

## PENGGUNAAN METODE AUTO REGRESI, AUTO

KORELASI SERTA METODE EXPONENTIAL SMOOTHING

DENGAN APLIKASI MICROSOFT VISUAL BASIC 6.0 DALAM

MERAMALKAN PRODUKSI ROKOK DI KABUPATEN

**KUDUS TAHUN 2009** 

#### TUGAS AKHIR

Diajukan dalam rangka penyusunan Tugas Akhir

| Disusun Oleh : |                                       |  |
|----------------|---------------------------------------|--|
| Nama           | : Nelly Wulandari                     |  |
| Nim            | : 4151307035                          |  |
| Program Studi  | : D3 Statistika Terapan dan Komputasi |  |
| Jurusan        | : Matematika                          |  |

## FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

## ALAM

## UNIVERSITAS NEGERI SEMARANG

#### PENGESAHAN

Tugas Akhir yang berjudul

Penggunaan Metode Auto Regresi, Auto Korelasi serta Metode Exponential Smoothing dengan Aplikasi Microsoft Visual Basic 6.0 dalam Meramalkan Produksi Rokok di Kabupaten Kudus Tahun 2009. disusun oleh

Nama : Nelly Wulandari

NIM : 4151307035

telah dipertahankan di hadapan sidang Panitia Ujian Tugas Akhir FMIPA Unnes pada tanggal 23 September 2010

#### Panitia Ujian

PERPUSTAKAAN

Ketua,

Sekretaris,

Dr. Kasmadi Imam S., M.S NIP. 195111151979031001 Drs. Edy Soedjoko, M.Pd NIP. 195604191987031001

Penguji II/ Pembimbing I,

Penguji I/ Pembimbing II,

Dra. Rahayu Budhiati V., M.Si NIP. 196406131988032002 Dr. Iwan Junaedi, S.Si., M.Pd NIP. 197103281999031001

## MOTTO DAN PERSEMBAHAN

## MOTTO

- \* Hidup tak berarah tanpa petunjuk dan pertolongan Allah
- \* Jangan pernah meremehkan kelemahan orang lain, karena suatu saat anda akan membutuhkannya.
- \* Orang yang bahagia adalah orang yang dapat berkata "cukup".
- Hati-hati dengan orang yang tidak mencari kebenaran melainkan pembenaran.
- \* Berjuanglah untuk hidup, karena hidup itu layak untuk diperjuangkan.

## PERSEMBAHAN

- \* Bapak ibu tercinta terima kasih atas doanya
- \* Mba'ku Ibawati tersayang
- \* Mas April terima kasih atas semangatnya
- Mba Tari, Lilik, Febri, Isthi, Ria, Agus terima kasih atas dukungan dan bantuannya
- \* Teman-teman Staterkom '07

## ABSTRAK

Wulandari, Nelly. 2010. Penggunaan Metode Auto Regresi, Auto Korelasi serta Metode Exponential Smoothing dengan Aplikasi Microsoft Visual Basic 6.0 dalam Meramalkan Produksi Rokok di Kabupaten Kudus Tahun 2009. Statistika Terapan dan Komputasi D3. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang.

Kata kunci : peramalan, Microsoft Visual Basic 6.0.

Penentuan tingkat produksi untuk periode yang akan datang merupakan salah satu keputusan penting yang harus dilakukan perusahaan. Oleh karena itu, agar keputusan yang nantinya akan diambil mempunyai nilai yang optimal diperlukan suatu metode yang tepat, sistematis dan dapat dipertanggungjawabkan. Salah satu metode yang diperlukan oleh perusahaan dalam proses pengambilan keputusan untuk menentukan besarnya hasil produksi yakni metode peramalan. Permasalahan yang dikaji melalui metode Auto Regresi, Auto Korelasi serta metode *Exponential Smoothing* adalah (1)Berapakah hasil peramalan produksi rokok pada tahun 2009 di Kabupaten Kudus dengan metode Auto Regresi dan Auto Korelasi serta *Double Exponential Smoothing* dengan menggunakan aplikasi *Microsoft Visual Basic* 6.0, (2)Metode manakah yang cocok untuk meramalkan hasil produksi rokok tahun 2009 di Kabupaten Kudus.

Metode yang digunakan dalam kegiatan adalah metode dokumentasi dan metode kepustakaan. Sedangkan variable yang digunakan adalah jumlah produksi rokok di Kabupaten Kudus dari tahun 1996 sampai dengan tahun 2008.

Hasil peramalan yang diperoleh melalui aplikasi Microsoft Visual Basic 6.0 dengan metode Auto Regresi dan Auto Korelasi menunjukkan bahwa hasil produksi rokok di Kabupaten Kudus tahun 2009 adalah sebesar 63.365.000.607,375. Dengan besar hubungan antara hasil produksi rokok tahun 2008 dengan hasil produksi rokok tahun 2009 sebesar 94,13%, dan sisanya sebesar 5,87% dipengaruhi oleh faktor lain. Penggunaan aplikasi *Microsoft Visual Basic* 6.0 yang digunakan untuk meramal hasil produksi rokok ini, juga dapat digunakan untuk meramalkan periode-periode berikutnya.

Setiap tahun produksi rokok di Kabupaten Kudus mengalami peningkatan, serta mampu memberikan kontribusi yang cukup besar terhadap Kabupaten Kudus. Selain itu, industri rokok merupakan industri yang paling mendominasi dan mampu menyerap tenaga kerja yang cukup banyak, maka seharusnya pemerintah Kabupaten Kudus lebih memperhatikan lagi keberadaan perusahaanperusahaan rokok agar semakin berkembang. Namun disisi lain, pemerintah Kabupaten Kudus juga harus memperhatikan kesehatan masyarakat akan bahaya merokok.

## **KATA PENGANTAR**

Syukur Alhamdulillah penulis panjatkan kehadirat Allah SWT atas tersusunnya laporan Tugas Akhir yang berjudul "PENGGUNAAN METODE AUTO REGRESI, AUTO KORELASI SERTA METODE *EXPONENTIAL SMOOTHING* DENGAN APLIKASI *MICROSOFT VISUAL BASIC* 6.0 DALAM MERAMALKAN PRODUKSI ROKOK DI KABUPATEN KUDUS TAHUN 2009".

Dalam proses penyusunan laporan Tugas Akhir ini, penulis banyak mendapatkan bantuan, pengarahan serta bimbingan dari berbagai pihak. Untuk itu pada kesempatan ini penulis bermaksud untuk menyampaikan ucapan terima kasih kepada :

- 1. Prof. Dr. H. Sudijono Sastroatmodjo, M.Si., Rektor UNNES;
- Dr. Kasmadi Imam S.MS, Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam UNNES;

PERPUSTAKAAN

- 3. Drs. Edy Soedjoko, M.Pd., Ketua Jurusan Matematika FMIPA;
- 4. Drs. Arief Agoestanto, M.Si, Ketua Prodi Staterkom;
- 5. Dra. Rahayu Budhiati V, M.Si, dosen pembimbing I;
- 6. Dr. Iwan Junaedi, S. Si, M.Pd., dosen pembimbing II;
- 7. Drs. Sugita, Kepala Badan Pusat Statistik Kabupaten Kudus;
- Bapak dan ibu tercinta yang telah memberikan dorongan baik secara material maupun spiritual;

9. Teman-teman Staterkom '07 dan semua pihak yang telah membantu penulis dalam penyusunan laporan Tugas Akhir ini.

Semoga Allah SWT membalas kebaikan semua pihak yang telah membantu penulis menyelesaikan laporan Tugas Akhir ini. Dengan kerendahan hati penulis menyadari bahwa penyusunan laporan Tugas Akhir ini jauh dari sempurna. Akhirnya penulis berharap semoga laporan Tugas Akhir ini dapat berguna serta bermanfaat bagi pihak-pihak yang membutuhkannya, Amin.



## **DAFTAR ISI**

#### Halaman

| HALAMA     | ALAMAN JUDUL i                           |     |  |  |
|------------|------------------------------------------|-----|--|--|
| PENGESAHAN |                                          |     |  |  |
| ΜΟΤΤΟ Ε    | DAN PERSEMBAHAN                          | iii |  |  |
| ABSTRA     | ζ                                        | iv  |  |  |
| KATA PE    | NGANTAR                                  | v   |  |  |
| DAFTAR     | ISI                                      | vii |  |  |
| DAFTAR     | TABEL                                    | ix  |  |  |
| DAFTAR     | GAMBAR                                   | x   |  |  |
| DAFTAR     | LAMPIRAN                                 | xi  |  |  |
| BAB I      | PENDAHULUAN                              | 1   |  |  |
|            | A. Latar Belakang                        | 1   |  |  |
|            | B. Rumusan Masalah                       | 4   |  |  |
|            | C. Pembatasan Masalah                    | 5   |  |  |
|            | D. Tujuan dan Manfaat                    | 5   |  |  |
|            | E. Sistematika Tugas Akhir               | 7   |  |  |
| BAB II     | LANDASAN TEORI                           | 9   |  |  |
|            | A. Peramalan                             | 9   |  |  |
|            | B. Metode Auto Regresi dan Auto Korelasi | 11  |  |  |
|            | C. Metode Exponential Smoothing          | 17  |  |  |
|            | D. Microsoft Visual Basic 6.0            | 21  |  |  |
|            | E. Rokok                                 | 27  |  |  |

| BAB III | METODE PENELITIAN               | 31   |
|---------|---------------------------------|------|
|         | A. Ruang Lingkup                | 31   |
|         | B. Variabel Kegiatan            | 31   |
|         | C. Metode Pengumpulan Data      | 32   |
|         | D. Analisis Data                | 33   |
|         | E. Penarikan Kesimpulan         | 35   |
| BAB IV  | HASIL PENELITIAN dan PEMBAHASAN | 36   |
|         | A. Hasil Penelitian             | 36   |
|         | B. Pembahasan                   | 44   |
| BAB V   | PENUTUP                         | 46   |
|         | A. Kesimpulan                   | 46   |
|         | B. Saran                        | 47   |
| DAFTAR  | PUSTAKA                         | 48   |
| LAMPIRA | AN 4                            | 9-76 |
|         |                                 |      |

PERPUSTAKAAN UNNES

## **DAFTAR TABEL**

Halaman

| Tab | el | 1. | Skema | a hubungai  | n nilai suat | ı variabel a | intara yang t | erjadi pada      |    |
|-----|----|----|-------|-------------|--------------|--------------|---------------|------------------|----|
|     |    |    | suatu | periode der | igan yang te | rjadi pada 1 | periode berik | utnya            | 12 |
| Tab | el | 2. | Data  | produksi r  | okok di K    | abupaten K   | udus dari ta  | ahun 1996-       |    |
|     |    |    | 2008. |             |              |              |               |                  | 36 |
| Tab | el | 3. | Hasil | peramala    | n dengan     | mengguna     | akan metod    | le <i>Double</i> |    |
|     |    |    | Expon | ential Smo  | othing       |              |               |                  | 42 |
|     |    |    | 13    |             | 7            | 7            |               |                  |    |
|     |    |    |       |             |              |              |               |                  |    |
|     |    |    |       |             |              |              |               |                  |    |
|     |    |    |       |             |              |              |               |                  |    |
|     |    |    |       |             |              |              |               |                  |    |
|     |    |    |       |             | U            |              |               |                  |    |
|     |    |    |       |             | PERPUS       | TAKAAN       |               |                  |    |
|     |    |    |       |             | UNI          | NES          |               |                  |    |
|     |    |    |       |             |              |              |               |                  |    |

## DAFTAR GAMBAR

#### Halaman

| Gambar | 1. Kotak dialog New Project               | 22 |
|--------|-------------------------------------------|----|
| Gambar | 2. Tampilan bidang kerja Visual Basic 6.0 | 23 |
| Gambar | 3. Menu-menu pada menu <i>Bar</i>         | 24 |
| Gambar | 4. Bentuk <i>Toolbar</i> standart         | 24 |
| Gambar | 5. Kumpulan kontrol pada <i>Toolbox</i>   | 24 |
| Gambar | 6. Bentuk dari Form window                | 25 |
| Gambar | 7. Suatu prosedur dalam Code window       | 25 |
| Gambar | 8. Project Explorer                       | 26 |
| Gambar | 9. Tab alphabetic pada Properties window  | 26 |
| Gambar | 10. Form Layout window                    | 27 |
| Gambar | 11. Grafik Produksi Rokok                 | 38 |
|        |                                           |    |

PERPUSTAKAAN

NES

UN

## DAFTAR LAMPIRAN

| Halaman |
|---------|
|---------|

| Lampiran | 1. Hasil output peramalan dengan metode Auto Regresi dan Auto |    |
|----------|---------------------------------------------------------------|----|
|          | Korelasi                                                      | 49 |
| Lampiran | 2. Hasil output peramalan dengan metode Double Exponential    |    |
|          | Smoothing dengan alpha 0.10                                   | 50 |
| Lampiran | 3. Hasil output peramalan dengan metode Double Exponential    |    |
|          | Smoothing dengan alpha 0.20                                   | 51 |
| Lampiran | 4. Hasil output peramalan dengan metode Double Exponential    |    |
|          | Smoothing dengan alpha 0.30                                   | 52 |
| Lampiran | 5. Hasil output peramalan dengan metode Double Exponential    |    |
|          | Smoothing dengan alpha 0.40                                   | 53 |
| Lampiran | 6. Hasil output peramalan dengan metode Double Exponential    |    |
|          | Smoothing dengan alpha 0.50                                   | 54 |
| Lampiran | 7. Hasil output peramalan dengan metode Double Exponential    |    |
|          | Smoothing dengan alpha 0.60                                   | 55 |
| Lampiran | 8. Hasil output peramalan dengan metode Double Exponential    |    |
|          | Smoothing dengan alpha 0.70                                   | 56 |
| Lampiran | 9. Hasil output peramalan dengan metode Double Exponential    |    |
|          | Smoothing dengan alpha 0.80                                   | 57 |
| Lampiran | 10. Hasil output peramalan dengan metode Double Exponential   |    |
|          | Smoothing dengan alpha 0.90                                   | 58 |

| Lampiran | 11. Kode program pada metode Auto Regresi dan Auto Korelasi | 59 |
|----------|-------------------------------------------------------------|----|
| Lampiran | 12. Kode program pada metode Double Exponential Smoothing   | 68 |
| Lampiran | 13. Tabel nilai t                                           | 76 |



## BAB 1

## PENDAHULUAN

#### **1.1. Latar Belakang**

Keberadaan Industri rokok tidak dapat dipisahkan dari Kabupaten Kudus yang disebut sebagai Kota Kretek. Industri rokok dimulai sekitar tahun 1909 oleh pengusaha rokok bernama Niti Semito yang memproduksi rokok merek "BAL TIGA". Saat ini di Kabupaten Kudus terdapat beberapa perusahaan rokok yang cukup terkenal antara lain Perusahaan Rokok Djarum, Perusahaan Rokok Nojorono, Perusahaan Rokok Sukun, Perusahaan Rokok Jambu Bol dan masih banyak lagi perusahaan rokok yang berskala sedang dan kecil.

Dari data Persatuan Perusahaan Rokok Kudus (PPRK), setidaknya terdapat 96.403 tenaga kerja di Kudus yang menggantungkan usahanya di sektor industri rokok. Jumlah tenaga kerja sebanyak itu terserap pada lima pabrik rokok besar dan sejumlah pabrik kecil yang tergabung dalam perserikatan Persatuan Perusahaan Rokok Kudus (PPRK). Tenaga kerja itu terdiri atas 14.887 orang tenaga harian, 50.890 orang tenaga borongan dan 30.616 tenaga bathil. Belum temasuk tenaga kerja bulanan.

Perusahaan yang paling banyak menampung tenaga kerja dalam sektor industri rokok diantaranya adalah PT Djarum sebanyak 72.313 orang, disusul PT Nojorono sebanyak 9.398 orang, Perusahaan rokok Sukun sebanyak 6.149 orang, Djambu Bol sebanyak 4.799 orang, dan Gentong Gotri sebanyak 1.196 orang. Sedangkan tenaga kerja di perusahaan rokok lain diperkirakan 2.548 orang.

Dari seluruh jumlah produksi rokok yang sudah diproduksi oleh perusahaan rokok tersebut di atas, jenis yang menjadi andalan bagi pengusaha rokok adalah sigaret kretek tangan (SKT). Produksi SKT untuk tahun 2008 mencapai 18.518.147.214 batang. Untuk jenis lainnya, sigaret kretek mesin (SKM) diproduksi 42.756.952.200 batang, dan jenis rokok klobot (Klb) menghasilkan 10.265.970 batang. Menurut data Persatuan Perusahaan Rokok Kudus (PPRK), produksi rokok (SKT, SKM, dan Klobot) di Kabupaten Kudus tahun 2008 mengalami peningkatan sebesar 8,12 persen dibandingkan tahun sebelumnya.

Penentuan tingkat produksi dari barang atau jasa untuk periode yang akan datang merupakan salah satu keputusan penting yang harus dilakukan perusahaan. Besarnya tingkat produksi yang juga merupakan suatu penawaran dipengaruhi oleh seberapa besar tingkat permintaan pasar yang nantinya akan dipenuhi perusahaan. Oleh karena itu, agar keputusan yang nantinya akan diambil mempunyai nilai yang optimal diperlukan suatu metode yang tepat, sistematis dan dapat dipertanggungjawabkan.

Salah satu metode yang diperlukan oleh perusahaan dalam proses pengambilan keputusan untuk menentukan besarnya jumlah produksi yakni metode peramalan. Peramalan adalah suatu perkiraan tingkat permintaan yang diharapkan untuk suatu produk atau beberapa produk dalam periode waktu tertentu di masa yang akan datang. Untuk membuat suatu peramalan banyak mempunyai arti, maka peramalan tersebut perlu direncanakan dan dijadwalkan sehingga akan diperlukan suatu periode waktu paling sedikit dalam periode waktu yang dibutuhkan untuk membuat suatu kebijaksanaan dan menetapkan beberapa hal yang mempengaruhi kebijakan tersebut.

Dengan menggunakan metode ini diharapkan perusahaan dapat menentukan seberapa besar tingkat produksi pada periode yang akan datang. Karena dengan cara ini perusahaan dapat menekan biaya produksi maupun biaya penyimpanan yang diakibatkan terjadinya kelebihan produksi serta perusahaan tidak akan kehilangan pelanggan yang dikarenakan perusahaan tidak dapat memenuhi permintaan yang ada.

Dalam memilih metode peramalan diperlukan ketepatan guna meminimalkan kesalahan dalam meramal. Tujuannya agar peramalan memiliki keakuratan yang tinggi. Salah satu metode peramalan yang dapat digunakan untuk meramal produksi rokok adalah metode Auto Regresi dan Auto Korelasi serta metode *Exponential Smoothing*. Metode Auto Regresi, Auto Korelasi serta metode *Exponential Smoothing* akan memudahkan peramalan. Metode tersebut termasuk model regresi linear, jadi metode tersebut cocok apabila digunakan untuk meramal produksi rokok pada tahun 2009.

Perkembangan ilmu teknologi juga banyak membantu dalam penghitungan berbagai macam problematika ekonomi. Teknologi komputer yang sekarang telah menjadi senter alat komunikasi sekaligus sebagai pemberi solusi dalam suatu masalah, merupakan salah satu bentuk dari teknologi yang dapat digunakan dalam proses peramalan. Kemajuan teknologi yang sekarang telah mendunia, seharusnya menjadi sebuah jendela baru bagi perkembangan dunia informasi dan penyajian data. Kenyataan yang ada di Kabupaten Kudus dalam pengolahan data masih menggunakan metode manual, yaitu penghitungan dengan salah satu software komputer Microsoft excel. Penggunaan software ini sebenarnya memberi kemudahan namun bila dilihat dari efisiennya maka program ini banyak sekali memiliki kekurangan, diantaranya adalah lama dalam melakukan proses penghitungan karena membutuhan banyak bahasa logika, sehingga kurang praktis. PERPUSTAKAAN

Berdasarkan uraian diatas penulis membuat Tugas Akhir dengan judul "PENGGUNAAN METODE AUTO REGRESI, AUTO KORELASI SERTA METODE *EXPONENTIAL SMOOTHING* DENGAN APLIKASI *MICROSOFT VISUAL BASIC* 6.0 DALAM MERAMALKAN PRODUKSI ROKOK DI KABUPATEN KUDUS TAHUN 2009".

#### 1.2. Rumusan Masalah

Berdasarkan latar belakang, maka permasalahan yang akan dikaji adalah sebagai berikut.

- 1.2.1. Berapakah hasil peramalan produksi rokok pada tahun 2009 di Kabupaten Kudus dengan metode Auto Regresi, Auto Korelasi serta metode *Exponential Smoothing* dengan menggunakan aplikasi *Microsoft Visual Basic* 6.0 ?
- 1.2.2. Metode manakah yang cocok untuk meramalkan hasil produksi rokok tahun 2009 di Kabupaten Kudus?

#### 1.3. Pembatasan masalah

Penulisan tugas akhir ini hanya akan membahas tentang penggunaan metode Auto Regresi, Auto Korelasi serta metode *Exponential Smoothing* untuk meramalkan hasil produksi rokok pada tahun 2009 di Kabupaten Kudus.

PERPUS

#### 1.4. Tujuan dan Manfaat

#### 1.4.1. Tujuan

1.4.1.1. Untuk mengetahui hasil peramalan produksi rokok pada tahun 2009 di Kabupaten Kudus dengan metode Auto Regresi, Auto Korelasi serta metode *Exponential Smoothing* dengan menggunakan aplikasi *Microsoft Visual Basic* 6.0.

- 1.4.1.2. Untuk mengetahui metode manakah yang cocok untuk meramalkan hasil produksi rokok tahun 2009 di Kabupaten Kudus.
- 1.4.2. Manfaat
  - 1.4.2.1. Bagi Penulis.
    - 1.4.2.1.1. Dapat melakukan pengamatan tentang hasil produksi rokok di Kabupaten Kudus.
    - 1.4.2.1.2. Mahasiswa dapat menerapkan Ilmu yang diperoleh di bangku perkuliahan.
    - 1.4.2.1.3. Dapat mengetahui sistem kerja Badan Pusat Statistik Kabupaten Kudus.
    - 1.4.2.1.4. Mahasiswa dapat mengetahui dan mengenal dunia kerja.
    - 1.4.2.1.5. Mahasiswa dapat menambah Pengetahuan dan Pengalaman di dunia kerja.
    - 1.4.2.1.6. Mahasiswa dapat mengetahui permasalahanpermasalahan yang mungkin muncul di dunia kerja dan cara mengatasinya.
  - 1.4.2.2. Bagi Jurusan.
    - 1.4.2.2.1. Dapat dijadikan sebagai bahan studi kasus bagi pembaca dan acuan bagi mahasiswa.

- 1.4.2.2.2. Sebagai bahan referensi bagi pihak perpustakaan sebagai bahan bacaan yang dapat menambah ilmu pengetahuan bagi pembaca.
- 1.4.2.3. Bagi Badan Pusat Statistik Kabupaten Kudus
  - 1.4.2.3.1. Sebagai bahan atau kajian dalam melakukan peramalan produksi rokok untuk tahun yang akan datang di Kabupaten Kudus.
  - 1.4.2.3.2. Sebagai wacana untuk mengetahui perubahan yang terjadi pada produksi rokok.

## 1.5. Sistematika Tugas Akhir

Secara garis besar sistematika Tugas Akhir ini dibagi menjadi 3 bagian, yaitu bagian awal, bagian inti, dan bagian akhir. Bagian pendahuluan Tugas Akhir memuat halaman judul, pengesahan, motto dan persembahan, abstrak, kata pengantar, dan daftar isi.

Bagian isi dibagi menjadi 5 bab, yaitu sebagai berikut.

1.5.1. Bab 1 Pendahuluan

Pada bab pendahuluan ini dikemukakan tentang alasan pemilihan judul, permasalahan, pembatasan masalah, tujuan dan manfaat penelitian, dan sistematika tugas akhir.

1.5.2. Bab 2 Landasan Teori

Landasan teori berisi tentang teori-teori yang digunakan sebagai pedoman dalam memecahkan permasalahan dalam tugas akhir ini. Teori-teori ini meliputi teori peramalan, metode Auto Regresi dan Auto Korelasi, metode *Exponential Smoothing*, *Microsoft Visual Basic* 6.0, dan pengertian rokok.

1.5.3. Bab 3 Metode Penelitian

Pada bab ini berisi tentang ruang lingkup, variabel kegiatan, metode pengumpulan data, dan Analisis Data, dan penarikan kesimpulan.

1.5.4. Bab 4 Hasil Penelitian dan Pembahasan

Bab ini berisi tentang hasil penelitian dan pembahasan, sebagai jawaban dari permasalahan.

1.5.5. Bab 5 Penutup

Penutup berisi simpulan yang diperoleh dari hasil penelitian dan saran.

Bagian akhir dari tugas akhir ini adalah daftar pustaka dan lampiran-lampiran.

PERPUSTAKAAN

## **BAB 2**

## LANDASAN TEORI

#### 2.1. Peramalan

#### 2.1.1. Definisi

Ramalan (*forecasts*) adalah suatu prediksi mengenai kejadian-kejadian atau kondisi-kondisi yang akan terjadi di masa yang akan datang. Sedangkan kegiatan dalam memprediksi kejadiankejadian atau kondisi-kondisi yang akan terjadi di masa yang akan datang disebut peramalan (*forecasting*).

Peramalan atau yang sering disebut dengan forecasting adalah suatu bagian yang harus dipertimbangkan untuk membuat perencanaan. Salah satu aspek penting perencanaan adalah pembuatan keputusan (*decision making*), proses pengembangan dan penyeleksian sekumpulan kegiatan untuk memecahkan masalah. Di dalam suatu perencanaan, selain diperlukan data masa lampau dan masa sekarang, juga data hasil ramalan yang menggambarkan kemampuan untuk masa yang akan datang. Peramalan merupakan dugaan atau perkiraan mengenai terjadinya suatu kejadian atau peristiwa di waktu yang akan datang. Ada beberapa metode peramalan (Subagyo, 1986:6) antara lain:

- a). Peramalan dengan metode *Exponential Smoothing* yaitu mengambil rata-rata dari nilai-nilai pada beberapa tahun untuk menaksir nilai pada suatu tahun.
- b). Peramalan dengan metode Auto Regresi dan Auto Korelasi. Auto regresi yaitu untuk mengetahui besarnya pengaruh, sedangkan auto korelasi yaitu untuk mengetahui kuat tidaknya hubungan. Disebut dengan istilah auto karena variabel yang menjadi dependent variabel sama dengan yang menjadi independent variabel.

Tidak ada metode peramalan yang paling baik dan selalu cocok digunakan untuk membuat ramalan mengenai suatu hal, tapi tidak cocok untuk bisa meminimumkan kesalahan meramal (Subagyo, 1986:5-6). Untuk itu, dalam meramalkan jumlah produksi rokok di Kabupaten Kudus, penulis menggunakan metode peramalan dengan menggunakan metode Auto Regresi dan Auto Korelasi, selain itu penulis juga akan menggunakan metode *Exponential Smoothing* yaitu *Double Exponential Smoothing* untuk membandingkan metode mana yang lebih cocok digunakan untuk

#### 2.1.2. Jenis peramalan

Berdasarkan sifatnya, peramalan dapat dibagi dalam dua kategori, yaitu.

- a). Peramalan kualitatif adalah peramalan yang didasarkan atas data kualitatif pada masa lalu. Hasil peramalan ini sangat bergantung pada orang yang menyusunnya. Hal ini penting karena hasil peramalan tersebut ditentukan berdasarkan pemikiran yang bersifat instuisi, pendapat dan pengetahuan serta pengalaman dari orang – orang yang menyusunnya.
- b). Peramalan kuantitatif adalah peramalan yang didasarkan atas data kuantitatif pada masa lalu. Hasil peramalan ini sangat bergantung pada metode yang dipergunakan dalam peramalan tersebut. Karena dengan metode yang dipergunakan dalam peramalan yang berbeda pula. Baik tidaknya metode yang dipergunakan ditentukan oleh perbedaan atau penyimpangan antara hasil ramalan dengan keyakinan yang terjadi. Semakin kecil penyimpangan antara hasil ramalan dengan antara hasil ramalan dengan keyakinan yang terjadi.

#### 2.2. Metode Auto Regresi dan Auto Korelasi.

Auto Regresi digunakan untuk mengetahui besarnya pengaruh nilai suatu variabel, antara yang telah terjadi pada suatu peride dan yang terjadi pada periode berikutnya. Sedangkan Auto Korelasi digunakan untuk mengukur tingkat hubungan nilai suatu variabel, antara yang telah terjadi pada suatu periode dan yang terjadi pada periode berikutnya. Disebut dengan istilah auto karena variabel yang menjadi *dependent variable* sama dengan yang menjadi *independent variable*.

Kalau nilai suatu variabel tergantung nilai yang terjadi satu periode (tahun) yang lalu adalah.

 $X_t = f(X_{t-1})$ 

Untuk lebih menjelaskan hubungan antara *dependent* dan *independent variable* ini lihat pada Tabel 1. Pada Tabel 1 terlihat bahwa nilai pada periode 1 berpengaruh pada nilai periode 2, nilai periode 2 berpengaruh pada periode 3 dan seterusnya.

| Tabel 1<br>Skema hubungan nilai suatu variabel antara<br>yang terjadi pada suatu periode dengan |                             |  |  |  |                                        |                      |  |  |
|-------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|----------------------------------------|----------------------|--|--|
|                                                                                                 |                             |  |  |  | yang terjadi pada 1 periode berikutnya |                      |  |  |
|                                                                                                 |                             |  |  |  | Dependent Variable                     | Independent Variable |  |  |
| X <sub>t</sub>                                                                                  | X <sub>t-n</sub>            |  |  |  |                                        |                      |  |  |
| (Y dalam regresi sederhana)                                                                     | (X dalam regresi sederhana) |  |  |  |                                        |                      |  |  |
| Nilai Periode 1                                                                                 |                             |  |  |  |                                        |                      |  |  |
| Nilai Periode 2                                                                                 | Nilai Periode 1             |  |  |  |                                        |                      |  |  |
| Nilai Periode 3                                                                                 | Nilai Periode 2             |  |  |  |                                        |                      |  |  |
| Nilai Periode 4                                                                                 | Nilai Periode 3             |  |  |  |                                        |                      |  |  |
| -                                                                                               | -                           |  |  |  |                                        |                      |  |  |
| -                                                                                               | -                           |  |  |  |                                        |                      |  |  |
| Nilai Periode t                                                                                 | Nilai Periode t-n           |  |  |  |                                        |                      |  |  |

Setelah data tersusun dalam tabel, maka selanjutnya untuk meramalkan data tersebut dengan menggunakan metode Auto Regresi dan Auto Korelasi, maka langkah-langkahnya adalah sebagai berikut.

# 2.2.1. Mencari persamaan Auto Regresi dan Koefisien Auto Korelasi dengan rumus:

$$\hat{X}_{t} = \alpha + \beta X_{t-1}$$

Dengan nilai  $\beta$  dan $\alpha$  berdasarkan rumus di bawah ini.

$$\beta = \frac{N\Sigma(X_{t-s}X_t) - \Sigma(X_{t-s})\Sigma(X_t)}{N\Sigma(X_{t-s}^2) - \Sigma(X_{t-s})^2}$$

Keterangan:

N = Banyaknya pasangan data

s = Selisih waktu antara *dependent* dan *independent variable*.

atau dapat juga menggunakan rumus sebagai berikut.

$$\beta = \frac{\Sigma(x_{t-s}x_t)}{\Sigma(x^2_{t-s})}$$

$$\Sigma(x_{t-s}x_t) = \Sigma(X_{t-s}X_t) - 1/n (\Sigma X_{t-s})(\Sigma X_t)$$

$$\Sigma(x^2_t) = \Sigma(X^2_t) - 1/n \Sigma(X_t)(\Sigma X_t)$$

$$\alpha = \overline{X}_t - \beta \overline{X}_{t-s}$$
menghitung (mencari) koefisien auto korelasi digunakan rumus

sebagai berikut.

$$\mathbf{r} = \frac{N\Sigma X_{t-s} X_t - (\Sigma X_{t-s})(\Sigma X_t)}{\sqrt{[N\Sigma X_{t-s}^2 - (\Sigma X_{t-s})^2][N\Sigma X_t^2 - (\Sigma X_t)^2]}}$$

atau dapat juga menggunakan rumus sebagai berikut:

$$\mathbf{r} = \frac{\sum x_{t-s} x_t}{(\sum x_{t-s}^2)(\sum x_t)^2}$$

2.2.2. Tes Terhadap  $\alpha$ ,  $\beta$  dan nilai r

Sebelum menggunakan persamaan regresi, sebaiknya diadakan test terhadap  $\alpha$  dan  $\beta$ . Hal ini untuk melihat apakah nilai  $\alpha$  dan  $\beta$  itu cukup signifikan, dengan kata lain apakah nilai  $\alpha$  dan  $\beta$  itu tidak diperoleh faktor kebetulan saja.

2.2.2.1. Tes Terhadap  $\alpha$ 

Langkah-langkah untuk melakukan testing terhadap  $\alpha$  adalah sebagai berikut.

a. Menentukan hipotesis :

 $H_0: \alpha = 0$  (nilai  $\alpha$  tidak signifikan)

 $H_{1:} \alpha \neq 0$  (nilai  $\alpha$  signifikan)

b. Menentukan kriteria penerimaan atau penolakan hipotesis. Cari dulu t tabel, misalnya dengan tingkat resiko kesalahan 5%, maka t ( $\frac{1}{2} \alpha$ , N-2). Kita tolak H<sub>0</sub>

apabila t hitung sama atau lebih besar dari t  $(\frac{1}{2} \alpha, N-2)$ 

#### c. Hitung t dari data:

Untuk menghitung t dilakukan dengan rumus sebagai berikut:

$$t_{\alpha} = \frac{\alpha}{S_{\alpha}}$$
 dimana,  $S_{\alpha} = \frac{S_{e}}{\sqrt{n}}$  dimana,  $S_{e} = \sqrt{\frac{\Sigma(X_{t} - \hat{X}_{t})^{2}}{N - 2}}$ 

Keterangan:

 $S_e$  = Standard error of estimate (standar penyimpangan

data dari garis Auto Regresinya).

d. Menarik kesimpulan

Jika  $H_o$  ditolak berarti nilai  $\alpha$  cukup signifikan, dan sebaliknya jika  $H_o$  diterima maka nilai  $\alpha$  tidak signifikan.

2.2.2.2. Tes Terhadap  $\beta$ 

Langkah untuk melakukan testing terhadap  $\beta$  sama dengan langkah-langkah untuk mengetes  $\alpha$ , perbedaannya hanya dalam menghitung nilai t, yaitu dengan menggunakan rumus sebagai berikut:

$$t_{\beta} = \frac{\beta}{S_{\beta}} \text{ dimana, } S_{\beta} = \frac{S_e}{\sqrt{\Sigma(X_{t-s} - \overline{X}_{t-s})^2}} \text{ atau } S_{\beta} = \frac{S_e}{\sqrt{\Sigma(X_{t-s})^2}}$$

- 2.2.2.3. Tes kuat tidaknya Auto Korelasi.
  - a. Menentukan hipotesis dan alternative hipotesis.

 $H_0 = r = 0$  (tidak ada hubungan secara signifikan antara jumlah produksi rokok pada suatu periode

dengan periode sebelumnya)

 $H_1 = r \neq 0$  (ada hubungan secara signifikan antara jumlah produksi rokok pada suatu periode dengan periode sebelumnya)

- b. Menentukan kriteria penolakan dan penerimaan hipotesis.
   Dengan nilai tertentu maka mencari nilai t tabel dengan degrees of freedom = N-2. Untuk lebih menjelaskan biasanya disertai dengan gambar.
- c. Hitung nilai t dari data yang diketahui, dengan rumus sebagai berikut:

GER/

$$=\frac{r\sqrt{N-2}}{\sqrt{1-r^2}}$$

d. Kalau t yang dihitung lebih kecil atau sama dengan dari batas terendah atau lebih besar atau sama dengan batas tertinggi maka H<sub>0</sub> ditolak dan H<sub>1</sub> diterima, berarti ada korelasi yang kuat. Demikian pula sebaliknya kalau t yang dihitung lebih besar dari batas terendah atau lebih kecil dari batas tertinggi maka H<sub>0</sub> diterima dan H<sub>1</sub> ditolak, berarti ada korelasi yang lemah.

#### e. Menarik kesimpulan

Jika H<sub>0</sub> ditolak berarti terdapat korelasi yang kuat antara dua variabel. Dalam hal ini adalah *independent variable* yaitu variabel yang terjadi lebih dulu dari *dependent variable*. Jika korelasi antara dua variabel kuat, maka bisa melakukan forecast *dependent variable* berdasarkan *independent variable* dengan persamaan yang telah dicari melalui persamaan auto regresi.

TAKAAN

#### 2.3. Metode *Exponential Smoothing*.

Metode *Exponential Smoothing* adalah metode peramalan dengan cara mengambil rata-rata dari nilai tertentu untuk menghasilkan nilai yang diramalkan. *Smoothing* adalah mengambil rata-rata dari nilai-nilai pada beberapa tahun untuk menaksir nilai pada suatu tahun (Subagyo, 1986:7). Teknik *Smoothing* dilakukan jika data yang ada memiliki mean yang berubah secara tidak sistematis. Artinya mean dapat lebih besar atau lebih kecil dibandingkan dengan masa lalu tetapi secara tidak konsisten naik turun dengan berlalunya waktu (datanya naik turun).

Pada metode *Exponential Smoothing*, terdapat 3 cara yaitu *Single Exponential Smoothing*, *Double Exponential Smoothing*, dan *Triple Exponential Smoothing*. Nantinya salah satu dari ketiga metode tersebut akan penulis bandingkan dengan metode Auto Regresi dan Auto Korelasi. peramalan yang paling mendekati yang akan sangat berguna dalam meramal data hasil produksi rokok tahun 2009 di kabupaten Kudus.

Adapun cara meramal dengan menggunakan ketiga teknik *Smoothing* tersebut adalah sebagai berikut.

#### 2.3.1. Metode Single Exponential Smoothing.

Metode *Single Exponential Smoothing* lebih cocok digunakan untuk meramal hal-hal yang fluktuasinya secara random atau tidak teratur (Subagyo, 1986:22). Pada metode ini bobot yang diberikan pada data yang ada adalah sebesar  $\alpha$  untuk data yang terbaru,  $\alpha$  (1- $\alpha$ ) untuk data yang lama,  $\alpha$  (1- $\alpha$ )<sup>2</sup> untuk data yang lebih lama, dan seterusnya. Besarnya  $\alpha$  adalah antara 0-1. semakin mendekati 1 berarti data terakhir lebih diperhatikan daripada data-data sebelumnya. Secara sistematis besarnya forecast adalah :

 $F_{t+1} = \alpha X_t + (1-\alpha) F_t$ 

Dimana :  $F_{t+1}$  : ramalan untuk periode ke t+1

X, : nilai riil periode ke- t

 $\mathbf{F}_{t}$  : ramalan untuk periode ke- t

Dalam melakukan peramalan dengan metode *Single Exponential Smoothing*, besarnya α dapat ditentukan secara bebas.

2.3.2. Metode Double Exponential Smoothing.

Metode *Double Exponential Smoothing* cocok digunakan pada data yang memperlihatkan pola linier. Metode ini biasanya lebih tepat untuk meramal data yang mengalami trend kenaikan (Subagyo, 1986:25). Pada metode ini proses penentuan ramalan dimulai dengan menentukan  $\alpha$ , dan dilanjutkan dengan tahap-tahap sebagai berikut.

a. menentukan *Smoothing* pertama ( $S'_t$ )

 $\mathbf{S}' = \alpha \mathbf{X}_t + (1 - \alpha) \mathbf{S}'_{t-1}$ 

Dengan  $S'_t$  : *smoothing* pertama periode ke- t

- X<sub>t</sub> : nilai riil periode t
- $S'_{t-1}$  : *smoothing* pertama periode t-1

b. menentukan *Smoothing* kedua (S<sup> $''_t$ </sup>)

$$S'' = \alpha S'_t + (1-\alpha) S''_{t-1}$$

Dengan  $S'_{t}$  : smoothing kedua periode t-1

c. menentukan besarnya konstanta (at)

at = 
$$2S'_t - S''$$

d. menentukan besarnya slope (bt)

$$\mathbf{b}_t = \frac{1}{1-\alpha} \left( \mathbf{S'}_t - \mathbf{S''}_t \right)$$

e. menentukan besarnya forecast ( $F_{t+m}$ )

 $\mathbf{F}_{t+m} = \mathbf{a}_t + \mathbf{b}_t$  (m), dimana m adalah jangka waktu forecast.

2.3.3. Metode Triple Exponential Smoothing.

Metode *Triple Exponential Smoothing* lebih cocok jika digunakan untuk meramal data yang mengalami gelombang pasang surut atau berfluktuasi (Subagyo, 1986:26). Dengan kata lain metode ini lebih cocok jika digunakan untuk meramal data yang bentuk kecenderungan data yang naik turun. Untuk menghitung forecast dengan metode ini, rumus yang digunakan adalah sebagai berikut.

$$F_{t+m} = a_t + b_t m + \frac{1}{2} c_t m^2$$

Dimana:  $a_t = 3S_t^* - 3S_t^* + S_t^*$ 

$$b_{t} = \frac{\alpha}{2(1-\alpha)^{2}} \left[ (6-5\alpha)S'_{t} - (10-8\alpha)S''_{t} + (4-3\alpha)S'''_{t} \right]$$

$$c_t = \frac{\alpha^2}{\left(-\alpha\right)^2} (S_t^* - 2S_t^* + S_t^*)$$

Dimana: S'  $_{t} = \alpha X_{t} + (1-\alpha)S'_{t-1}$ 

$$S''_{t} = \alpha S'_{t} + (1-\alpha)S''_{t-1}$$

$$S^{**}_{t} = \alpha S^{**}_{t} + (1-\alpha) S^{***}_{t-1}$$

2.3.4. Menghitung kesalahan ramalan

Untuk mengukur error (kesalahan) forecast digunakan mean absolute error (MAE) dan mean squared error(MSE).

*Mean Absolute Error* (MAE) adalah rata-rata nilai absolute dari kesalahan meramal (tidak dihiraukan tanda positif atau negatifnya).

MAE dirumuskan sebagai berikut.

$$MAE = \frac{\sum |x_t - F_t|}{n}$$

Dengan  $x_t$  : data sebenarnya

 $\mathbf{F}_{t}$  : ramalan periode ke-t

N : banyaknya data hasil ramalan

b. Mean Squared Error (MSE) adalah kuadrat rata-rata kesalahan

forecast. Rumusnya adalah sebagai berikut.

$$MSE = \frac{\sum |x_t - F_t|^2}{n}$$

Atau biasa ditulis MSE=MAE<sup>2</sup>

#### 2.4. Microsoft Visual Basic 6.0.

*Visual Basic* merupakan sebuah bahasa pemrograman komputer yang berjalan pada sistem operasi *Windows*. Bahasa pemrograman adalah sekumpulan perintah atau instruksi yang dimengerti oleh komputer untuk mengerjakan tugas-tugas tertentu.

*Visual Basic* selain disebut sebagai bahasa pemrograman, juga sering disebut sebagai sarana (*Tool*) untuk menghasilkan program-program aplikasi berbasis *Windows*. Secara umum ada beberapa manfaat yang diperoleh dari pemakaian program *Visual Basic*, diantaranya:

- a. Dipakai dalam membuat program aplikasi berbasis Windows.
- b. Dipakai dalam membuat obyek-obyek pembantu program.
- c. Digunakan untuk menguji program (*Debugging*) dan menghasilkan program akhir EXE yang bersifat *Executable*, atau dapat langsung dijalankan.

Banyak fasilitas baru yang ditawarkan oleh *Visual Basic* 6.0, diantaranya penambahan koleksi fungsi, fasilitas *Native Code*, penambahan *Interface* baru, dan lain-lain. Selain menyediakan tipe data sendiri yang berupa argumen atau properti dan metode publik, *Visual Basic* 6.0 juga bisa menghasilkan *array* dari suatu fungsi atau properti suatu prosedur.

Terdapat fasilitas *Native Code* untuk mengkompilasi *source code* agar dihasilkan aplikasi dengan waktu eksekusi yang lebih cepat. Selain itu *Visual Basic* 6.0 menyediakan 3 macam *interface* yang digunakan untuk merancang aplikasi sesuai kebutuhan, yaitu MDI (*Multiple Document*  *Interface*), SDI (Single Document Interface), dan EDI (*Explorer Document Interface*).

2.4.1. Memulai program Visual Basic 6.0.

Program *Visual Basic* 6.0 berjalan pada sistem operasi *Windows*, maka sebelum memulai mengoperasikan program tersebut, harus mengaktifkan terlebih dahulu sistem operasi *Windows*, dengan langkah-langkah sebagai berikut :

2.4.1.1. Klik tombol mouse sebelah kiri pada Start pada Taskbar.

- 2.4.1.2. Pilih menu Program, Microsoft Visual Basic 6.0.
- 2.4.1.3.Selanjutnya sebuah kotak dialog *New Project* akan ditampilkan.



Gambar 1. kotak dialog New Project

2.4.1.4. Dari tampilan tersebut pilih aplikasi Standart EXE.

2.4.2. Tampilan dasar Visual Basic 6.0.

Layar program *Visual Basic* 6.0 merupakan suatu lingkungan besar yang terdiri dari beberapa bagian kecil yang tersusun sedemikian rupa dan mempunyai sifat sifat sebagai berikut :

- 2.4.2.1. *Docking*, berfungsi sebagai tempat peletakan bagian IDE (*Integrated Development Integration*) sehingga dapat menempel dengan bagian lain yang berdekatan.
- 2.4.2.2. *Floating*, elemen-elemennya dapat digeser-geser ke posisi mana saja.

2.4.2.3. Sizable, elemen atau jendela dapat diubah-ubah ukurannya.

Dari sifat-sifat yang ada, maka dapat dengan mudah memindahkan, menggeser, memperbesar atau memperkecil ukuran suatu komponen layar *Visual Basic* 6.0.



Gambar 2. tampilan bidang kerja Visual Basic 6.0

a. Menu Bar

*Menu Bar* merupakan kumpulan perintah-perintah yang dikelompokan dalam kriteria operasinya.

Ele Edit View Project Format Debug Run Query Diagram Iools Add-Ins Window Help Gambar 3. menu-menu pada Menu Bar

b. Toolbar

*Toolbar* merupakan sekumpulan tombol yang mewakili suatu perintah tertentu pada Visual Basic.

Gambar 4. bentuk *Toolbar standart* 

c. Toolbox

*Toolbox* merupakan sebuah jendela dimana obyek atau kontrol ditempatkan yang dibutuhkan untuk membentuk suatu program, dengan cara dipasang pada form.



Gambar 5. kumpulan kontrol pada Toolbox
#### d. Form Window

*Form Window* (jendela form) merupakan area kerja untuk merancang suatu program aplikasi *Visual Basic*. Pada jendela form ini dapat meletakkan kontrol seperti *command button, textbox, label, checkbox,* dan lainnya.



Gambar 7. suatu prosedur dalam Code Window

## f. Project Explorer

Project Explorer merupakan area yang berisi semua file program aplikasi Visual Basic. Suatu aplikasi Visual Basic disebut dengan Project dan setiap proyek bisa terdiri dari satu atau lebih file.

|    |                | Project - Projec | t1                              | ×                    |
|----|----------------|------------------|---------------------------------|----------------------|
|    | 11             |                  |                                 |                      |
|    | ASIT P         | Project 1        | (Project1)<br>;<br>prm1 (Form1) |                      |
|    |                | Gambar 8.        | Project Explore                 | r                    |
|    | D              |                  |                                 |                      |
| g. | Properties W   | indow            |                                 |                      |
|    |                |                  |                                 |                      |
|    | Prope          | erties Window    | <sup>,</sup> merupakan a        | rea yang berisi sem  |
|    |                |                  |                                 |                      |
|    | informasi me   | engenai kontro   | l yang dibuat, d                | an bertugas menyiapk |
|    | segala prope   | rti dari kontro  | ol yang diperlu                 | kan dalam perancang  |
|    | user interface | e maupun pem     | rograman.                       |                      |
|    |                | PERPUST          | AKAAN                           |                      |
|    |                | Properties - Fr  | nrm 1                           | T                    |
|    |                | Form1 Form       |                                 |                      |
|    |                | Alphabetic C     | ategorized                      |                      |
|    |                | (Name)           | Form1                           | ~                    |
|    |                | Appearance       | 1 - 3D                          |                      |
|    |                | AutoRedraw       | False                           |                      |
|    |                | BackColor        | 8H800000F&                      |                      |
|    |                | BorderStyle      | 2 - Sizable                     |                      |
|    |                | ClipControls     | True                            | -                    |
|    |                | ControlBox       | True                            | -                    |
|    |                | DrawMode         | 13 - Copy Pen                   |                      |
|    |                | DrawStyle        | 0 - Solid                       |                      |
|    |                | DrawWidth        | 1                               | -                    |
|    |                | Enabled          |                                 | -                    |
|    |                | FillStyle        | Anu0000008     1 - Transparept  | -                    |
|    |                | Font             | MS Sans Serif                   |                      |
|    |                | <del>.</del>     | · +                             |                      |

Gambar 9. tab alphabetic pada Properties Window

#### h. Form Layout Window

*Form Layout Window* merupakan jendela yang menunjukkan tata letak form saat ditampilkan pada layar monitor.



### 2.5. Rokok

### 2.5.1. Definisi rokok

Rokok adalah silinder dari kertas berukuran panjang antara 70 hingga 120 mm (bervariasi tergantung negara) dengan diameter sekitar 10 mm yang berisi daun-daun tembakau yang telah dicacah. Rokok biasanya dijual dalam bungkusan berbentuk kotak atau kemasan kertas yang dapat dimasukkan dengan mudah ke dalam kantong. Sejak beberapa tahun terakhir, bungkusan-bungkusan tersebut juga umumnya disertai pesan kesehatan yang memperingatkan perokok akan bahaya kesehatan yang dapat ditimbulkan dari merokok, misalnya kanker paru-paru atau serangan jantung.

Manusia di dunia yang merokok untuk pertama kalinya adalah suku bangsa Indian di Amerika, untuk keperluan ritual seperti memuja dewa atau roh. Pada abad 16, Ketika bangsa Eropa menemukan benua Amerika, sebagian dari para penjelajah Eropa itu ikut mencoba-coba menghisap rokok dan kemudian membawa tembakau ke Eropa. Kemudian kebiasaan merokok mulai muncul di kalangan bangsawan Eropa. Tapi berbeda dengan bangsa Indian yang merokok untuk keperluan ritual, di Eropa orang merokok hanya untuk kesenangan semata-mata. Abad 17 para pedagang Spanyol masuk ke Turki dan saat itu kebiasaan merokok mulai masuk negaranegara Islam.

2.5.2. Jenis rokok

Rokok dibedakan menjadi beberapa jenis. Pembedaan ini didasarkan atas <u>bahan pembungkus rokok</u>, <u>bahan baku atau isi rokok</u>, <u>proses pembuatan rokok</u>, dan <u>penggunaan filter pada rokok</u>.

- 1. Rokok berdasarkan bahan pembungkus.
  - 1.a). <u>Klobot</u> yaitu rokok yang bahan pembungkusnya berupa daun jagung.
  - 1.b). <u>Kawung</u> yaitu rokok yang bahan pembungkusnya berupa daun aren.
  - 1.c). <u>Sigaret</u> yaitu rokok yang bahan pembungkusnya berupa kertas.

- 1.d). <u>Cerutu</u> yaitu rokok yang bahan pembungkusnya berupa daun <u>tembakau</u>.
- 2. Rokok berdasarkan bahan baku atau isi.
  - 2.a). <u>Rokok Putih</u> yaitu rokok yang bahan baku atau isinya hanya daun <u>tembakau</u> yang diberi <u>saus</u> untuk mendapatkan efek rasa dan aroma tertentu.
  - 2.b). <u>Rokok Kretek</u> yaitu rokok yang bahan baku atau isinya berupa daun tembakau dan <u>cengkeh</u> yang diberi saus untuk mendapatkan efek rasa dan aroma tertentu.
  - 2.c). Rokok Klembak yaitu rokok yang bahan baku atau isinya berupa daun tembakau, cengkeh, dan <u>kemenyan</u> yang diberi saus untuk mendapatkan efek rasa dan aroma tertentu.
- 3. Rokok berdasarkan proses pembuatannya.
  - 3.a). <u>Sigaret Kretek Tangan</u> (SKT) yaitu rokok yang proses pembuatannya dengan cara <u>digiling atau dilinting</u> dengan menggunakan tangan dan atau alat bantu sederhana.
  - 3.b). <u>Sigaret Kretek Mesin</u> (SKM) yaitu rokok yang proses pembuatannya menggunakan mesin. Sederhananya, material rokok dimasukkan ke dalam <u>mesin pembuat rokok</u>. Keluaran yang dihasilkan mesin pembuat rokok berupa rokok batangan. Saat ini mesin pembuat rokok telah mampu menghasilkan keluaran sekitar enam ribu sampai delapan ribu batang rokok per menit. Mesin pembuat rokok, biasanya,

dihubungkan dengan <u>mesin pembungkus rokok</u> sehingga keluaran yang dihasilkan bukan lagi berupa rokok batangan namun telah dalam bentuk <u>pak</u>. Ada pula mesin pembungkus rokok yang mampu menghasilkan keluaran berupa rokok dalam pres, satu <u>pres</u> berisi 10 pak. Sayangnya, belum ditemukan mesin yang mampu menghasilkan SKT karena terdapat perbedaan diameter pangkal dengan diameter ujung SKT. Pada SKM, lingkar <u>pangkal rokok</u> dan lingkar <u>ujung</u> <u>rokok</u> sama besar. Sigaret Kretek Mesin sendiri dapat dikategorikan kedalam 2 bagian.

- i). Sigaret Kretek Mesin *Full Flavor* (SKM FF) yaitu rokok yang dalam proses pembuatannya ditambahkan aroma rasa yang khas.
- ii). Sigaret Kretek Mesin Light Mild (SKM LM) yaitu rokok mesin yang menggunakan kandungan tar dan nikotin yang rendah. Rokok jenis ini jarang menggunakan aroma yang khas.

4. Rokok berdasarkan penggunaan <u>filter</u>.

- 4.a). Rokok Filter (RF) yaitu rokok yang pada bagian pangkalnya terdapat gabus.
- 4.b). Rokok Non Filter (RNF) yaitu rokok yang pada bagian pangkalnya tidak terdapat gabus.

## BAB 3

## **METODE PENELITIAN**

### **3.1. Ruang Lingkup**

Ruang lingkup kegiatan dalam laporan tugas akhir ini adalah tentang jumlah produksi rokok di Kabupaten Kudus dari tahun 1996 sampai dengan tahun 2008.

Dalam hal ini data tersebut akan diolah dengan mnggunakan metode Auto Regresi dan Auto Korelasi untuk mengetahui hasil peramalan produksi rokok pada tahun 2009. Selain itu, untuk membandingkan hasil peramalan dengan menggunakan metode Auto Regresi dan Auto Korelasi, maka penulis menggunakan metode *Exponential Smoothing* yaitu *Double Exponential Smoothing*. Penggunaan metode *Double Exponential Smoothing* karena data produksi rokok berpola linier dan cenderung mengalami kenaikan, sehingga lebih cocok jika menggunakan metode *Double Exponential Smoothing*. Hasil dari kedua metode peramalan yang digunakan akan dibandingkan untuk mendapatkan peramalan yang lebih cocok. Hal tersebut dilakukan guna meminimumkan kesalahan peramalan.

#### **3.2.** Variabel Kegiatan

Variabel dalam penyusunan laporan tugas akhir ini adalah jumlah produksi rokok di Kabupaten Kudus pada tahun 1996 sampai dengan 2008.

Dalam metode Auto Regresi dan Auto Korelasi, variabel yang digunakan adalah *dependent variable* ( $X_{t}$ ) yaitu hasil produksi rokok pada tahun 2009, dan *independent variable* ( $X_{t-1}$ ) yaitu hasil produksi rokok pada 1 tahun sebelum tahun 2009 yaitu tahun 2008. Sedangkan pada metode *Double Exponential Smoothing*, variabel yang digunakan adalah data jumlah produksi rokok di Kabupaten Kudus pada tahun 1996 sampai dengan 2008 dan data tersebut diolah dan dianalisis dengan menggunakan metode *Double Eksponential Smoothing* untuk mendapatkan peramalan yang lebih cocok dengan datanya.

### **3.3. Metode Pengumpulan Data**

3.3.1. Metode Dokumentasi

Metode ini merupakan pengumpulan data untuk memperoleh data dan informasi terutama data produksi rokok di Kabupaten Kudus.

3.3.2. Metode Kepustakaan

Merupakan penelaahan akan sumber pustaka yang relevan dan digunakan untuk mengumpulkan informasi yang diperlukan dalam penelitian yaitu berupa literatur dari buku-buku baik dari BPS maupun dari sumber lain.

### **3.4.** Analisis Data

Dalam tahap ini dilakukan pengkajian data yang diperoleh berdasarkan teori yang ada, khususnya yang berkaitan dengan penggunaan metode Auto regresi dan Auto Korelasi serta metode *Double Exponential Smoothing* untuk peramalan produksi rokok tahun 2009 di Kabupaten Kudus. Hasil peramalan dari kedua metode tersebut akan dibandingkan guna mendapatkan peramalan dengan tingkat kesalahan yang minimum. Adapun langkah-langkah untuk meramalkan hasil produksi rokok sebagai berikut. 3.4.1. Metode Auto Regresi dan Auto Korelasi.

- a). Pengumpulan data produksi rokok yang ada di Kabupaten Kudus dari tahun 1996 hingga tahun 2008.
- b). Untuk uji pengaruh, menentukan persamaan regresi dengan cara mencari nilai  $\alpha$  dengan rumus  $\alpha = X_t - \beta X_{t-s}$  dan  $\beta$  dengan rumus  $\beta = \frac{N\Sigma(X_{t-s}X_t) - \Sigma(X_{t-s})\Sigma(X_t)}{N\Sigma(X_{t-s}^2) - \Sigma(X_{t-s})^2}$ , Maka persamaan auto regresinya adalah  $\hat{X}_t = \alpha + \beta X_{t-s}$
- c). Untuk menghitung koefisien auto korelasi digunakan rumus sebagai berikut.

$$\mathbf{r} = \frac{N\Sigma X_{t-s} X_t - (\Sigma X_{t-s})(\Sigma X_t)}{\sqrt{[N\Sigma X_{t-s}^2 - (\Sigma X_{t-s})^2][N\Sigma X_t^2 - (\Sigma X_t)^2]}}, \text{ setelah koefisien r}$$

diperoleh, maka harus ditest apakah ada korelasi antara variabel

 $X_{t-s}$  (produksi rokok pada tahun sebelumnya) dan variabel  $X_t$  (produksi rokok pada suatu tahun).

- 3.4.2. Metode Double Exponential Smoothing.
  - a). Pengumpulan data produksi rokok yang ada di Kabupaten Kudus dari tahun 1996 hingga tahun 2008.
  - b). Menentukan smoothing pertama (S' $^{\prime}$ )

$$S'_t = \alpha X_t + (1-\alpha)S'_{t-1}$$

 $\mathbf{X}_{t}$ 

Dengan  $S_{t}^{*}$ : Smoothing pertama periode ke-t

- : nilai riil periode ke-t
- $S'_{t-1}$  : Smoothing pertama periode ke t-1
- c). Menentukan smoothing kedua  $(S''_{t})$

$$S''_t = \alpha S'_t + (1-\alpha)S''_t$$

Dengan S', : Smoothing kedua periode ke t-1

d). Menentukan besarnya konstanta  $(a_t)$ 

 $at = 2 S'_{t} - S''_{t}$ 

e). Menentukan besarnya slope  $(b_t)$ 

$$\mathbf{b}_t = \frac{1}{1-\alpha} (\mathbf{S}_t^* - \mathbf{S}_t^*)$$

f). Menentukan besarnya forecast (F  $_{\scriptscriptstyle t+m}$  )

 $\mathbf{F}_{t+m} = \mathbf{a}_t + \mathbf{b}_t$  (m), dimana m adalah jangka waktu forecast.

### 3.5. Penarikan Kesimpulan

Langkah ini merupakan bagian terakhir dari penelitian. Penarikan simpulan didasarkan pada pembahasan rumusan permasalahan dengan menggunakan studi pustaka. Simpulan yang diperoleh merupakan hasil penelitian.



## BAB 4

## HASIL PENELITIAN DAN PEMBAHASAN

#### 4.1. Hasil Penelitian

Berikut adalah data produksi rokok di Kabupaten Kudus yang diambil dari Badan Pusat Statistik Kabupaten Kudus dari tahun 1996 hingga tahun 2008 dalam bentuk batang.

|     | Т          | abel 2         | -2 |
|-----|------------|----------------|----|
|     | Produksi R | Rokok di Kudus | 1  |
| 47  | Tahun (t)  | Jumlah         |    |
|     |            | Produksi       |    |
| 5 / | 1996       | 35.800.436.230 |    |
|     | 1997       | 38.273.769.398 |    |
|     | 1998       | 36.123.037.584 |    |
|     | 1999       | 38.662.293.444 |    |
|     | 2000       | 43.921.731.840 |    |
|     | 2001       | 46.917.472.606 |    |
|     | 2002       | 45.126.588.898 |    |
|     | 2003       | 46.583.614.136 |    |
|     | 2004       | 52.855.544.844 |    |
|     | 2005       | 55.882.200.320 |    |
|     | 2006       | 54.295.472.900 |    |
|     | 2007       | 56.683.311.858 |    |
|     | 2008       | 61.285.365.384 | -  |

Sebelum melakukan perhitungan untuk meramalkan hasil produksi rokok tahun 2009, maka yang pertama dilakukan adalah membuat grafik yang menunjukan bahwa data produksi rokok tersebut benar- benar linear. Karena dalam menghitung dengan menggunakan metode peramalan tersebut data harus menunjukan pola linear. Berikut ini adalah bentuk grafik dari data produksi rokok diatas.



Gambar 11. grafik produksi rokok

Dari grafik tersebut terlihat bahwa data cenderung mengalami trend kenaikan, karena metode Auto Regresi dan Auto Korelasi serta *Double Exponential Smoothing* termasuk model linear, maka metode tersebut dapat digunakan untuk meramalkan hasil produksi rokok tahun 2009.

Berdasarkan data tersebut, dengan menggunakan metode Auto Regresi dan Auto Korelasi dapat diperoleh persaman auto regresi, dan juga bisa menghitung koefisien auto korelasi serta bisa melakukan test atau uji untuk mengetahui kuat atau tidaknya hubungan data produksi rokok pada suatu tahun dengan data produksi rokok pada tahun sebelumnya. Sedangkan dengan menggunakan metode *Exponential Smoothing* maka dapat diperoleh *mean absolute error* dan *mean square error*.

Selanjutnya yang akan dilakukan adalah menghitung dengan menggunakan metode Auto Regresi dan Auto Korelasi dengan selisih waktu 1 periode. Kemudian menghitung peramalan dengan menggunakan metode Double Exponential Smoothing untuk selanjutnya dibandingkan dengan metode Regresi dan Auto Korelasi.

# Peramalan dengan menggunakan metode Auto Regresi dan Auto Korelasi.

Persamaan auto regresi dengan waktu 1 periode yaitu  $Y=2255646792,95788+0,997128 X_{t-n}$ , dan koefisien Auto Korelasi adalah 0,941336 atau 94,1336%, hal ini menunjukan bahwa terdapat hubungan yang erat antara produksi rokok pada suatu periode dengan produksi rokok 1 periode sebelumnya, dengan standart error sebesar 2879661432,30225.

#### 4.1.1.1. Tes Terhadap $\alpha$

Menentukan hipotesis:

 $H_0: \alpha = 0$  (nilai  $\alpha$  tidak signifikan)

 $H_{1:} \alpha \neq 0$  (nilai  $\alpha$  signifikan)

Dengan tingkat resiko kesalahan 5%, maka t ( $\frac{1}{2}$  0,05, 12-2),

uji tes α menyatakan bahwa

 $t_{hitung} \alpha = 2,71344 > t_{tabel}(0,025;10) = 2,228$ . Jadi H<sub>0</sub> ditolak

hal ini berarti menunjukkan nilai α cukup signifikan.

4.1.1.2. Tes Terhadap  $\beta$ 

Menentukan hipotesis:

 $H_0: \beta = 0$  (nilai  $\beta$  tidak signifikan)

 $H_{1:} \beta \neq 0$  (nilai  $\beta$  signifikan)

Dengan tingkat resiko kesalahan 5%, maka t ( $\frac{1}{2}$  0,05, 12-2),

uji tes  $\beta$  menyatakan bahwa

 $t_{hitung}\beta = 8,820789 > t_{tabel}(0,025;10) = 2,228$ , hal ini berarti

menunjukkan nilai β cukup signifikan

4.1.1.3. Tes kuat tidaknya Auto Korelasi.

Menentukan hipotesis:

 $H_0 = r = 0$  (tidak ada hubungan secara signifikan antara hasil produksi rokok pada suatu periode dengan periode sebelumnya)

 $H_1 = r \neq 0$  (ada hubungan secara signifikan antara hasil produksi rokok pada suatu periode dengan periode sebelumnya)

Dengan nilai tertentu maka mencari nilai t tabel dengan degrees of freedom = 12-2. Uji tes kuat tidaknya auto korelasi menyatakan bahwa nilai dari

 $t_{hitung}korelasi = 8,82081 > t_{tabel}(0,025;10) = 2,228$ , hal ini berarti menunjukkan nilai r cukup signifikan, maka ada hubungan yang signifikan antara produksi rokok pada suatu periode dengan 1 periode sebelumnya. Oleh karena itu ketepatan persamaan regresi tersebut bisa dipertanggung jawabkan. Peramalan hasil produksi rokok tahun 2009 yaitu 63.365.000.607,375

Pembuatan Program dengan Menggunakan Program Microsoft Visual Basic 6.0, untuk memudahkan peramalan hasil produksi rokok Kabupaten Kudus tahun 2009. Dalam pembuatan program ini hanya dijabarkan mengenai penghitungan dengan metode Auto Regresi dan Auto Korelasi.

Berikut ini adalah langkah-langkah dalam menggunakan program *Microsoft Visual Basic* 6.0 yang dibuat untuk meramalkan data produksi rokok Kabupaten Kudus tahun 2009.

Buka file yang akan digunakan untuk meramalkan data dengan metode Auto Regresi dan Auto Korelasi, maka yang pertama kali terlihat adalah tampilan seperti dibawah ini.

|                        | AUTO REGRES | I DAN AUTO KORI | ELASI      |              |         |     |
|------------------------|-------------|-----------------|------------|--------------|---------|-----|
| Banyaknya data         |             |                 |            | Isi Data     | Run E   | dit |
| Periode<br>Autoregresi |             |                 |            | _            | New End |     |
| No. Xt                 | Xt-n        | Xt * Xt-n       | Xt kuadrat | Xt-n kuadrat |         |     |
| 1                      |             |                 |            |              |         |     |
|                        |             |                 |            |              |         |     |
|                        |             |                 |            |              |         |     |
|                        |             |                 |            |              |         |     |
|                        |             |                 |            |              |         |     |

Lalu isi banyaknya data dan periode Auto Regresi, setelah itu klik tombol isi data, maka tampilan yang muncul adalah sebagai berikut.

| Banyakr<br>Periode<br>Autoreg | nya data  <br>gresi | 13   |           |            | Isi Dat      | a Run Edit |
|-------------------------------|---------------------|------|-----------|------------|--------------|------------|
| No.                           | Xt                  | Xt-n | Xt * Xt-n | Xt kuadrat | Xt-n kuadrat |            |
| 1                             |                     |      |           |            |              |            |
| 2                             |                     |      |           |            |              |            |
| 3                             |                     |      |           |            |              |            |
| 4                             |                     |      |           |            |              |            |
| 5                             |                     |      |           |            |              |            |
| 6                             |                     |      |           |            |              |            |
| 7                             |                     |      |           |            |              |            |
| 8                             |                     |      |           |            |              |            |
| 9                             |                     |      |           |            |              |            |
| 10                            |                     |      |           |            |              |            |
| 11                            |                     |      |           |            |              |            |
| 12                            |                     |      |           |            |              |            |
| 13                            |                     |      |           |            |              |            |
| Jumlah                        |                     |      |           |            |              |            |

Setelah semua data dimasukkan, maka selanjutnya untuk memproses hasil peramalan produksi rokok tahun 2009 di Kabupaten Kudus, maka klik tombol Run, maka yang akan tampil adalah sebagai berikut.

|               | AL            | UTO REGRESI     | DAN AUTO KORI       | ELASI                 |                     |                                                                                 |
|---------------|---------------|-----------------|---------------------|-----------------------|---------------------|---------------------------------------------------------------------------------|
| Banya         | aknya data 📗  | 13              |                     |                       | Isi Data            | Run Edit                                                                        |
| Perio<br>Auto | de<br>regresi | 1               |                     |                       | _                   | New End                                                                         |
| No.           | Xt            | Xt-n            | Xt * Xt-n           | Xt kuadrat            | Xt-n kuadrat        |                                                                                 |
| 1             | 35800436230   |                 |                     |                       |                     |                                                                                 |
| 2             | 38273769398   | 35800436230,000 | 137021764061482000( | 146488142393128000000 | 128167123425830000( |                                                                                 |
| 3             | 36123037584   | 38273769398,000 | 138256481044530000( | 130487384429508000000 | 146488142393128000( | Koefisien auto korelasinya adalah 0,941336<br>Standard Error = 2879661432,30225 |
| 4             | 38662293444   | 36123037584,000 | 139659947916125000( | 149477293434997000000 | 130487384429508000( | Thitung (alpha) = $2,71344$<br>Thitung (betha) = $2,820780$                     |
| 5             | 43921731840   | 38662293444,000 | 1698114884966760000 | 192911852782487000000 | 149477293434997000( | T hitung (korelasi) = 8,82081                                                   |
| 6             | 46917472606   | 43921731840,000 | 2060696650411280000 | 220124923573476000000 | 192911852782487000( |                                                                                 |
| 7             | 45126588898   | 46917472606,000 | 211722549842414000( | 203640902556910000000 | 220124923573476000( |                                                                                 |
| 8             | 46583614136   | 45126588898,000 | 210215960449833000( | 217003310597174000000 | 203640902556910000( | Bergamaan auto regreginya adalah                                                |
| 9             | 52855544844   | 46583614136,000 | 246220230596094000( | 279370862075610000000 | 217003310597174000( | Y = 2255646792,95788 + 0,997128 Xt-n                                            |
| 10            | 55882200320   | 52855544844,000 | 295368414499515000( | 312282031260461000000 | 279370862075610000( | alpha = 2255646792,95788                                                        |
| 11            | 54295472900   | 55882200320,000 | 3034150493066930000 | 294799837743463000000 | 312282031260461000( | betha = 0,997128                                                                |
| 12            | 56683311858   | 54295472900,000 | 307764722286829000( | 321299784319128000000 | 294799837743463000( | Forecast untuk periode ke 14 adalah                                             |
| 13            | 61285365384   | 56683311858,000 | 347385747839275000( | 375589601025039000000 | 321299784319128000( | 63365000607,575                                                                 |
| Jumlah        | 576610403212  | 551125474058    | 2,71291202138058E+2 | 2,84347592619138E+22  | 2,59605344859217E+2 |                                                                                 |

#### 4.1.2. Peramalan dengan menggunakan metode Double Exponential

#### Smoothing.

Dari perhitungan dengan menggunakan metode *Double Exponential Smoothing* maka hasil peramalan yang diperoleh adalah sebagai berikut.

| Alpha         MAE         MSE         Forecast           0,1         6335888828,42754         5,06963434026322E+19         54091509592,144           0,2         3476354584,42282         1,72853875054518E+19         60196807082,019 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0,16335888828,427545,06963434026322E+1954091509592,1440,23476354584,422821,72853875054518E+1960196807082,019                                                                                                                           |
| 0,2 3476354584,42282 1,72853875054518E+19 60196807082,019                                                                                                                                                                              |
|                                                                                                                                                                                                                                        |
| 0,3 2548070168,52373 1,01186557759302E+19 62065425613,913                                                                                                                                                                              |
| 0,4 2657973522,02712 8,86600694887289E+18 62678944140,664                                                                                                                                                                              |
| 0,5 2712989923,38916 9,24063641956127E+18 63049566753,595                                                                                                                                                                              |
| 0,6 2697037232,60944 1,01717067122933E+19 63481063424,124                                                                                                                                                                              |
| 0,7 2741173259,03653 1,12836410507322E+19 64037613377,284                                                                                                                                                                              |
| 0,8 3124408823,00688 1,23858601109372E+19 64688199990,770                                                                                                                                                                              |
| 0,9 3450483349,5612 1,33798131354277E+19 65345107545,763                                                                                                                                                                               |

Pada peramalan dengan menggunakan metode *Double Exponential Smoothing* berdasarkan nilai alpha dari 0,1 hingga alpha 0,9 ternyata yang memiliki *mean square error* terkecil yaitu pada alpha 0,4 yaitu dengan nilai MSE sebesar 8,86600694887289E+18, dengan hasil peramalan sebesar 62.678.944.140,6649.

Pembuatan Program dengan Menggunakan Program Microsoft Visual Basic 6.0, untuk memudahkan peramalan hasil produksi rokok Kabupaten Kudus tahun 2009. Pada program ini hanya dijabarkan mengenai penghitungan dengan metode Double Exponential Smoothing Berikut ini adalah langkah-langkah dalam menggunakan program *Microsoft Visual Basic* 6.0 yang dibuat untuk meramalkan data produksi rokok Kabupaten Kudus tahun 2009.

 Buka file yang akan digunakan untuk meramalkan data dengan metode *Double Exponential Smoothing*, maka yang pertama kali terlihat adalah tampilan seperti dibawah ini.

| Barryak | nya data |                 | DOUBLE EXPO     | NENTIAL | SMOOTHIN | ١G       |            | tei Data Bun E Edi |
|---------|----------|-----------------|-----------------|---------|----------|----------|------------|--------------------|
| Alpha   |          | Silakan pilih 3 |                 |         |          |          | -          | New End            |
| Nomor   | ×        | Single E        | tp. Double Exp. |         | ь        | Forecast | Abs. Error | Squared Err.       |
| 1       |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |
|         |          |                 |                 |         |          |          |            |                    |

2

isi data, maka tampilan yang muncul adalah sebagai berikut.

|   |               | DC            | UBLE EXPON  | JENTIAL S | MOOTHIN | G        |            |              |     |    |
|---|---------------|---------------|-------------|-----------|---------|----------|------------|--------------|-----|----|
|   | Banyaknya dat | a 13          |             |           |         |          |            | Isi Data     | Run | Ec |
|   | Alpha         | 0.40 🔻        |             |           |         |          |            | New          | End |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   | Nomor         | X Single Exp. | Double Exp. | a         | Ь       | Forecast | Abs. Error | Squared Err. |     |    |
|   | 1             |               | 1           | J         | , -     | 1        | )          |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
| - |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |
|   |               |               |             |           |         |          |            |              |     |    |

c. Setelah semua data dimasukkan, maka selanjutnya untuk memproses hasil peramalan produksi rokok tahun 2009 di

Kabupaten Kudus, maka klik tombol *Run*, maka tampilan yang muncul adalah sebagai berikut.

| DOUBLE EXPONENTIAL SMOOTHING<br>Banyaknya data 13 Isi Data Run Edit |             |               |               |              |              |                 |              |              |                       |
|---------------------------------------------------------------------|-------------|---------------|---------------|--------------|--------------|-----------------|--------------|--------------|-----------------------|
| Alpha                                                               | 0.          | 40 💌          |               |              |              |                 | _            | Ne           | w End                 |
| Nomor                                                               | х           | Single Exp.   | Double Exp.   | a            | b            | Forecast        | Abs. Error   | Squared Err. |                       |
| 1                                                                   | 35800436230 | 35800436230   | 35800436230   | 35800436230  |              |                 |              |              |                       |
| 2                                                                   | 38273769398 | 36789769497.2 | 36196169536.8 | 37383369457. | 395733306.88 | 35800436230     | 2473333168   | 6.1173769599 |                       |
| 3                                                                   | 36123037584 | 36523076731.9 | 36326932414.8 | 36719221048. | 130762878.01 | 37779102764.4   | 1656065180.4 | 2.7425518817 |                       |
| 4                                                                   | 38662293444 | 37378763416.7 | 36747664815.6 | 38009862017. | 420732400.74 | 36849983926.96  | 1812309517.0 | 3.2844657855 |                       |
| 5                                                                   | 43921731840 | 39995950786.0 | 38046979203.8 | 41944922368. | 1299314388.1 | 38430594418.60  | 5491137421.3 | 3.0152590180 | neriode ke denan adal |
| 6                                                                   | 46917472606 | 42764559514.0 | 39934011327.8 | 45595107700. | 1887032124.0 | 43244236756.46  | 3673235849.5 | 1.3492661606 | 62678944140.6649      |
| 7                                                                   | 45126588898 | 43709371267.6 | 41444155303.7 | 45974587231. | 1510143975.8 | 47482139824.25  | 2355550926.2 | 5.5486201661 | MAE =                 |
| 8                                                                   | 46583614136 | 44859068414.9 | 42810120548.2 | 46908016281. | 1365965244.4 | 47484731207.34: | 901117071.34 | 8.1201197626 | MSE =                 |
| 9                                                                   | 52855544844 | 48057658986.5 | 44909135923.5 | 51206182049. | 2099015375.3 | 48273981526.15  | 4581563317.8 | 2.0990722435 | 8.86600694887289E+    |
| 10                                                                  | 55882200320 | 51187475519.9 | 47420471762.1 | 54954479277. | 2511335838.5 | 53305197424.90  | 2577002895.0 | 6.6409439213 |                       |
| 11                                                                  | 54295472900 | 52430674471.9 | 49424552846.0 | 55436796097. | 2004081083.9 | 57465815116.31  | 3170342216.3 | 1.0051069768 |                       |
| 12                                                                  | 56683311858 | 54131729426.3 | 51307423478.1 | 56956035374. | 1882870632.1 | 57440877181.80  | 757565323.80 | 5.7390521983 |                       |
| 13                                                                  | 61285365384 | 56993183809.4 | 53581727610.6 | 60404640008. | 2274304132.4 | 58838906006.69  | 2446459377.3 | 5.9851634847 |                       |
|                                                                     |             |               |               |              |              | 62678944140.664 |              |              |                       |

### 4.2. Pembahasan

Fasilitas yang dapat diberikan oleh *Microsoft Visual Basic* 6.0 antara lain adalah efisiennya waktu perhitungan, hemat tenaga, banyak aplikasi yang dapat disajikan dan lain sebagainya. Untuk itu, dengan dibuatnya program *Microsoft Visual Basic* 6.0, diharapkan mampu mempermudah dalam meramalkan hasil produksi rokok tahun 2009 di Kabupaten Kudus.

Berdasarkan hasil penelitian di atas melalui program *Microsoft Visual Basic* 6.0 yang telah dibuat, akan dilakukan peramalan hasil produksi rokok tahun 2009 di Kabupaten Kudus dengan menggunakan metode Auto Regresi dan Auto Korelasi, maka diperoleh hasil sebagai berikut.

Persamaan Auto Regresi : Y = 2255646792,95788+0,997128 Xt-1

Koefisien Auto Korelasi : r = 0,941336 atau 94,1336%.

Dari persamaan Auto Regresi tersebut dapat digunakan untuk mengetahui besar pengaruh yang signifikan antara hasil produksi rokok tahun 2008 terhadap hasil produksi rokok pada tahun 2009. Dengan persamaan Auto Regresi itu pula dapat digunakan untuk meramalkan hasil produksi rokok tahun 2009, dengan hasil produksi rokok pada tahun 2008 sebesar 61.285.365.384 sebagai variabel *independent*, maka peramalan hasil produksi rokok tahun 2009 sebesar 63.365.000.607,375. Sedangkan koefisien Auto Korelasi sebesar 94,13% menunjukkan bahwa produksi rokok pada tahun 2009 dengan produksi rokok pada tahun 2008 terdapat hubungan yang erat, dan sisanya sebesar 5,87% dipengaruhi oleh faktor lain.

Pemilihan metode Auto Regresi dan Auto Korelasi dalam meramalkan hasil produksi rokok sangat beralasan, karena pemilihan metode Auto Regresi dan Auto Korelasi berdasarkan nilai *standart error* yang jauh dibawah nilai *standart error* pada metode *Double Exponential Smoothing*. Hal ini berarti standart penyimpangan data dari garis auto regresinya sebesar 2879661432,30225, maka penggunaan metode Auto Regresi dan Auto Korelasi lebih cocok apabila digunakan untuk meramalkan hasil produksi rokok tahun 2009 di Kabupaten Kudus.

45

## BAB 5

### PENUTUP

### 5.1. Kesimpulan

Berdasarkan hasil penelitian, maka dapat diperoleh simpulan sebagai berikut.

- 5.1.1. Peramalan hasil produksi rokok tahun 2009 dengan menggunakan metode Auto Regresi dan Auto Korelasi sebesar 63.365.000.607,375.
  Sedangkan peramalan hasil produksi rokok tahun 2009 dengan menggunakan metode Double Exponential Smoothing sebesar 62.678.944.140,6649.
- 5.1.2. Peramalan dengan metode Auto Regresi dan Auto Korelasi mempunyai standart error sebesar 2879661432,30225. Sedangkan peramalan dengan metode Double Exponential Smoothing dengan alpha 0,4 mempunyai mean square error sebesar 8,86600694887289E+18. Ternyata yang memiliki kesalahan minimum adalah peramalan dengan menggunakan metode Auto Regresi dan Auto Korelasi. Maka metode Auto Regresi dan Auto Korelasi. Maka metode Auto Regresi dan Auto Korelasi lebih cocok digunakan untuk meramalkan hasil produksi rokok tahun 2009 di Kabupaten Kudus.

## 5.2. Saran

Setiap tahun produksi rokok di Kabupaten Kudus mengalami peningkatan, serta mampu memberikan kontribusi yang cukup besar terhadap Kabupaten Kudus. Selain itu, industri rokok merupakan industri yang paling mendominasi dan mampu menyerap tenaga kerja yang cukup banyak, maka seharusnya pemerintah Kabupaten Kudus lebih memperhatikan lagi keberadaan perusahaan-perusahaan rokok agar semakin berkembang. Selain itu, pemerintah juga perlu memperhatikan dampak kesehatan masyarakat yang diakibatkan oleh rokok.



## **DAFTAR PUSTAKA**

- Aderafiansyah. 2009. *Mengenal Metode Peramalan Forecasting*. <u>http://aderafiansyah.blogspot.com/</u> (diunduh pada 8/05/10 19:36)
- BPS Kabupaten Kudus, 1996-2008. *Kabupaten Kudus dalam Angka*. Kudus : BPS Kabupaten Kudus
- Makridakis, S., Wheelwright, S.C., and McGee, V.E. 1983. Forecasting : Methods and Application. New York: John Wiley & Sons.
- Makridakis, S., Wheelwright, S.C., 1989, Forecasting Methods for Management, fifth edition, John Wiley & Sons, Inc., Canada.
- Online, Kudus. 2009. *Industri Rokok*. <u>http://kudus-online.blogspot.com/</u> (diunduh pada 15/03/10 15:25)
- Supranto, J. 1986. Statistik Teori dan Aplikasi. Jakarta: Erlangga
- Subagyo, P. 1986. Forecasting Konsep dan Aplikasi. Yogyakarta: BPFE
- Utami, Nurina. 2010. Forum-Pembaca-Kompas. http://nurinautami.multiply.com/ (diunduh pada 17/11/09 16:15)
- Yuswanto. 2003. Pemrograman Dasar Microsoft Visual Basic 6.0. Surabaya: Prestasi Pustaka

PERPUSTAKAAN

Hasil forecast produksi rokok tahun 2009 dengan metode Auto Regresi dan Auto

Korelasi

|        | ļ                    | UTO REGRESI     | DAN AUTO KOR        | ELASI                 |                     |                                                                                 |
|--------|----------------------|-----------------|---------------------|-----------------------|---------------------|---------------------------------------------------------------------------------|
| Banya  | aknya data 🛛         | 13              |                     |                       | Isi Data            | Run Edit                                                                        |
| Perio  | de 🛛                 | 1               |                     |                       |                     | New End                                                                         |
| Autor  | regresi <sup>i</sup> |                 |                     |                       |                     |                                                                                 |
| No.    | Xt                   | Xt-n            | Xt * Xt-n           | Xt kuadrat            | Xt-n kuadrat        |                                                                                 |
| 1      | 35800436230          |                 |                     |                       |                     |                                                                                 |
| 2      | 38273769398          | 35800436230,000 | 137021764061482000( | 146488142393128000000 | 128167123425830000( |                                                                                 |
| 3      | 36123037584          | 38273769398,000 | 138256481044530000( | 130487384429508000000 | 146488142393128000( | Koefisien auto korelasinya adalah 0,941336<br>Standard Error = 2879661432,30225 |
| 4      | 38662293444          | 36123037584,000 | 139659947916125000( | 149477293434997000000 | 130487384429508000( | T hitung (alpha) = 2,71344                                                      |
| 5      | 43921731840          | 38662293444,000 | 169811488496676000( | 192911852782487000000 | 149477293434997000( | T hitung (korelasi) = 8,82081                                                   |
| 6      | 46917472606          | 43921731840,000 | 2060696650411280000 | 220124923573476000000 | 192911852782487000( |                                                                                 |
| 7      | 45126588898          | 46917472606,000 | 211722549842414000( | 203640902556910000000 | 220124923573476000( |                                                                                 |
| 8      | 46583614136          | 45126588898,000 | 210215960449833000( | 21700331059717400000C | 203640902556910000( | Percamaan auto regreciova adalah                                                |
| 9      | 52855544844          | 46583614136,000 | 246220230596094000( | 2793708620756100000C  | 217003310597174000( | Y = 2255646792,95788 + 0,997128 Xt-n                                            |
| 10     | 55882200320          | 52855544844,000 | 295368414499515000( | 31228203126046100000C | 279370862075610000( | alpha = 2255646792,95788                                                        |
| 11     | 54295472900          | 55882200320,000 | 303415049306693000( | 29479983774346300000C | 312282031260461000( | betha = 0,997128                                                                |
| 12     | 56683311858          | 54295472900,000 | 307764722286829000( | 321299784319128000000 | 294799837743463000( | Forecast untuk periode ke 14 adalah                                             |
| 13     | 61285365384          | 56683311858,000 | 347385747839275000( | 37558960102503900000C | 321299784319128000( | 63365000607,575                                                                 |
| Jumlah | 576610403212         | 551125474058    | 2,71291202138058E+2 | 2,84347592619138E+22  | 2,59605344859217E+2 |                                                                                 |
|        |                      |                 | PERP                | USTAKA                |                     |                                                                                 |
|        |                      |                 | U                   |                       |                     |                                                                                 |

Hasil forecast produksi rokok tahun 2009 dengan metode Double Exponential Smoothing dengan alpha 0,1

| Run Edit End                                   |  |  |
|------------------------------------------------|--|--|
| End                                            |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
| Forecast untuk satu<br>neriode ke denan adalah |  |  |
| 54091509592.1449                               |  |  |
| MAE =                                          |  |  |
| 0335888828.42754<br>MSE =                      |  |  |
| 5.06963434026322E+19                           |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
|                                                |  |  |
| FFICT                                          |  |  |

Hasil forecast produksi rokok tahun 2009 dengan metode Double Exponential

|         |             | DOU           |                    | NENTIAL S         | MOOTHIN           | G                    |                   |                   |                           |
|---------|-------------|---------------|--------------------|-------------------|-------------------|----------------------|-------------------|-------------------|---------------------------|
| Banyakr | nya data    | 13            |                    |                   |                   |                      |                   | Isi Data          | Run Edit                  |
| Alpha   | 0.2         | 0 🔻           |                    |                   |                   |                      |                   | Ne                | w End                     |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |
| Nomor   | X           | Single Exp.   | Double Exp.        | a                 | ь                 | Forecast             | Abs. Error        | Squared Err.      |                           |
| 1       | 35800436230 | 35800436230   | 35800436230        | 35800436230       |                   | ,<br>                |                   |                   |                           |
| 2       | 38273769398 | 36295102863.6 | 35899369556.7      | 36690836170.      | 98933326.719      | 35800436230          | 2473333168        | 6.1173769599      |                           |
| 3       | 36123037584 | 36260689807.6 | 35971633606.9      | 36549746008.      | 72264050.191      | 36789769497.2        | 666731913.19      | 4.4453144407      |                           |
| 4       | 38662293444 | 36741010534.9 | 36125508992.5      | 37356512077.      | 153875385.60      | 36622010058.64       | 2040283385.3      | 4.1627562925      |                           |
| 5       | 43921731840 | 38177154795.9 | 36535838153.2      | 39818471438.      | 410329160.68      | 37510387462.97       | 6411344377.0      | 4.1105336720      | Forecast untuk satu       |
| 6       | 46917472606 | 39925218357.9 | 37213714194.1      | 42636722521.      | 677876040.95      | 40228800599.39:      | 6688672006.6      | 4.4738333211      | 60196807082.0198          |
| 7       | 45126588898 | 40965492465.9 | 37964069848.5      | ,<br>43966915083. | ,<br>750355654.36 | ,<br>43314598562.72; | ,<br>1811990335.2 | 3.2833089751      | MAE =                     |
| 8       | 46583614136 | 42089116799.9 | ,<br>38789079238.8 | ,<br>45389154361. | ,<br>825009390.29 | ,<br>44717270737.78! | ,<br>1866343398.2 | ,<br>3.4832376800 | 3476354584.42282<br>MSE - |
| 9       | 52855544844 | 44242402408.7 | ,<br>39879743872.8 | ,<br>48605060944. | ,<br>1090664633.9 | ,<br>46214163751.43: | ,<br>6641381092.5 | ,<br>4.4107942816 | 1.72853875054518E+19      |
| 10      | 55882200320 | 46570361991.0 | ,<br>41217867496.4 | ,<br>51922856485. | 1338123623.6      | ,<br>49695725578.75: | ,<br>6186474741.2 | ,<br>3.8272469724 |                           |
| 11      | 54295472900 | 48115384172.8 | ,<br>42597370831.7 | ,<br>53633397513. | 1379503335.2      | ,<br>53260980109.24! | ,<br>1034492790.7 | ,<br>1.0701753341 |                           |
| 12      | 56683311858 | 49828969709.8 | 44043690607.3      | 55614248812.      | 1446319775.6      | 55012900849.19:      | 1670411008.8      | 2.7902729383      |                           |
| 13      | 61285365384 | 52120248844.6 | 45659002254.8      | ,<br>58581495434. | 1615311647.4      | 57060568587.98       | 4224796796.0      | ,<br>1.7848907967 |                           |
|         |             |               | ,                  | ,                 | ,                 | 60196807082.01'      |                   | ,                 |                           |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |
|         |             |               | PEF                | RPUST             | <b>FAKA</b>       | AN                   |                   |                   |                           |
|         |             |               | 111                |                   |                   |                      |                   |                   |                           |
|         |             |               |                    | PUP               |                   |                      |                   |                   |                           |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |
|         |             |               |                    |                   |                   |                      |                   |                   |                           |

Hasil forecast produksi rokok tahun 2009 dengan metode Double Exponential

| DOUBLE EXPONENTIAL SMOOTHING |             |               |               |              |              |                 |              |              |                       |                |  |
|------------------------------|-------------|---------------|---------------|--------------|--------------|-----------------|--------------|--------------|-----------------------|----------------|--|
| Banyakı                      | nya data    | 13            |               |              |              |                 |              | Isi Data     | Run                   | Edit           |  |
| Alpha                        | 0.3         | 0 🔻           |               |              |              |                 |              | N            | lew E                 | nd             |  |
|                              |             | _             |               |              |              |                 |              |              |                       |                |  |
| Nomor                        | X           | Single Exp.   | Double Exp.   | a            | b            | Forecast        | Abs. Error   | Squared Err. |                       |                |  |
| 1                            | 35800436230 | 35800436230   | 35800436230   | 35800436230  |              |                 |              |              |                       |                |  |
| 2                            | 38273769398 | 36542436180.4 | 36023036215.1 | 37061836145. | 222599985.11 | 35800436230     | 2473333168   | 6.117376959  | 9                     |                |  |
| 3                            | 36123037584 | 36416616601.4 | 36141110331.0 | 36692122871. | 118074115.90 | 37284436130.8   | 1161398546.8 | 1.348846584  | 5                     |                |  |
| 4                            | 38662293444 | 37090319654.2 | 36425873127.9 | 37754766180. | 284762796.96 | 36810196987.84  | 1852096456.1 | 3.430261282  | 9                     | untuk entu     |  |
| 5                            | 43921731840 | 39139743309.9 | 37240034182.5 | 41039452437. | 814161054.59 | 38039528977.444 | 5882202862.5 | 3.460031051  | Forecast<br>periode k | e depan adalah |  |
| 6                            | 46917472606 | 41473062098.7 | 38509942557.4 | 44436181640. | 1269908374.8 | 41853613491.94  | 5063859114.0 | 2.564266912  | 6206542               | 5613.9136      |  |
| 7                            | 45126588898 | 42569120138.5 | 39727695831.7 | 45410544445. | 1217753274.3 | 45706090014.96  | 579501116.96 | 3.358215445  | 6 MAE = 25480701      | 168.52373      |  |
| 8                            | 46583614136 | 43773468337.7 | 40941427583.5 | 46605509091. | 1213731751.8 | 46628297719.64! | 44683583.645 | 1.996622647  | <sup>3</sup> MSE =    | 100.02010      |  |
| 9                            | 52855544844 | 46498091289.6 | 42608426695.3 | 50387755883. | 1666999111.8 | 47819240843.78  | 5036304000.2 | 2.536435798  | 2 1.011865            | 57759302E+19   |  |
| 10                           | 55882200320 | 49313323998.7 | 44619895886.4 | 54006752111. | 2011469191.0 | 52054754995.71  | 3827445324.2 | 1.464933771  | D                     |                |  |
| 11                           | 54295472900 | 50807968669.1 | 46476317721.2 | 55139619617. | 1856421834.8 | 56018221302.10  | 1722748402.1 | 2.967862056  | 9                     |                |  |
| 12                           | 56683311858 | 52570571625.7 | 48304593892.5 | 56836549358. | 1828276171.3 | 56996041451.85  | 312729593.85 | 9.779979886  | 9                     |                |  |
| 13                           | 61285365384 | 55185009753.2 | 50368718650.7 | 60001300855. | 2064124758.1 | 58664825530.35  | 2620539853.6 | 6.867229124  | 5                     |                |  |
|                              |             |               |               |              |              | 62065425613.91: |              |              |                       |                |  |
|                              |             |               |               |              |              |                 |              |              |                       |                |  |
|                              |             |               |               |              |              |                 |              |              |                       |                |  |
|                              |             |               |               |              |              |                 |              |              |                       |                |  |
|                              |             |               |               |              |              |                 |              |              |                       |                |  |
|                              |             |               |               |              |              |                 |              |              |                       |                |  |
|                              |             |               | PEN           | PUSI         | ANAA         | LIN             |              |              |                       |                |  |
|                              |             |               |               |              | IE S         |                 |              |              |                       |                |  |

Hasil forecast produksi rokok tahun 2009 dengan metode Double Exponential

|      | DOUBLE EXPONENTIAL SMOOTHING |               |               |              |              |                 |              |              |                         |  |  |  |  |
|------|------------------------------|---------------|---------------|--------------|--------------|-----------------|--------------|--------------|-------------------------|--|--|--|--|
| Ban  | yaknya data                  | Isi Data      | Run Edit      |              |              |                 |              |              |                         |  |  |  |  |
| Alph | a 0.4                        | 40 🔻          |               |              |              |                 |              | Ne           | w End                   |  |  |  |  |
|      | ,                            |               |               |              |              |                 |              |              |                         |  |  |  |  |
| Nom  | nor X                        | Single Exp.   | Double Exp.   | a            | b            | Forecast        | Abs. Error   | Squared Err. |                         |  |  |  |  |
| 1    | 35800436230                  | 35800436230   | 35800436230   | 35800436230  |              |                 |              |              |                         |  |  |  |  |
| 2    | 38273769398                  | 36789769497.2 | 36196169536.8 | 37383369457. | 395733306.88 | 35800436230     | 2473333168   | 6.1173769599 |                         |  |  |  |  |
| 3    | 36123037584                  | 36523076731.9 | 36326932414.8 | 36719221048. | 130762878.01 | 37779102764.4   | 1656065180.4 | 2.7425518817 |                         |  |  |  |  |
| 4    | 38662293444                  | 37378763416.7 | 36747664815.6 | 38009862017. | 420732400.74 | 36849983926.96  | 1812309517.0 | 3.2844657855 | Foreport untuk entu     |  |  |  |  |
| 5    | 43921731840                  | 39995950786.0 | 38046979203.8 | 41944922368. | 1299314388.1 | 38430594418.60  | 5491137421.3 | 3.0152590180 | periode ke depan adalah |  |  |  |  |
| 6    | 46917472606                  | 42764559514.0 | 39934011327.8 | 45595107700. | 1887032124.0 | 43244236756.464 | 3673235849.5 | 1.3492661606 | 62678944140.6649        |  |  |  |  |
| 7    | 45126588898                  | 43709371267.6 | 41444155303.7 | 45974587231. | 1510143975.8 | 47482139824.25  | 2355550926.2 | 5.5486201661 | MAE = 2657073522 02712  |  |  |  |  |
| 8    | 46583614136                  | 44859068414.9 | 42810120548.2 | 46908016281. | 1365965244.4 | 47484731207.34: | 901117071.34 | 8.1201197626 | MSE =                   |  |  |  |  |
| 9    | 52855544844                  | 48057658986.5 | 44909135923.5 | 51206182049. | 2099015375.3 | 48273981526.15  | 4581563317.8 | 2.0990722435 | 8.86600694887289E+18    |  |  |  |  |
| 10   | 55882200320                  | 51187475519.9 | 47420471762.1 | 54954479277. | 2511335838.5 | 53305197424.90  | 2577002895.0 | 6.6409439213 |                         |  |  |  |  |
| 11   | 54295472900                  | 52430674471.9 | 49424552846.0 | 55436796097. | 2004081083.9 | 57465815116.31  | 3170342216.3 | 1.0051069768 |                         |  |  |  |  |
| 12   | 2 56683311858                | 54131729426.3 | 51307423478.1 | 56956035374. | 1882870632.1 | 57440877181.80  | 757565323.80 | 5.7390521983 |                         |  |  |  |  |
| 13   | 61285365384                  | 56993183809.4 | 53581727610.6 | 60404640008. | 2274304132.4 | 58838906006.69  | 2446459377.3 | 5.9851634847 |                         |  |  |  |  |
|      |                              |               |               |              |              | 62678944140.664 |              |              |                         |  |  |  |  |
|      |                              |               |               |              |              |                 |              |              |                         |  |  |  |  |
|      |                              |               |               |              |              |                 |              |              |                         |  |  |  |  |
|      |                              |               |               |              |              |                 |              |              |                         |  |  |  |  |
|      |                              |               |               |              |              |                 |              |              |                         |  |  |  |  |
|      |                              |               |               |              |              |                 |              |              |                         |  |  |  |  |
|      |                              |               |               |              |              |                 |              |              |                         |  |  |  |  |
|      |                              |               | 1.61          | (PUS         | ANA          | AR              |              |              |                         |  |  |  |  |
|      |                              |               |               |              | JE:          |                 |              |              |                         |  |  |  |  |
|      |                              |               |               |              |              |                 |              |              |                         |  |  |  |  |
|      |                              |               |               |              |              |                 |              |              |                         |  |  |  |  |

Hasil forecast produksi rokok tahun 2009 dengan metode Double Exponential

| DOUBLE EXPONENTIAL SMOOTHING |             |               |               |              |              |                 |              |              |                                                |  |  |
|------------------------------|-------------|---------------|---------------|--------------|--------------|-----------------|--------------|--------------|------------------------------------------------|--|--|
| Banyakr                      | nya data    | 13            |               |              |              |                 |              | Isi Data     | Run Edit                                       |  |  |
| Alpha                        | 0.5         | i0 🔻          |               |              |              |                 |              | Ne           | ew End                                         |  |  |
|                              |             | _             |               |              |              |                 |              |              |                                                |  |  |
| Nomor                        | ×           | Single Exp.   | Double Exp.   | a            | ь            | Forecast        | Abs. Error   | Squared Err. |                                                |  |  |
| 1                            | 35800436230 | 35800436230   | 35800436230   | 35800436230  |              |                 |              |              |                                                |  |  |
| 2                            | 38273769398 | 37037102814   | 36418769522   | 37655436106  | 618333292    | 35800436230     | 2473333168   | 6.1173769599 |                                                |  |  |
| 3                            | 36123037584 | 36580070199   | 36499419860.5 | 36660720537. | 80650338.5   | 38273769398     | 2150731814   | 4.6256473357 |                                                |  |  |
| 4                            | 38662293444 | 37621181821.5 | 37060300841   | 38182062802  | 560880980.5  | 36741370876     | 1920922568   | 3.6899435122 |                                                |  |  |
| 5                            | 43921731840 | 40771456830.7 | 38915878835.8 | 42627034825. | 1855577994.8 | 38742943782.5   | 5178788057.5 | 2.6819845744 | Forecast untuk satu<br>neriode ke denan adalah |  |  |
| 6                            | 46917472606 | 43844464718.3 | 41380171777.1 | 46308757659. | 2464292941.2 | 44482612820.5   | 2434859785.5 | 5.9285421750 | 63049566753.5955                               |  |  |
| 7                            | 45126588898 | 44485526808.1 | 42932849292.6 | 46038204323. | 1552677515.5 | 48773050600.87! | 3646461702.8 | 1.3296682950 | MAE =                                          |  |  |
| 8                            | 46583614136 | 45534570472.0 | 44233709882.3 | 46835431061. | 1300860589.7 | 47590881839.24' | 1007267703.2 | 1.0145882260 | MSE =                                          |  |  |
| 9                            | 52855544844 | 49195057658.0 | 46714383770.2 | 51675731545. | 2480673887.8 | 48136291651.53: | 4719253192.4 | 2.2271350694 | 9.24063641956127E+18                           |  |  |
| 10                           | 55882200320 | 52538628989.0 | 49626506379.6 | 55450751598. | 2912122609.4 | 54156405433.71  | 1725794886.2 | 2.9783679895 |                                                |  |  |
| 11                           | 54295472900 | 53417050944.5 | 51521778662.0 | 55312323226. | 1895272282.4 | 58362874207.83  | 4067401307.8 | 1.6543753398 |                                                |  |  |
| 12                           | 56683311858 | 55050181401.2 | 53285980031.6 | 56814382770. | 1764201369.5 | 57207595509.40  | 524283651.40 | 2.7487334713 |                                                |  |  |
| 13                           | 61285365384 | 58167773392.6 | 55726876712.1 | 60608670073. | 2440896680.4 | 58578584140.44  | 2706781243.5 | 7.3266647004 |                                                |  |  |
|                              |             |               |               |              |              |                 |              |              |                                                |  |  |
|                              |             |               |               | NN           |              | S               |              |              |                                                |  |  |

Hasil forecast produksi rokok tahun 2009 dengan metode Double Exponential

|     | DOUBLE EXPONENTIAL SMOOTHING |             |               |               |              |               |                 |              |              |                         |  |  |  |
|-----|------------------------------|-------------|---------------|---------------|--------------|---------------|-----------------|--------------|--------------|-------------------------|--|--|--|
| Ba  | nyakr                        | nya data    | 13            |               |              |               |                 |              | Isi Data     | Run Edit                |  |  |  |
| Alp | ha                           | 0.6         | i0 🔻          |               |              |               |                 |              | Ne           | w End                   |  |  |  |
|     |                              | ,           |               |               |              |               |                 |              |              |                         |  |  |  |
| No  | mor                          | X           | Single Exp.   | Double Exp.   | a            | ь             | Forecast        | Abs. Error   | Squared Err. |                         |  |  |  |
|     | 1                            | 35800436230 | 35800436230   | 35800436230   | 35800436230  |               |                 |              |              |                         |  |  |  |
|     | 2                            | 38273769398 | 37284436130.8 | 36690836170.4 | 37878036091. | 890399940.47  | 35800436230     | 2473333168   | 6.1173769599 |                         |  |  |  |
|     | 3                            | 36123037584 | 36587597002.7 | 36628892669.8 | 36546301335. | -61943500.65! | 38768436031.6   | 2645398447.6 | 6.9981329465 |                         |  |  |  |
|     | 4                            | 38662293444 | 37832414867.4 | 37351005988.4 | 38313823746. | 722113318.59  | 36484357834.96  | 2177935609.0 | 4.7434035171 | Concept until entry     |  |  |  |
|     | 5                            | 43921731840 | 41486005050.9 | 39832005425.9 | 43140004676. | 2480999437.5  | 39035937065.15; | 4885794774.8 | 2.3870990581 | periode ke depan adalah |  |  |  |
|     | 6                            | 46917472606 | 44744885583.9 | 42779733520.7 | 46710037647. | 2947728094.8  | 45621004113.56  | 1296468492.4 | 1.6808305518 | 63481063424.124         |  |  |  |
|     | 7                            | 45126588898 | 44973907572.3 | 44096237951.7 | 45851577193. | 1316504430.9  | 49657765742.03  | 4531176844.0 | 2.0531563591 | MAE = 2607027222 60044  |  |  |  |
|     | 8                            | 46583614136 | 45939731510.5 | 45202334087.0 | 46677128934. | 1106096135.2  | 47168081624.01: | 584467488.01 | 3.4160224454 | MSE =                   |  |  |  |
|     | 9                            | 52855544844 | 50089219510.6 | 48134465341.1 | 52043973680. | 2932131254.1  | 47783225069.36! | 5072319774.6 | 2.5728427896 | 1.01717067122933E+19    |  |  |  |
|     | 10                           | 55882200320 | 53565007996.2 | 51392790934.2 | 55737225058. | 3258325593.0  | 54976104934.21  | 906095385.78 | 8.2100884814 |                         |  |  |  |
|     | 11                           | 54295472900 | 54003286938.4 | 52959088536.7 | 55047485340. | 1566297602.5  | 58995550651.30  | 4700077751.3 | 2.2090730868 |                         |  |  |  |
|     | 12                           | 56683311858 | 55611301890.1 | 54550416548.8 | 56672187231. | 1591328012.0  | 56613782942.774 | 69528915.225 | 4.8342700524 |                         |  |  |  |
|     | 13                           | 61285365384 | 59015739986.4 | 57229610611.4 | 60801869361. | 2679194062.5  | 58263515243.60' | 3021850140.3 | 9.1315782709 |                         |  |  |  |
|     |                              |             |               |               |              |               | 63481063424.124 |              |              |                         |  |  |  |
|     |                              |             |               |               |              |               |                 |              |              |                         |  |  |  |
|     |                              |             |               |               |              |               |                 |              |              |                         |  |  |  |
|     |                              |             |               |               |              |               |                 |              |              |                         |  |  |  |
|     |                              |             |               |               |              |               |                 |              |              |                         |  |  |  |
|     |                              |             |               |               |              |               |                 |              |              |                         |  |  |  |
|     |                              |             |               | PEI           | RPUS         | TAKA          | AN              |              |              |                         |  |  |  |
|     |                              |             |               |               |              | JE            |                 |              |              |                         |  |  |  |
|     |                              |             |               |               |              | -             |                 |              |              |                         |  |  |  |

Hasil forecast produksi rokok tahun 2009 dengan metode Double Exponential

| DOUBLE EXPONENTIAL SMOOTHING        |             |                    |               |                   |              |                 |              |              |                         |  |  |  |
|-------------------------------------|-------------|--------------------|---------------|-------------------|--------------|-----------------|--------------|--------------|-------------------------|--|--|--|
| Banyaknya data 13 Isi Data Run Edit |             |                    |               |                   |              |                 |              |              |                         |  |  |  |
| Alpha                               | 0.          | 70 🔻               |               |                   |              |                 |              | Ne           | w End                   |  |  |  |
|                                     | ,           | _                  |               |                   |              |                 |              |              |                         |  |  |  |
| Nomor                               | ×           | Single Exp.        | Double Exp.   | а                 | Ь            | Forecast        | Abs. Error   | Squared Err. |                         |  |  |  |
| 1                                   | 35800436230 | ,<br>35800436230   | 35800436230   | 35800436230       |              |                 | ,<br>        |              |                         |  |  |  |
| 2                                   | 38273769398 | ,<br>37531769447.6 | 37012369482.3 | ,<br>38051169412. | 1211933252.3 | 35800436230     | 2473333168   | 6.1173769599 |                         |  |  |  |
| 3                                   | 36123037584 | 36545657143.0      | 36685670844.8 | 36405643441.      | -326698637.4 | 39263102665.2   | 3140065081.2 | 9.8600087141 |                         |  |  |  |
| 4                                   | 38662293444 | 38027302553.7      | 37624813041.0 | 38429792066.      | 939142196.21 | 36078944803.84  | 2583348640.1 | 6.6736901966 | E                       |  |  |  |
| 5                                   | 43921731840 | 42153403054.1      | 40794826050.2 | 43511980058.      | 3170013009.1 | 39368934262.59  | 4552797577.4 | 2.0727965780 | periode ke depan adalah |  |  |  |
| 6                                   | 46917472606 | 45488251740.4      | 44080224033.3 | 46896279447.      | 3285397983.1 | 46681993067.17: | 235479538.82 | 5.5450613206 | 64037613377.2844        |  |  |  |
| 7                                   | 45126588898 | 45235087750.7      | 44888628635.5 | 45581546865.      | 808404602.15 | 50181677430.66' | 5055088532.6 | 2.5553920073 | MAE = 2741173259 03653  |  |  |  |
| 8                                   | 46583614136 | 46179056220.4      | 45791927944.9 | 46566184495.      | 903299309.42 | 46389951468.09  | 193662667.90 | 3.7505228939 | MSE =                   |  |  |  |
| 9                                   | 52855544844 | 50852598256.9      | 49334397163.3 | 52370799350.      | 3542469218.3 | 47469483805.31  | 5386061038.6 | 2.9009653512 | 1.12836410507322E+19    |  |  |  |
| 10                                  | 55882200320 | 54373319701.0      | 52861642939.7 | 55884996462.      | 3527245776.4 | 55913268568.90: | 31068248.901 | 965236089824 |                         |  |  |  |
| 11                                  | 54295472900 | 54318826940.3      | 53881671740.1 | 54755982140.      | 1020028800.3 | 59412242238.82; | 5116769338.8 | 2.6181328466 |                         |  |  |  |
| 12                                  | 56683311858 | 55973966382.6      | 55346277989.9 | 56601654775.      | 1464606249.7 | 55776010940.89; | 907300917.10 | 8.2319495418 |                         |  |  |  |
| 13                                  | 61285365384 | 59691945683.6      | 58388245375.5 | 60995645991.      | 3041967385.5 | 58066261025.24: | 3219104358.7 | 1.0362632872 |                         |  |  |  |
|                                     |             |                    |               |                   |              | 64037613377.28  |              |              |                         |  |  |  |
|                                     |             |                    |               |                   |              |                 |              |              |                         |  |  |  |
|                                     |             |                    |               |                   |              |                 |              |              |                         |  |  |  |
|                                     |             |                    |               |                   |              |                 |              |              |                         |  |  |  |
|                                     |             |                    |               |                   |              |                 |              |              |                         |  |  |  |



Hasil forecast produksi rokok tahun 2009 dengan metode Double Exponential

| DOUBLE EXPONENTIAL SMOOTHING |             |               |                    |                   |                    |                 |              |              |                                                |  |  |
|------------------------------|-------------|---------------|--------------------|-------------------|--------------------|-----------------|--------------|--------------|------------------------------------------------|--|--|
| Banyakı                      | nya data    | 13            |                    |                   |                    |                 |              | Isi Data     | Run Edit                                       |  |  |
| Alpha                        | 0.8         | 0             |                    |                   |                    |                 |              | Ne           | w End                                          |  |  |
|                              |             | _             |                    |                   |                    |                 |              |              |                                                |  |  |
| Nomor                        | ×           | Single Exp.   | Double Exp.        | a                 | b                  | Forecast        | Abs. Error   | Squared Err. |                                                |  |  |
| 1                            | 35800436230 | 35800436230   | 35800436230        | 35800436230       |                    |                 |              |              |                                                |  |  |
| 2                            | 38273769398 | 37779102764.4 | 37383369457.5      | ,<br>38174836071. | ,<br>1582933227.5  | 35800436230     | 2473333168   | 6.1173769599 |                                                |  |  |
| 3                            | 36123037584 | 36454250620.0 | ,<br>36640074387.5 | ,<br>36268426852. | ,<br>-743295069.9! | 39757769298.8   | 3634731714.8 | 1.3211274638 |                                                |  |  |
| 4                            | 38662293444 | 38220684879.2 | 37904562780.8      | 38536806977.      | ,<br>1264488393.3  | 35525131782.64  | 3137161661.3 | 9.8417832895 |                                                |  |  |
| 5                            | 43921731840 | 42781522447.8 | 41806130514.4      | 43756914381.      | 3901567733.5       | 39801295370.864 | 4120436469.1 | 1.6977996696 | Forecast untuk satu<br>periode ke depan adalah |  |  |
| 6                            | 46917472606 | 46090282574.3 | 45233452162.3      | 46947112986.      | 3427321647.9       | 47658482114.80  | 741009508.80 | 5.4909509213 | 64688199990.7707                               |  |  |
| 7                            | 45126588898 | 45319327633.2 | 45302152539.0      | 45336502727.      | 68700376.710       | 50374434634.28! | 5247845736.2 | 2.7539884871 | MAE =                                          |  |  |
| 8                            | 46583614136 | 46330756835.4 | 46125035976.1      | 46536477694.      | 822883437.08       | 45405203104.16: | 1178411031.8 | 1.3886525599 | MSE =                                          |  |  |
| 9                            | 52855544844 | 51550587242.2 | 50465476989.0      | 52635697495.      | 4340441012.8       | 47359361131.81: | 5496183712.1 | 3.0208035398 | 1.23858601109372E+19                           |  |  |
| 10                           | 55882200320 | 55015877704.4 | 54105797561.3      | 55925957847.      | 3640320572.3       | 56976138508.39  | 1093938188.3 | 1.1967007600 |                                                |  |  |
| 11                           | 54295472900 | 54439553860.8 | 54372802600.9      | 54506305120.      | 267005039.60       | 59566278419.84  | 5270805519.8 | 2.7781390828 |                                                |  |  |
| 12                           | 56683311858 | 56234560258.5 | 55862208727.0      | 56606911790.      | 1489406126.0       | 54773310160.40: | 1910001697.5 | 3.6481064848 |                                                |  |  |
| 13                           | 61285365384 | 60275204358.9 | 59392605232.5      | 61157803485.      | 3530396505.4       | 58096317916.16  | 3189047467.8 | 1.0170023752 |                                                |  |  |
|                              |             |               |                    |                   |                    | 64688199990.771 |              |              |                                                |  |  |
|                              |             |               |                    |                   |                    |                 |              |              |                                                |  |  |
|                              |             |               |                    |                   |                    |                 |              |              |                                                |  |  |
|                              |             |               |                    |                   |                    |                 |              |              |                                                |  |  |
|                              |             |               |                    |                   |                    |                 |              |              |                                                |  |  |
|                              |             |               |                    |                   |                    |                 |              |              |                                                |  |  |
|                              |             |               | 1 1 1 1            |                   |                    | -               |              |              |                                                |  |  |
|                              |             |               |                    |                   | 163                |                 |              |              |                                                |  |  |
|                              |             |               |                    |                   |                    |                 |              |              |                                                |  |  |
|                              |             |               |                    |                   |                    |                 |              |              |                                                |  |  |

Hasil forecast produksi rokok tahun 2009 dengan metode Double Exponential

| DOUBLE EXPONENTIAL SMOOTHING |             |               |               |              |               |                 |              |              |                                       |  |  |  |
|------------------------------|-------------|---------------|---------------|--------------|---------------|-----------------|--------------|--------------|---------------------------------------|--|--|--|
| Banya                        | knya data   | 13            |               |              |               |                 |              | Isi Data     | Run Edit                              |  |  |  |
| Alpha                        | 0.9         | 0 🔻           |               |              |               |                 |              | N            | ew End                                |  |  |  |
|                              | ,           | _             |               |              |               |                 |              |              |                                       |  |  |  |
| Nomo                         | · x         | Single Exp.   | Double Exp.   | a            | b             | Forecast        | Abs. Error   | Squared Err. |                                       |  |  |  |
| 1                            | 35800436230 | 35800436230   | 35800436230   | 35800436230  |               |                 |              |              |                                       |  |  |  |
| 2                            | 38273769398 | 38026436081.2 | 37803836096.0 | 38249036066. | 2003399866.0  | 35800436230     | 2473333168   | 6.1173769599 | l III                                 |  |  |  |
| 3                            | 36123037584 | 36313377433.7 | 36462423299.9 | 36164331567. | -1341412796.: | 40252435932.4   | 4129398348.4 | 1.7051930719 | i i i i i i i i i i i i i i i i i i i |  |  |  |
| 4                            | 38662293444 | 38427401842.9 | 38230903988.6 | 38623899697. | 1768480688.7  | 34822918771.36  | 3839374672.6 | 1.4740797876 | Farrant until anti-                   |  |  |  |
| 5                            | 43921731840 | 43372298840.2 | 42858159355.1 | 43886438325. | 4627255366.4  | 40392380385.98  | 3529351454.0 | 1.2456321685 | periode ke depan adalah               |  |  |  |
| 6                            | 46917472606 | 46562955229.4 | 46192475642.0 | 46933434816. | 3334316286.8  | 48513693691.924 | 1596221085.9 | 2.5479217551 | 65345107545.7637                      |  |  |  |
| 7                            | 45126588898 | 45270225531.1 | 45362450542.2 | 45178000520. | -830025099.7  | 50267751103.724 | 5141162205.7 | 2.6431548825 | MAE = 3450483349.5612                 |  |  |  |
| 8                            | 46583614136 | 46452275275.5 | 46343292802.1 | 46561257748. | 980842259.95  | 44347975420.28  | 2235638715.7 | 4.9980804671 | 1.33798131354277E+19                  |  |  |  |
| 9                            | 52855544844 | 52215217887.1 | 51628025378.6 | 52802410395. | 5284732576.4  | 47542100008.80  | 5313444835.1 | 2.8232696016 |                                       |  |  |  |
| 10                           | 55882200320 | 55515502076.7 | 55126754406.9 | 55904249746. | 3498729028.2  | 58087142972.11  | 2204942652.1 | 4.8617720991 |                                       |  |  |  |
| 11                           | 54295472900 | 54417475817.6 | 54488403676.5 | 54346547958. | -638350730.3: | 59402978774.77! | 5107505874.7 | 2.6086616260 | l .                                   |  |  |  |
| 12                           | 56683311858 | 56456728253.9 | 56259895796.2 | 56653560711. | 1771492119.6  | 53708197228.43: | 2975114629.5 | 8.8513070590 | i                                     |  |  |  |
| 13                           | 61285365384 | 60802501670.9 | 60348241083.5 | 61256762258. | 4088345287.2  | 58425052831.33' | 2860312552.6 | 8.1813878989 | i i i i i i i i i i i i i i i i i i i |  |  |  |
|                              |             |               |               |              |               | 65345107545.76: |              |              |                                       |  |  |  |
|                              |             |               |               |              |               |                 |              |              |                                       |  |  |  |
|                              |             |               |               |              |               |                 |              |              |                                       |  |  |  |
|                              |             |               |               |              |               |                 |              |              |                                       |  |  |  |
|                              |             |               |               |              |               |                 |              |              |                                       |  |  |  |
|                              |             |               |               |              |               |                 |              |              |                                       |  |  |  |
|                              |             |               |               |              |               |                 |              |              |                                       |  |  |  |
|                              |             |               | PER           | PUST         | AKAA          | LN .            |              |              |                                       |  |  |  |
|                              |             |               | 1.11          |              |               |                 |              |              |                                       |  |  |  |
|                              |             |               |               | La Li        |               |                 |              |              |                                       |  |  |  |

### Metode Auto Regresi dan Auto Korelasi



End Sub

Private Sub cmdIsi\_Click()

If Ndata.Text = "" Or NPer.Text = "" Then

respons = MsgBox("Maaf, silakan isi dulu banyaknya data dan banyaknya periode", vbOKOnly, "PESAN") Else

cmdRUN.Enabled = True

cmdIsi.Enabled = False

A(1).Visible = True

B(1). Visible = True

C(1). Visible = True

D(1). Visible = True

E(1).Visible = True

For q = 2 To (Ndata + 1) 'me-load kolom A, B, C, D, E

Load No(q)

No(q).Top = No(q - 1).Top + No(q - 1).Height

No(q). Visible = True

No(q).Text = q

Load A(q)

A(q).Top = A(q - 1).Top + A(q - 1).Height

A(q).Visible = True

Load B(q)

```
B(q).Top = B(q - 1).Top + B(q - 1).Height
```

B(q).Visible = True

Load C(q)

C(q).Top = C(q - 1).Top + C(q - 1).Height

C(q).Visible = True
Load D(q)

D(q).Top = D(q - 1).Top + D(q - 1).Height

D(q).Visible = True

Load E(q)

E(q).Top = E(q - 1).Top + E(q - 1).Height

E(q). Visible = True

## Next q

No(Ndata + 1).Text = "Jumlah"

A(Ndata + 1). Enabled = False

A(Ndata + 1).BackColor = &H8000000F

B(Ndata + 1).Enabled = False

B(Ndata + 1).BackColor = &H8000000F

C(Ndata + 1).Enabled = False

C(Ndata + 1).BackColor = &H8000000F

D(Ndata + 1).Enabled = False

D(Ndata + 1).BackColor = &H8000000F

KAAN

E(Ndata + 1). Enabled = False

E(Ndata + 1).BackColor = &H8000000F

End If

End Sub

Private Sub cmdNew\_Click()

cmdRUN.Enabled = False

cmdIsi.Enabled = True

cmdNew.Enabled = False

cmdEdit.Enabled = False

For u = 2 To (Ndata + 1)

Unload No(u)

Unload A(u)

Unload B(u)

Unload C(u)

Unload D(u)

NEGERI SA

PERPUSTAKAAN

Unload E(u)

Next u

Label3.Caption = ""

Label13(1).Caption = ""

A(1).Visible = False

B(1).Visible = False

C(1).Visible = False

D(1). Visible = False

E(1).Visible = False

A(1).Text = ""

B(1).Text = ""

- C(1).Text = ""
- D(1).Text = ""

E(1).Text = ""

End Sub

Private Sub cmdOK\_Click()

Label5.Caption = "maka nilai Y = " & (alpha + (Betha \* Val(txtX.Text)))

PERPUSTAKAAN

End Sub

Private Sub cmdRUN\_Click()

On Error GoTo salah

'INGAT : Xt-n adalah independent dan Xt adalah dependent

Dim jmlX As Double

Dim jmlY As Double

Dim jmlXY As Double

Dim jmlX2 As Double

Dim jmlY2 As Double

Dim r As Double

Dim tHitAlpha As Double

Dim tHitBetha As Double

Dim Se As Double

Dim yTopi() As Double

Dim sigmaYminYtopikuadrat As Double

Dim sAlpha As Double

Dim tAlpha As Double

Dim sBetha As Double

Dim tBetha As Double

Dim sigmaximinxbarkuadrat As Double

Dim tKor As Double

cmdRUN.Enabled = False

cmdIsi.Enabled = False

cmdNew.Enabled = True

cmdEdit.Enabled = True

For m = (NPer + 1) To Ndata 'menampilkan nilai kolom B

B(m).Text = Format((Val(A(m - NPer).Text)), "#.000")

Next m

jmlX = 0

jmlY = 0

jmlXY = 0

jmlX2 = 0

jmlY2 = 0

For q = (NPer + 1) To Ndata 'perhitungan pada kolom C, D, dan E

C(q) = Format((Val(A(q).Text) \* Val(B(q).Text)), "#.000")

D(q).Text = Format((Val(A(q).Text) \* Val(A(q).Text)), "#.000")

E(q).Text = Format((Val(B(q).Text) \* Val(B(q).Text)), "#.000")

jmlX = Format((jmlX + Val(B(q).Text)), "#.000")

jmlY = Format((jmlY + Val(A(q).Text)), "#.000")

jmlXY = Format((jmlXY + Val(C(q).Text)), "#.000")

jmlX2 = Format((jmlX2 + Val(E(q).Text)), "#.000")

$$jmlY2 = Format((jmlY2 + Val(D(q).Text)), "#.000")$$

Next q

A(Ndata + 1).Text = jmlY

B(Ndata + 1).Text = jmlX

C(Ndata + 1).Text = jmlXY

D(Ndata + 1).Text = jmlY2

E(Ndata + 1).Text = jmlX2

Betha = Format(((((Ndata - NPer) \* jmlXY) - (jmlX \* jmlY)) / (((Ndata - NPer) \*

jmlX2) - (jmlX \* jmlX))), "#.000000")

alpha = Format(((jmlY / (Ndata - NPer)) - (Betha \* (jmlX / (Ndata - NPer)))), "#.000000")

r = Format(((((Ndata - NPer) \* jmlXY) - (jmlX \* jmlY)) / Sqr((((Ndata - NPer) \* jmlX2) - (jmlX \* jmlX)) \* (((Ndata - NPer) \* jmlY2) - (jmlY \* jmlY)))),

"#.000000")

tKor = Format(((r \* Sqr((Ndata - NPer) - 2)) / (Sqr(1 - (r ^ 2)))), "#.000000")

'menghitung t korelasi

```
sigmaYminYtopikuadrat = 0
```

```
sigmaximinxbarkuadrat = 0
```

For p = (NPer + 1) To Ndata 'Mencari y topi untuk mencari Se

ReDim yTopi(p) As Double

yTopi(p) = alpha + (Betha \* Val(B(p).Text))

sigmaYminYtopikuadrat = sigmaYminYtopikuadrat + ((Val(A(p).Text) -

yTopi(p)) ^ 2)

 $sigmaximinxbarkuadrat\ =\ sigmaximinxbarkuadrat\ +\ ((Val(B(p).Text)\ -$ 

(jmlX / (Ndata - NPer))) ^ 2)

Se = Format((Sqr(sigmaYminYtopikuadrat / ((Ndata - NPer) - 2))), "#.000000")

sAlpha = Se / Sqr((Ndata - NPer))

tAlpha = Format((alpha / sAlpha), "#.000000")

sBetha = Se / Sqr(sigmaximinxbarkuadrat)

tBetha = Format((Betha / sBetha), "#.000000")

Label3.Caption = "Koefisien auto korelasinya adalah " & r & Chr(13) + "Standard Error = " & Se & Chr(13) + "T hitung (alpha) = " & tAlpha & Chr(13) + "T hitung (betha) = " & tBetha & Chr(13) + "T hitung (korelasi) = " & tKor

For kl = (Ndata + 1) To (Val(Ndata.Text) + Val(NPer.Text)) 'Menghitung forecastnya

Label2.Caption = "Persamaan auto regresinya adalah " + Chr(13) + "Y = " & alpha & " + " & Betha & " Xt-n" + Chr(13) + Chr(13) + "alpha = " & alpha & Chr(13) + "betha = " & Betha & Chr(13) + Chr(13) + "Forecast untuk periode ke " & kl & " adalah " + Chr(13) & alpha + (Betha \* Val(A(kl - NPer).Text))

PERPUSTAKAAN

Next kl

Exit Sub

salah:

response = MsgBox("Ada kesalahan" + Chr(13) + "Perhitungan tidak dapat dilanjutkan", vbOKOnly, "PESAN") End Sub Private Sub Command1\_Click() Unload Me End Sub Private Sub Form\_Load()

On Error Resume Next

cmdRUN.Enabled = False

cmdNew.Enabled = False

cmdEdit.Enabled = False

Label3.Caption = ""

End Sub



## Metode Double Exponential Smoothing



Private Sub cmdIsi\_Click()

If Ndata.Text = "" Or alpha.Text = "Silakan pilih" Then

```
respon = MsgBox("Silakan isi banyaknya data dan alpha-nya", vbOKOnly,
"PESAN")
```

Else

A(1).Text = ""

cmdRUN.Enabled = True

cmdIsi.Enabled = False

A(1).Visible = True

B(1).Visible = True

C(1).Visible = True D(1).Visible = True E(1).Visible = True F(1).Visible = True G(1).Visible = True H(1).Visible = True A(1).Text = "" B(1).Text = "" C(1).Text = "" C(1).Text = "" F(1).Text = "" G(1).Text = "" G(1).Text = ""

H(1).Text = ""

For q = 2 To (Ndata + 1) 'me-load kolom f

Load F(q)

F(q).Visible = True

F(q).Top = F(q - 1).Top + F(q - 1).Height

Next q

For w = 2 To Ndata 'me-load kolom nomor, A, B, C, D, E, G, H

Load Nmr(w) Nmr(w).Top = Nmr(w - 1).Top + Nmr(w - 1).Height Nmr(w).Visible = True Nmr(w).Text = w Load A(w) A(w).Top = A(w - 1).Top + A(w - 1).HeightA(w). Visible = True Load B(w) B(w).Top = B(w - 1).Top + B(w - 1).Height B(w).Visible = True Load C(w) C(w).Top = C(w - 1).Top + C(w - 1).Height C(w). Visible = True Load D(w) PERPUSTAKAAN D(w).Top = D(w - 1).Top + D(w - 1).HeightD(w). Visible = True Load E(w)

E(w).Top = E(w - 1).Top + E(w - 1).Height

E(w). Visible = True

Load G(w)

G(w).Top = G(w - 1).Top + G(w - 1).Height

G(w). Visible = True

Load H(w)

H(w).Top = H(w - 1).Top + H(w - 1).Height

H(w). Visible = True

Next w

End If GERI End Sub Private Sub cmdNew\_Click() ADA A(1).Visible = False B(1).Visible = False C(1).Visible = False D(1).Visible = False E(1).Visible = False F(1).Visible = False G(1).Visible = False H(1).Visible = False PERPUSTAKAAN cmdRUN.Enabled = False cmdIsi.Enabled = True cmdNew.Enabled = False

For u = 2 To Ndata

cmdEdit.Enabled = False

Unload Nmr(u)

Unload A(u)

Unload B(u)

Unload C(u)

Unload D(u)

Unload E(u)

Unload F(u)

Unload G(u)

Unload H(u)

Next u

Unload F(Ndata + 1)

Label3.Caption = ""

A(1).Visible = False

B(1).Visible = False

C(1). Visible = False

D(1). Visible = False

E(1).Visible = False

F(1).Visible = False

G(1).Visible = False

H(1). Visible = False

End Sub

Private Sub cmdRUN\_Click()

On Error GoTo salah

Dim jmlAE As Double

Dim jmlSE As Double



Dim MAE As Double

Dim MSE As Double

cmdRUN.Enabled = False

cmdIsi.Enabled = False

cmdNew.Enabled = True

cmdEdit.Enabled = True

B(1).Text = Val(A(1).Text)

C(1).Text = Val(A(1).Text)

D(1).Text = Val(A(1).Text)

For p = 2 To Ndata 'perhitungan kolom B, C, D, E, F

$$\begin{split} B(p).Text &= (alpha * Val(A(p).Text)) + ((1 - alpha) * Val(B(p - 1).Text)) \\ C(p).Text &= (alpha * Val(B(p).Text)) + ((1 - alpha) * Val(C(p - 1).Text)) \\ D(p).Text &= 2 * Val(B(p).Text) - Val(C(p).Text) \\ E(p).Text &= (alpha / (1 - alpha)) * (Val(B(p).Text) - Val(C(p).Text)) \\ F(p).Text &= Val(D(p - 1).Text) + Val(E(p - 1).Text) \end{split}$$

GERI

SE

Next p

## PERPUSTAKAAN

F(Ndata + 1) = Format((Val(D(Ndata).Text) + Val(E(Ndata).Text)), "#.000000")

jmlAE = 0

jmlSE = 0

For t = 2 To Ndata 'perhitungan pada kolom G dan H

G(t).Text = Abs(Val(A(t).Text) - Val(F(t).Text)) $H(t).Text = (Val(A(t).Text) - Val(F(t).Text)) ^ 2$ jmlAE = jmlAE + Val(G(t).Text)

$$jmlSE = jmlSE + Val(H(t).Text)$$

Next t

MAE = Format((jmlAE / (Ndata - 1)), "#.000000")

MSE = Format((jmlSE / (Ndata - 1)), "#.000000")

Label3.Caption = "Forecast untuk satu periode ke depan adalah " & Val(F(Ndata

EGI

```
+ 1).Text) & Chr(13) + "MAE = " & MAE & Chr(13) + "MSE = " & MSE
```

Exit Sub

salah:

```
rspn = MsgBox("Ada kesalahan" + Chr(13) + "Perhitungan tidak dapat
dilanjutkan", vbOKOnly, "PESAN")
```

PERPUSTAKAAN

End Sub

```
Private Sub Command1_Click()
```

Unload Me

End Sub

Private Sub Form\_Load()

cmdRUN.Enabled = False

cmdNew.Enabled = False

cmdEdit.Enabled = False

Label3.Caption = ""

alpha.AddItem "0.10"

alpha.AddItem "0.20"

alpha.AddItem "0.30"

alpha.AddItem "0.40"

alpha.AddItem "0.50"

alpha.AddItem "0.60"

alpha.AddItem "0.70"

alpha.AddItem "0.80"

alpha.AddItem "0.90"



| df   | t <sub>0,10</sub> | t <sub>0,05</sub> | t <sub>0,025</sub> | t <sub>0,01</sub> | t <sub>0,005</sub> | df   |     |
|------|-------------------|-------------------|--------------------|-------------------|--------------------|------|-----|
| 1    | 3,078             | 6,314             | 12,706             | 31,821            | 63,657             | 1    |     |
| 2    | 1,886             | 2,920             | 4,303              | 6,965             | 9,925              | 2    |     |
| 3    | 1,638             | 2,353             | 3,182              | 4,541             | 5,841              | 3    |     |
| 4    | 1,533             | 2,132             | 2,776              | 3,747             | 4,604              | 4    |     |
| 5    | 1,476             | 2,015             | 2,571              | 3,365             | 4,032              | 5    |     |
| 6    | 1,440             | 1,943             | 2,447              | 3,143             | 3,707              | 6    |     |
| 7    | 1,415             | 1,895             | 2,365              | 2,998             | 3,499              | 7    |     |
| 8    | 1,397             | 1,860             | 2,306              | 2,896             | 3,355              | 8    |     |
| 9    | 1,383             | 1,833             | 2,262              | 2,821             | 3,250              | 9    |     |
| 10   | 1,372             | 1,812             | 2,228              | 2,764             | 3,169              | 10   |     |
| 11   | 1,363             | 1,796             | 2,201              | 2,718             | 3,106              | 11   |     |
| 12   | 1,356             | 1,782             | 2,179              | 2,681             | 3,055              | 12   |     |
| 13   | 1,350             | 1,771             | 2,160              | 2,650             | 3,012              | 13   | 1   |
| 14   | 1,345             | 1,761             | 2,145              | 2,624             | 2,977              | 14   |     |
| 15   | 1,341             | 1,753             | 2,131              | 2,602             | 2,947              | 15   |     |
| 16   | 1,337             | 1,746             | 2,120              | 2,583             | 2,921              | 16   |     |
| 17   | 1,333             | 1,740             | 2,110              | 2,567             | 2,898              | 17   | 1   |
| 18   | 1,330             | 1,734             | 2,101              | 2,552             | 2,878              | 18   | 0   |
| 19   | 1,328             | 1,729             | 2,093              | 2,539             | 2,861              | 19   | ŗ., |
| 20   | 1,325             | 1,725             | 2,086              | 2,528             | 2,845              | 20   |     |
| 21   | 1,323             | 1,721             | 2,080              | 2,518             | 2,831              | 21   |     |
| 22   | 1,321             | 1,717             | 2,074              | 2,508             | 2,819              | 22   |     |
| 23   | 1,319             | 1,714             | 2,069              | 2,500             | 2,807              | 23   |     |
| 24   | 1,318             | 1,711             | 2,064              | 2,492             | 2,797              | 24   |     |
| 25   | 1,316             | 1,708             | 2,060              | 2,485             | 2,787              | 25   |     |
| 26   | 1,315             | 1,706             | 2,056              | 2,479             | 2,779              | 26   |     |
| 27   | 1,314             | 1,703             | 2,052              | 2,473             | 2,771              | 27   |     |
| 28   | 1,313             | 1,701             | 2,048              | 2,467             | 2,763              | 28   |     |
| 29   | 1,311             | 1,699             | 2,045              | 2,462             | 2,756              | 29   |     |
| inf. | 1,282             | 1,645             | 1,960              | 2,326             | 2,576              | inf. |     |

Nilai t