-criteria. General matrix of pairwise com-
parison is shown in Equation (3) [42]:
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TasLE 9: Matrix geometric mean of criteria weight.
Criteria Sizing Technical Economic Environment
1 m u 1 m u 1 m u 1 m u
Sizing 1.00 1.00 1.00 0.48 0.62 0.82 0.52 0.75 099 0.77 096 119
Technical 1.22 161 2.08 1.00 1.00 1.00 0.93 1.30 1.72 0.83 1.09 1.46
Economic 0.91 1.30 1.69 0.61 0.83 1.19 1.00 1.00 1.00 1.03 1.39 1.79
Environment 0.84 1.05 1.31 0.67 0.89 1.15 0.59 0.77 1.07 1.00 1.00 1.00
1 a, a,, TasLe 10: Matrix geometric mean of fuzzy synthesis value.
1 ay 1 @ S f row fi
A=a; — = " (3) e L o row fromi Fuzzy synthesis value
if ar_f_ Criteria geometric mean
g 1 m u 1 m u
Ay A2 1 Sizing 2770 3325 3997 0135 0201 0.298
g 5 . . lar £ b TEN Technical 3986 4995 6257 0195 0302 0466
Step 2. Convert into triangular fuzzy number (TFN) Economic 3559 4513 5671 0174 0273 0423
The matrix in Step 2 was in numerical scale. To proceed Eni - _ _
to Step 2, convert the numerical scale to a TEN scale. The nvironment 3101 3708 4532  0.152 0224 0338
TEN scale is shown in Table 8.
Step 3. Geometric mean )
Pairwise comparison matrix in TFN scale of all respon- TasLe 11: Defuzzification of criteria.
dents needs to be combined with the calculation of fuzzy geo- Crnen ~ >
metric mean as follows Equation (4). If the value of [ < m < u, riteria L4 D
it means TFN matrix is consistent. Geometric means of V(G zG) 0.50504
pairwise comparison are shown in Table 9. V(G =Gy 0.63291 05050
. ) V(G =G 086323
fr__f_ = H fr._f.k (E) V(G =C) 1.43906
k=1 V(G zCy) 1.11061 1.000
K , .
1 V(G =) 1.32828
= (1) () D e _
a V(C=C) 133354
K V(G zG) 0.88669 0.8867
1 Foe __—
;= (H i (E) V(C=Cy) 121884
i s
V(Cz2q) 1.12937
where [;, m;;, and u;; are the geometric means in TFN scale V(G =zG) 0.64750 0.6475
and k is the number of experts. V(G =G 0.77086
Step 4. Calculated fuzzy synthesis value
Fuzzy synthesis value (S;) is defined as Equation (5).
Fuzzy synthesis value of criteria is shown in Table 10.
] TasLe 12: Value of fuzzy vector weight of criteria.
" mon B
Si=y M« (XYM, ), (5) Criteria w'
=1 i=f i=l Sizing 0.16617
h < £ thesi l btai o Technical 0.32903
w . ere §; is fuzzy syn : 351s?a 1I:le. To o tm?n zi_'fMgi. is su.lm- Economic 0.20175
ming the cell of m in pairwise comparison matrix using Environment 0.21305

Equation (6).

m M n M

DMy= (Yl Yy Y- (6)

i=j =1 i=j

To obtain the value of (Z'-“f-z;*_,M';,-J_] is summing the

=

wherej=1,2,:--, m.

fuzzy number from M';,.,

mon -1
YIML) = (7)
¢ ZF’-:M,-’ ZF’-:m,-’ Yk

i=j i=1 i=1%

Step 5. Degree possibility of an element
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TasLe 13: Normalized of fuzzy vector weight of criteria and subcriteria for BAPV design scenario 1.

Criteria W riteria Subcriteria W s uberiteria
Type of PV (C,,) 0.2409
Number of PV (C,,) 0.2340
Sizing (C) 0.16617 Weight of PV (C,;) 0.1650
Unit price PV (C,,) 0.1872
Covered area (C,;) 0.1729
Performance ratio (C,,) 0.3763
E ttoload (Cy, 0.2465
Technical (C,) 032903 nergy spent to load (Cy,) >
B Total energy in 25 years (C,,) 0.1967
Grid feed-in (C,,) 0.1805
. Life cycle cost (C5,) 0.5000

Economic (C;) 0.29175

Cost of energy (Cs;) 0.5000
Environment (C,) 0.21305 Reduction of CO, (Cy,) 0.2130

Technical

15.678

Siving system — 16617

Classic AHP
» Fuzzy AHP

Figure 9: Priority weight of criteria.

Degree possibility (v') is calculated according to the value
of fuzzy synthesis, using Equation (8), and is shown in
Table 11.

€& m, > m,
0, if ) = u,y,
L-U,

(my —uy) = (my = 1) ,

V(M,>M,)=

etc.

(8)

Step 6. Calculated fuzzy vector weight and defuzzification
of ordinate value

After defuzzification, the value of fuzzy vector weight is
obtained using Equation (9).

I I r I -r
W = (d(4).d (Az), . d(4,)) (9)

where A;=1,2,---,n is number of element criteria and
d (A,) is obtained from d’(AI) =min V(S,=S§,). Value of
fuzzy vector weight of criteria is shown in Table 12.

Step 7. Normalized fuzzy vector weight

Normalized fuzzy vector weight is calculated using
Equation (10).

where W is a nonfuzzy number. Normalized fuzzy vector of
criteria and subcriteria is shown in Table 13.

Step 8. Global prility and ranking the alternatives

Global priority is calculated by multiplying the fuzzy vec-
tor weight of the criteria, subcriteria, and alternatives
assessed. The rank of alternative is obtained after ordering
the highest value of global priority as the first priority and
smallest value as the last priority.
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Figure 11: Priority weight of alternative.

5. Comprehensive Evaluation of Design BAPV
System Based on MCDM

3
In this study, the combination of fuzzy theory with AHP
method has determined priority factors that can affect the
selection of BAPV system design for campus areas. To sup-
port the work and re@lt of fuzzy AHP algorithm, the classic
AHP method is also used in this study. The priority weights
of criteria, subcriteria, and alternatives have been obtained
using both algorithms. Both of these algorithms show the
same priority rank that shows in Figure 9. Figure 9 shows
technical factor is the most important priority for choosing
a BAPV system design. Both algorithms show the priority
rank from perspective of criteria as follows: technical > eco-
nomic > environment > sizing system.

Tables 5 and 6 show more detail about the assessment of
five BAPV system designs from several perspectives that

proves if each design has a different point of excellence. As
example, alternative design 1 with HIT PV has an advantage
in “total weight PV” (represented as design 1). Although the
amount of PV used in alternative design 1 is less than alterna-
tive design 2, HIT PV is lighter than CdTe PV (represented as
design 2). Alternative design 3 with CIS PV has the lowest PV
unit price. But, this does not make it has the cheapest LCC.
Alternative design 5 with polycrystalline PV has same
amount of PV used with alternative design 1 but has worse
performance. However, the advantages and disadvantages
of each design need to be prioritized diligently.

The results of priority weights subcriteria with both algo-
rithms are shown in Figure 10. Rank of priority weights in the
sizing system criteria is as follows: type of PV > amount of
PV > price of PV > covered area by PV > weight of PV.
The rank of priority weights in technical factor criteria is as
follows: performance ratio > energy spent to load > total
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Figure 12: Schematic design of BAPV system connected to grid and BESS for E11 Building.

energy in lifetime > grid feed-in. The rank of priority weights
in economic factor criteria is as follows: cost of energy > life
cycle cost.

Reviewing the priority weight of criteria and subcriteria
in Figures 9 and 10, the priority weight values of both algo-
rithms are very different but give the same priority rank. This
may cause triangular fuzzy numbers involving numbers
upper, middle, lower, and classic AHP only depends on a sin-
gle number scale. Fuzzy AHP spreads the weight of values
more convergence on each element. Different with classic
AHP has a significant value of weight in each criteria and
subcriteria. But, both algorithms still show the same priority
rank diligently.

The final stage is determining the priority weights of each
alternative BAPV system design. The priority weight of alter-
native BAPV system design is calculated by adding up the
normalized weights from the multiplication of priority
weights from criteria and subcriteria. Priority weight of alter-
native design BAPV systems using fuzzy AHP and classic
AHP is shown in Figure 11. Based on fuzzy AHP and classic
AHP, alternative design 4 has the biggest priority weight than

other designs for both BAPV system scenarios. Then, alter-
native design 2 can be the second option, and the alternative
design 5 is the worst option for both scenarios.

Alternative design 4 ofa BAPV system with monocrystal-
line PV (represented as design 4) is the most feasible option
to be implemented at case study location with many advan-
tages. Considering the efficiency of each PV module, the m-
Si PV has the highest efficiency than the others, which is
20.6%. Considering the temperature coefficient of each PV
module, m-Si PV with temperature coefficient of -0.25%/°C
has the best performance than others. Then polycrystalline
PV (represented as design 5) with the higher temperature
coefficient of -0.40%/°C has the lowest system performance.
This is because the BAPV system was designed in tropical
country with dominant hot weather. It proves PV modules
with low-temperature coefficients have better performance
than PV modules with high-temperature coefficients.

Another advantage of BAPV system design with m-5i
is having the lowest life cycle cost even though the mono-
crystalline has not the lowest module unit price. The low-
est life cycle cost with the best system performance makes the
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Fraure 13: Schematic design of BAPV system connected to the grid for E6+E8 Buildings.

Ficure 14: Architectural from top view at project site (BAPV
system design for E11 Building).

lowest cost of energy compared to other system designs.
Therefore, monocrystalline is feasible to be implemented in
case studies.

5.1. Detail of Selected BAPV System Design. The design 4
alternative in this study uses monocrystalline PV type. BAPV
system design for E11 Building (scenario 1) requires 210 PV
modules with nominal rating 350 WP. BAPV system design
for E6+E8 Buildings (scenario 2) requires 90 PV modules
with the same series and nominal rating PV. Detail configu-
ration of array and string is shown in Figures 12 and 13.
The output of PV array was connected with 3-phase inverter
from inverter S. Inverters are used for interconnecting with
the grid and battery through a utility meter. In this project
site, BAPV system operated in 50Hz of frequency and
380V of line-to-line voltage. The layout design of the PV
module is planned as carefully as possible in order to mini-
mize the shading factor of trees or buildings around the
building. The array and string lines are arranged, so there is
no shadow between the array and string. Architecture and
placement of PV from the second alternative design BAPV
system are shown in Figures 14 and 15.

6. Conclusions

A comprehensive evaluation of PV technology priority in the
BAPV system design has been carried out based on a combi-

Figure 15: Architectural from top view at the project site (BAPV
system design for E6+E8 Buildings).

nation of fuzzy theory and AHP as an optimization technique.
The optimization technique is used to find a suitable and opti-
mal BAPV system design based on technoeconomic assess-
ment. Evaluation is considered several perspectives such as
system sizing, technical, economic, and environmental. Based
on these perspectives, fuzzy AHP and classic AHP analyze the
priority rankings of expert opinion as follows: technical >
economic > environment > sizing system. This research has
analyzed five BAPV system designs that were experimented
in campus areas in tropical countries. The PV desnsis
constructed with five existing PV technologies such as ®&8i,
p-Si, CdTe, CIS, and HIT. Based on both algorithms with
considering the criteria and subcriteria, design of the BAPV
system using monocrystalline (represented as alternative
design 4) became the most optimal design. The second option
is design of BAPV system using CdTe PV (represented as alter-
native design 2) for all scenario in project site. Scenario design
of BAPV system connected to the grid and battery consists of
210m-Si PV modules and 3 batteries with output energy sys-
tem in lifetime is 2,508.66 MWh/25 years and cost of energy
is $0.105 (E11 Building). Scenario design of BAPV system con-
nected to the grid without battery consists of 90 m-Si PV mod-
ules with output energy system in lifetime is 1,055.4 MWh/25
years and cost of energy is $0.093 (E6 and E8 Buildings).

gata Availability
The data used to support the findings of this study are available

from the first author and corresponding author upon request.
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