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Abstract 

 
Mixture models have been used to analyze clinical trials with potentially cured 
patients. Model parameters are estimated via an appropriate  EM (Expectation 
Maximization) algorithm that perform the ML (Maximum Likelihood) in presence 
of missing data. The basic idea of the EM algorithm is to associate a complete 
data model to the incomplete structure that is observed in order to simplify the 
computation of maximum likelihood estimates. We will investigate estimators of 
the parameters of a mixture Weibull model for analyze cure rate of the breast 
cancer patient. The problem to estimated of parameters of a mixture Weibull 
model is solution of derivatives of loglikelihood expectation function is not close 
form. In this paper we introduce solution this problem with iteration support by 
Matlab program. 
  
Keywords: mixture Weibull model, cure rate, maximum likelihood, EM 
algorithm 
 
       
1.  Introduction      

 
In this paper, we study a mixture Weibull model for analyze cure rate with 

missing data. Model parameters are estimated via an appropriate EM (Expectation 
Maximization) algorithm that perform the ML (Maximum Likelihood) in presence  
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of missing data. A two step iterative approach that estimates the parameters of a 
model starting from an initial guess. Each iteration consists of two steps: (1) an 
expectation step that finds the distribution for the missing data based on the 
known values for the observed variables and the current estimate of the 
parameters; and (2) a maximization step that substitutes the missing data with the 
expected value. 

We will investigate estimators of the parameters of a mixture Weibull 
model for analyze cure rate of the breast cancer patient. The problem to estimated 
of parameters of a mixture Weibull model is solution of derivatives of 
loglikelihood expectation function is not close form. In this paper we introduce 
solution this problem with iteration support by Matlab program. 

 
 

2.  Mixture Model 
 
Cure models are survival models basically developed to estimate the 

proportion of patients cured in a clinical trial. These models estimate the cured 
proportion and also the probability of survival of the uncured patients up to a 
given point of time. The model developed by Boag [1] was to estimate the 
proportion of patients cured among those who were receiving treatment for cancer 
of mouth and throat, cervix, uteri and breast. This model is called the mixture 
model since it can estimate the proportion of patients cured and the survival 
function of the uncured patients.  

The mixture model is applicable and useful for both continuous and 
discrete (probability) distributions. This model is based on representation of the 
(cumulative) probability distribution function or, more simply, the (discrete or 
continuous) probability density function (.)f  from with realizations are desired in 
terms of mixture. The definition of mixture model [2] is: 
 
Definition 2.1 
 Let { }nYYY ,...,1= denote a random sample of size n, where tY  is a vector of 

qℜ and ty its realization. ( )tyf  its density function. In the mixture model 
context the density of iY  is supposed to be a mixture of P parametric 
densities such that 

∑
=

=
P

p
pttpt yfyf

1
);();( θπψ                                              (1) 

with the constraint 1
1

=∑
=

P

p
pπ , P being fixed. 

 Coefficients pπ can be viewed as the weights of the thp component of the 
mixture, which is characterized by parameter pθ and ( )pp θθππψ ,...,,,..., 111 −=  
denotes the vector of parameters of the model. 
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 In incomplete data problem, mixture model are reformulated since the 
assignment of the observed data is unknown. We note { }ttt ZYX ,=   the complete 
data vector whose only component being observed is tY , its density function is 
then, 

( ) ( )[ ]
tpzP

p
ptpt yfxg ∏

=

=
1

;; θπψ                                                (2) 

 Given a sample of n independent observation from a mixture model 
defined in (1)  the likelihood function is  

                                   ( ) ( )∏ ∑
= = ⎭

⎬
⎫

⎩
⎨
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ptp yfyL

1 1
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The mixture model is said to be a parametric mixture cure model when 
standard probability distributions such as exponential, Weibull, Gompertz and 
generalized F are used. This model can be found in [1], and [3-7]. More general 
distributions, such as the extended generalized gamma and generalized F, are 
proposed to reduce their parametric constraints [8]and [9] 

The mixture model used without any standard probability distribution is 
called a nonparametric mixture cure model. The model developed by Kuk and 
Chen [10] with applied a proportional hazard (PH) assumption to the failure time 
distribution  of uncured patients, and Taylor [11] employed the Kaplan –Meier 
survivor estimator to estimate the failure time distribution of uncured patients and 
EM algorithm to estimate parameters in model. 

The mixture model is one of several fundamental tools used in 
constructing efficient exact algorithms for generating repeated realizations of 
random variables on computer. Its key feature is generates with high probability a 
realization from a simple distribution that is close to the desired one. Mixture 
models have been used to analyze clinical trials with potentially cured patients 
can be seen at Farewell [5], [6], [10],[11-13].  

These models are useful when a proportion of study subjects never 
experience the event of interest. Mixture modeling approach is commonly used to 
formulate a cure model, which assumes that the underlying population is a 
mixture of susceptible and nonsusceptible subjects. Mixture model have been 
used to analyze clinical trials with potentially cured patients.  

Mixture model have been used to model the failure time data with the 
existence of the long-term survivors. The mixture model assumes that a fraction 
of survivors are cured from the disease of interest. The failure  time distribution 
for uncured individuals (latency) can be modeled by either parametric models or a 
semi-parametric proportional hazards model. 

 
 

3.  EM Algorithm for Analyze with Missing Data  
 
The EM algorithm was introduced by Dempster, Laird, and Rubin [7]. The 

EM algorithm is a very general iterative algorithm for maximum likelihood (ML)  
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estimation in incomplete-data problem. Unknown parameters in this mixture 
model are estimated via an appropriate  EM (Expectation Maximization) 
algorithm that perform the ML (Maximum Likelihood) in presence of missing 
data. The basic idea of the EM algorithm is to associate a complete data model to 
the incomplete structure that is observed in order to simplify the computation of 
maximum likelihood estimates.  

The EM algorithm formalizes for handling missing data: (1) replace 
missing values by estimated values, (2) estimate parameters, (3) reestimate the 
missing values assuming the new parameter estimates are correct, (4) reestimate 
parameters, and so forth, iterating until convergence. 

A two step iterative approach that estimates the parameters of a model 
starting from an initial guess. Each iteration consists of two steps: (1) an 
expectation step (E-step) that finds the distribution for the missing data based on 
the known values for the observed variables and the current estimate of the 
parameters; and (2) a maximization step (M-step) that substitutes the missing data 
with the expected value 
      In the incomplete data formulation of mixture models, let us note X  the 
complete data sample space from which x  arises, Y  the observed sample space 
and Z  the hidden sample space. It follows that ZYX ×=  and ( )zyx ,= . The 
density of the observed data X  can be written: 

( ) ( ) ( )ψψψ ;|;, yzkyfxg =     (4) 
where ( )ψ;yf  is density of the observed data and ( )ψ;| yzk  is conditional 
density of missing observation given the data. 
      Let ( )ψ;yL  is the observed/incomplete-data likelihood and ( )ψ;xLc  is the 
unobserved/complete-data likelihood. These likelihoods are linked with the 
relationship: 

  ( ) ( ) ( )ψψψ ;|log;log;log yzkyLxLc +=   (5) 
with   

  ( ) ( )∑
=

=
n

i
i

c xgxL
1

;log;log ψψ      (6) 

and 

  ∑∑
= =

==
n

t

P

p
tttptp yYZEzyzk

1 1
}|{log);|(log ψ   (7) 

      The hidden variables are not observed, so the EM machinery consists of 
the indirect optimization of the incomplete-data likelihood via the iterative 
optimization of the conditional expectation of the complete-data likelihood using 
the current fit for ψ . We note ( )hψ the value of the parameter at iteration h. 

  ( ) ( )( ) ( )( )hh HQyL ψψψψψ ;;;log −=    (8) 
with conventions: 

  ( )( ) ( ) ( ){ }YXLEQ ch
h |;log; ψψψ

ψ
=    (9) 

  ( )( ) ( ) ( ){ }YYZkEH h
h |;|log; ψψψ

ψ
=    (10) 
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where ( ) {}.hE

ψ
 denotes the expectation operator, taking the current fit ( )hψ for ψ  

      The EM algorithm consists of two steps, E-step calculate ( )( )hQ ψψ ;  and 
M-step choose ( ) ( )( ){ }kk QArg ψψψ

ψ
;max1 =+ . The E-steps and M-steps are 

repeated alternatively until the difference ( ) ( )hh ψψ −+1 changes by an arbitrarily 
small amount. 
 
4.  Application on the Lifetimes of Breast Cancer Patients 
 
 The data used for the application is lifetime of breast cancer patient from 
medical record breast cancer patient at Dr. Sardjito Hospital-Yogjakarta, 
Indonesia. The lifetime were observed from 100 patient who is being treated at the 
hospital (five year survival). The four-way probability plot for the lifetime of 
breast cancer patient can see at Figure 4.1 
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Figure 4.1. Four-way Probability Plot for Lifetime of Breast Cancer Patient 

 
Figure 4.1 given assumption that the lifetime of breast cancer patient have 

been Weibull distribution. The survival, hazard and Cum-hazard function can be 
seen at Figure 4.2. 
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Figure 4.2. Overview Plot for Lifetime of Breast Cancer Patient 
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The above asumption were used to formulate the mixture Weibull model. 

The density function of  T given by: 
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with ( )2121 .,,, ββθθψ p=   parameters in model. 
Therefore the likellihood function expression for the complete-data is 

given by: 
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and the corresponding log-likelihood function for the density from the data 
become: 
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The indicator variable (cure status) as a missing data is: 
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where ( )pBINYi ,1~  
            We will apply the EM algorithm and find the expectation of iY . Since the 
conditional distribution of iY  given iT  is: 
 
so: 
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where p(k) is a set of known or estimated parameters at kth step,and p(0)   is an 
initial value.  
           By substituting p(k) for Yi we obtain the expectation function  as 
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 In the maximization step, setting the first derivatives of ( )( )kQ ψψ |  with 
respect to each parameters equal to zero, but the result is not close form, so we 
will  used iteration to find the solution with Matlab program (see appendix). For 
the initial value of ψ , after the EM algorithm we will be obtain estimators for 
unknown parameters in model. The following table shows the results this 
algorithm. 
 

Table 1.Estimates Using EM Algorithm 

Initial value of ψ  Estimator for ψ  

( )0p = 0.75 p̂ = 0.713 
( )0

1θ =120 1̂θ =1.130 
( )0
2θ =100 2̂θ =1.546 
( )0

1β =50 1β̂ =0,162 
( )0
2β =65 2β̂ =0.025 

            

            After the EM algorithm, can be shown that the estimators is convergence, 
because ( ) ( )( ){ }kk QArg ψψψ

ψ
;max1 =+ . 

 
5. Conclution  

 
The purpose of the EM algorithm is the iterative computation of maximum 

likelihood estimators when observation can be viewed as incomplete data. The 
basic idea of the EM algorithm is to associate a complete data model to the 
incomplete structure that is observed in order to simplify the computation of 
maximum likelihood estimates. 
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 The Matlab program which has been developed can be used to find 
solution of the problem of estimation of parameters of a mixture model for 
analyzing cure rate. Since it’s important to choose appropriate initial value in the 
EM algorithm, so is needed finding a procedure of choosing initial value for 
unknown parameters in model. 
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Appendix 
 
dataq=load(handles.pathfile); 
dataq=dataq.'; 
findnegative = datapositive(dataq); 
if findnegative==0 
    p0 = str2num(get(handles.txtp,'string')); 
    t10 = str2num(get(handles.txtt1,'string')); 
    t20 = str2num(get(handles.txtt2,'string')); 
    b10 = str2num(get(handles.txtb1,'string')); 
    b20 = str2num(get(handles.txtb2,'string')); 
    epsilon = str2num(get(handles.txte,'string')); 
    if isempty(p0) || isempty(t10) || isempty(t20) || isempty(b10) 
|| isempty(b20) || isempty(epsilon) 
        else      
 
        y = [p0,t10,t20,b10,b20];  
        savefile='result.mat'; 
        ts1=[]; 
        ts2=[]; 
        ts3=[]; 
        ts4=[]; 
        result={ts1,ts2,ts3,ts4}; 
        save(savefile,'result'); 
        savefile='Output.mat'; 
        p=[]; 
        teta1=[]; 
        teta2=[]; 
        beta1=[]; 
        beta2=[]; 
        galat=[]; 
        iterasi=[]; 
        Output={p,teta1,teta2,beta1,beta2,galat,iterasi}; 
        save(savefile,'Output'); 
        n=length(dataq); 
        jumt1=0; 
        jumt2=0; 
        jumt3=0; 
        jumt4=0; 
        jumt5=0; 
        iterasi=0; 
        difference=epsilon; 
        deviation = epsilon;  
        proccesmessage; 
        syms x; 
        while(difference>= epsilon) & (y(4)>0) & (y(5)>0) & 
(y(1)>0) & (y(1)<1) 
            clc; 
            tStart=tic; 
            plasting=y(1);  
            teta1lasting=y(2); 
            teta2lasting=y(3); 
            beta1lasting=y(4); 
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            beta2lasting=y(5); 
            Ep 
=(y(1).*wblpdf(dataq,y(2),y(4)))./((y(1).*wblpdf(dataq, y(2), 
y(4))) +(1-y(1)).*wblpdf(dataq, y(3),y(5))); 
            p= mean(Ep); 
            syms b1 b2 x1 x2; 
            for i=1:n 
                jumt1=jumt1+dataq(i).^(y(4).*Ep(i)); 
                
jumt2=jumt2+((dataq(i).^y(5))./(dataq(i).^(y(5).*Ep(i)))); 
                jumt3=jumt3+(Ep(i).*log(dataq(i))); 
                jumt4=jumt4+log(dataq(i)); 
                jumt5=jumt5+(Ep(i).*log(dataq(i))); 
                t1(i)=dataq(i).^Ep(i); 
                t2(i)= Ep(i).*log(dataq(i)); 
                t3(i)=dataq(i).^(1-Ep(i)); 
                t4(i)=(1-Ep(i)).*log(dataq(i)); 
                ts1 = 
strcat('(',num2str(t1(1,i)),'^x)*(',num2str(t2(1,i)),')+'); 
                ts2 = strcat('(',num2str(t1(1,i)),'^x)+'); 
                ts3 = 
strcat('((',num2str(t3(1,i)),'^x)*(',num2str(t4(1,i)),'))+'); 
                ts4 = strcat('(',num2str(t3(1,i)),'^x)+'); 
  
                st=sum(t2); 
                savefile='result.mat'; %name of data file data 
                [v,w]=size(result); 
                if isempty(result{1,1}) && isempty(result{1,2}) && 
isempty(result{1,3}) && isempty(result{1,4}) 
                     result(1,:)={ts1,ts2,ts3,ts4}; %add to new 
record  
                else  
                     result(v+1,:)={ts1,ts2,ts3,ts4}; % add to new 
record  
                end 
                save(savefile,'result');         
            end; 
           load('result.mat');  
           gab1=cell2mat(result(:,1).'); 
           gab2=cell2mat(result(:,2).'); 
           gab3=cell2mat(result(:,3).'); 
           gab4=cell2mat(result(:,4).'); 
           eq1=strcat('(',num2str(sum(Ep)),'/x)-
(',num2str(sum(Ep)*log(y(2))),')+(',num2str(st),')-
((',gab1,'0)/(',num2str(y(2)),'^(x*',num2str(sum(Ep)),')))+(((',ga
b2,'0)*',num2str(sum(Ep)*log(y(2))),')/(',num2str(y(2)),'^(x*',num
2str(sum(Ep)),')))'); 
           eq2=strcat('(',num2str(n-sum(Ep)),'/x)-(',num2str((n-
sum(Ep))*log(y(3))),')+(',num2str(jumt4),')-(',num2str(jumt5),')-
(((',num2str(y(3)),')^((-x)*(',num2str(n-
sum(Ep)),')))*(',gab3,'0))+(((',gab4,'0)*',num2str((n-
sum(Ep))*log(y(3))),')*((',num2str(y(3)),')^((-x)*(',num2str(n-
sum(Ep)),'))))'); 
           teta1 = exp(log(jumt1)./(y(4).*sum(Ep))); 
           teta2 = exp(log(jumt2)./(y(5).*(-sum(Ep)+n))); 
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           % ==== Initial value of beta 1 FSOLVE 
==================== 
            
opts=optimset('Display','off','Diagnostics','off','Display','off',
'TolX',0.00001,'TolFun',0.0001); 
            for i=-5:5 
                [h1,j,k]= fsolve(eq1,i,opts); 
                if k==1 
                    beta1=h1; 
                end 
            end 
            for i=-5:5 
                [h2,j,k]= fsolve(eq2,i,opts); 
                if k==1 
                    beta2=h2; 
                end 
            end 
  
           % ======= Estimators FSOLVE ========= 
  
           deviation(iterasi+1) = sum(abs(plasting - p)) + 
sum(abs(teta1lasting - teta1)) + sum(abs(teta2lasting - teta2))+ 
sum(abs(beta1lasting - beta1)) + sum(abs(beta2lasting - beta2)); 
           difference= sum(abs(plasting - p)) + 
sum(abs(teta1lasting - teta1)) + sum(abs(teta2lasting - teta2))+ 
sum(abs(beta1lasting - beta1)) + sum(abs(beta2lasting - beta2)); 
           tElapsed = toc(tStart); 
           iteration=iteration+1; 
           y=[p, teta1, teta2, beta1, beta2]; 
  
           savefile='Output.mat'; %name of data file  
           [v,w]=size(Output); 
           if isempty(Output{1,1}) && isempty(Output{1,2}) && 
isempty(Output{1,3}) && isempty(Output{1,4}) && 
isempty(Output{1,5}) && isempty(Output{1,6}) && 
isempty(Output{1,7}) 
                
Output(1,:)={p,teta1,teta2,beta1,beta2,selisih,iterasi}; % add to 
new record  
           else 
              
Output(v+1,:)={p,teta1,teta2,beta1,beta2,difference,iteration}; % 
add to new record  
           end 
                save(savefile,'Output');  
        end 
  
        close (proccesmessage); 
        %show to result 
    load 'Output.mat'; 
        [v,w]=size(Output); 
        if v==1 
            p=Output{1,1}; 
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                teta1=Output{1,2}; 
                teta2=Output{1,3}; 
                beta1=Output{1,4}; 
                beta2=Output{1,5}; 
                set(handles.txtpest,'string',p); 
                set(handles.txtt1est,'string',teta1); 
                set(handles.txtt2est,'string',teta2); 
                set(handles.txtb1est,'string',beta1); 
                set(handles.txtb2est,'string',beta2); 
                drawnow; 
        else 
        if (Output{v,1} > 1) || (Output{v,1} > 1) || (Output{v,2} 
< 0) || (Output{v,3} < 0) || (Output{v,4} < 0) || (Output{v,5} < 
0) || isnan(Output{v,1}) || isnan(Output{v,2}) || 
isnan(Output{v,3}) || isnan(Output{v,4}) || isnan(Output{v,5}) || 
(Output{v,4} > 100) || (Output{v,4} > 100) 
            n=v-1; 
            for i=1:n 
                p=Output{i,1}; 
                teta1=Output{i,2}; 
                teta2=Output{i,3}; 
                beta1=Output{i,4}; 
                beta2=Output{i,5}; 
                set(handles.txtpest,'string',p); 
                set(handles.txtt1est,'string',teta1); 
                set(handles.txtt2est,'string',teta2); 
                set(handles.txtb1est,'string',beta1); 
                set(handles.txtb2est,'string',beta2); 
                drawnow; 
            end 
        else 
            n=v; 
            for i=1:n 
                p=Output{i,1}; 
                teta1=Output{i,2}; 
                teta2=Output{i,3}; 
                beta1=Output{i,4}; 
                beta2=Output{i,5}; 
                difference=Output{i,6}; 
                set(handles.txtpest,'string',p); 
                set(handles.txtt1est,'string',teta1); 
                set(handles.txtt2est,'string',teta2); 
                set(handles.txtb1est,'string',beta1); 
                set(handles.txtb2est,'string',beta2); 
                drawnow; 
            end 
        end 
        end 
    end 
else 
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